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ABSTRACT Remote monitoring of electrical cable conditions is an essential characteristic of the next-
generation smart grid, which features the ability to consistently surveil and control the grid infrastructure.
In this paper, we propose a technique that harnesses power line modems (PLMs) for monitoring cable health.
We envisage that all or most of these PLMs have already been deployed for data communication purposes and
focus on the distribution grid or neighborhood area networks in the smart grid. For such a setting, we propose
a machine learning (ML)-based framework for automatic cable diagnostics by continuously monitoring the
cable status to identify, assess, and locate possible degradations. As part of our technique, we also synthesize
the state-of-the-art reflectometry methods within the PLMs to extract beneficial features for the effective
performance of our proposed ML solution. The simulation results demonstrate the effectiveness of our
solution under different aging conditions and varying load configurations. Finally, we reflect on our proposed
diagnostics method by evaluating its robustness and comparing it with existing alternatives.

INDEX TERMS Smart gridmonitoring, cable diagnostics, aging, power line communications, reflectometry,
machine learning.

I. INTRODUCTION
A salient feature of smart grids is ubiquitous monitoring and
control targeted for purposes such as frequency regulation,
demand response, asset management, and anomaly detec-
tion [2]. As a smart grid monitoring technique, cable health
monitoring falls into the latter two categories, since under-
ground cables are crucial assets of the grid infrastructure
and are widely deployed in both transmission and distribu-
tion systems due to their aesthetics, robustness to weather
conditions, and reduced impact on the environment [3], [4].
Cable in-service failures lead to severe anomalies such as
power outages. An ideal solution to avoid in-service fail-
ures in operating cables is to identify potential issues and
anticipate faults in a non-destructive manner [5, Ch. 6]. Such
a proactive diagnostics approach, however, is known to be
challenging as opposed to a reactive solution like hard fault
detection [6]. Despite this, various diagnostics schemes have
been developed in the past that attempt to identify and locate
cable degradations [5, Ch. 6], [7, Ch. 4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Alberto Sendin.

A major drawback of the existing cable diagnostics
schemes is the requirement of dedicated equipments to
conduct the tests [5, Ch. 6], [8]. To counter this, we propose
reusing power line modems (PLMs) that are installed in
the grid for smart-grid communications purposes [9], [10].
Any two PLMs in the network communicating with each
other, regularly estimate the power line communication
(PLC) channel condition between them for efficient end-to-
end communications. We have shown in our recent works
that this estimated channel condition also provides insight
into the health of the power cables [1], [11], [12]. PLMs
operating with broadband power line communication (BB-
PLC) technology use analog-to-digital converters functioning
at sampling rates of up to 200MHz [13]. Signals that are sam-
pled at such high rates provide distinctive information about
the deterioration of cable insulation dielectric properties as
the cables age and degrade [14], [15, Ch. 2, Ch. 7], [16], [17].
This means that changes in the cable dielectric properties
manifest themselves as variations in the BB-PLC channels
estimated inside legacy PLMs. This enables us to design a
PLM-based proactive diagnostics technique to identify poten-
tial issues and anticipate faults along the cable by monitoring
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the communication channel conditions. Additionally, this
scheme can also operate online, unlike several other conven-
tional methods that require cables to be de-energized during
testing [5, Ch. 6].

Another major disadvantage of conventional diagnostics
solutions is that most of them require technical staff with
expertise to analyze the measured signals (current and/or
voltages) and determine the cable health status [5, Ch. 6].
This manual interpretation introduces added costs and slows
down the diagnostics procedure. Furthermore, varying net-
work load conditions result in signal changes that are on
occasions similar to those caused due to cable degrada-
tions. This renders manual diagnosis susceptible to missed
detections and false alarms (FAs). To overcome these draw-
backs, we propose augmenting our PLM-based approachwith
machine learning (ML) techniques to intelligently analyze the
communication channel conditions estimated by the PLMs,
and design a self-reliant and an automated cable diagnostics
solution that can be implemented remotely.

A. CONTRIBUTIONS
In this paper, we present for the first time, an ML frame-
work for independent cable diagnostics that builds on PLM
signal measurements and applies a multi-step cooperative
scheme to progressively detect, assess, and locate possible
cable degradations. Our automated solution focuses on first
determining the type of degradation that the cable is sub-
ject to, whether localized to a portion of the cable or spreading
homogeneously across its length. For either type of degra-
dation, we diagnose its severity to preempt a potential cable
in-service failure that may occur if a cable beyond the normal
service condition is left untreated. For a localized degrada-
tion, we further locate its position and the affected length so
that remedial efforts can be concentrated at the right location.

To aid the design of our solution, we study the underlying
signal propagation principles, develop suitable strategies to
extract signal features that are indicative of cable degra-
dations and use those features to infer cable health using
appropriate ML algorithms that we choose from existing ML
toolboxes. In particular, the performance of our solution relies
on the quality of the chosen features. Inspired by state-of-
the-art joint-time-frequency domain reflectometry (JTFDR)
solutions, which are fairly effective in cable anomaly detec-
tion and localization [18], we design features extracted from
the JTFDR waveform, together with other features extracted
from the estimated communication channel. However, adopt-
ing conventional JTFDR requires bulky expensive external
devices and experienced technicians to be dispatched onsite,
which are not consistent with the target characteristics of
our solution that we previously outlined. To overcome this
overhead, we devise a method to synthesize JTFDR within
the PLMs, called PLM-JTFDR. Thereby, we incorporate
PLM-JTFDR as part of our ML diagnostics solution by
extracting features from its resultant waveforms.

As part of our solution, we use synthetically generated
data for the ML training. For this purpose, we adopt a cable

aging model from the literature [19], [20], refine it for faithful
emulation of realistic cable degradations, and further apply
it to generate the PLC channels using a bottom-up approach.
We generate channels under different network loads and cable
degradation conditions for extracting features to train our
machines. We use a sufficient number of samples while train-
ing a machine such that the ML algorithm performance is sat-
urated. We note that since practical operation of our solution
involves off-site training, we are not limited by the number of
training samples used. For practical implementation, several
machines are trained for a variety of diagnostics tasks and are
loaded onto the PLMs in the grid through software/firmware
upgrades in a remote manner. We also reflect on our solution
and contrast it with other state-of-the-art methods, which pre-
dominantly have drawbacks that include requiring dedicated
diagnostics equipments, demanding manual intervention for
performing the tests and analyzing the data, providing insuf-
ficient resolution for focused remedial efforts, and/or being
unable to predict a future in-service failure caused by an
untreated cable degradation.

Further, in order to verify the effectiveness of our schemes,
we present a comprehensive simulation-based evaluation of
our proposed solution under a generic network topology with
varying load conditions and arbitrary cable aging profiles.
Further, to judge the effectiveness of our proposed solu-
tion under real-world scenarios, we critically evaluate its
robustness by emulating non-idealities that could be encoun-
tered during practical deployment. In particular, we conduct
a robustness and sensitivity analysis of our solution with
behavior variations from the adopted degradation models.

B. OUTLINE
The rest of the paper is organized as follows. In Section II,
we introduce the modeling of cable degradation, includ-
ing its growth and the dielectric property change it causes
within the insulation. We then describe the modeling and
generation of PLC channels subject to a particular degra-
dation condition under a considered network topology in
Section III. In Section IV, we introduce our proposed ML
framework for automated cable diagnostics, including PLM-
JTFDR for feature extraction. We present the simulation
results in Section V, and discuss the potential challenges
for our proposed solution and compare it with prior works
in Section VI. Conclusions are drawn in Section VII. The
specifics of PLM-JTFDR and the details of our ML imple-
mentation are relegated to the Appendices A-C.
Nomenclature: Throughout this paper, we use <(x) and
=(x) to indicate real and imaginary part of a complex number
x, respectively. We denote a uniform random distribution
between a and b as U (a, b).

II. CABLE AGING MODEL
Based on the insulation material used, power cables are
classified into laminated and extruded types [5, Ch. 6.2.3].
While laminated cables suffer mainly from thermal degra-
dations, extruded ones are mostly susceptible to electrical
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TABLE 1. List of abbreviations.

FIGURE 1. Longitudinal section of a cable insulation illustrating the cable
aging profile. The shaded region indicates the portion of the insulation
subject to WT degradation while the unshaded region consists of the
intact sections of the insulation and the conductor-insulation interface.

aging, i.e., developing water-treeing (WT) and electrical-
treeing [21]. In this paper, we focus on investigating
cable aging caused by WT degradations, since WT is
a prominent cause for premature failures of extruded
cables [22], [5, Ch. 6]. In addition, focusing onWT degrada-
tions has the added benefit that many works in the literature,
e.g., [19], [20] have developed a deterministic model for WT
growth and thoroughly investigated the dielectric properties
of WT-degraded extruded cross-linked polyethylene (XLPE)
insulation, which is widely deployed [3], [4], [23].

A. CABLE AGING PROFILE
Investigations into the nature of WT in cable insulations have
shown that under normal operating conditions, power cables
develop near-uniformWT degradations across their length as
they age [17], [19]. However, water ingress or local defects
may lead to salient localized WT degradations [19]. There-
fore, for faithful emulation, we model the aging condition
along the cable with an aging profile as shown in Fig. 1. The
cable section develops a homogeneousWT degradation along
its length with thickness yhomo, within the total insulation

TABLE 2. Cable ageing model parameters [19], [20], [25], [26, p. 794].

thickness of rinsul. In addition, a section of the cable, of
length `WT, may also be subject to a localized WT degrada-
tion of thickness ylocal.

The growth of yhomo can be related to the elapsed service
time, tsr, as [19]1

yhomo =

(
α0ν0f0 F2ε0<{εw}tsr

3
2

Y

) 1
3

, (1)

where F is the operating electric field strength (see
Section III). The remaining parameters are all listed in Table 2
along with their values that we use in our model.2 Thus,
in case of homogeneous aging, an estimated value of yhomo
can be used to obtain an equivalent age, teq, of a degraded
cable, which can be computed as

teq =
3

√√√√( Y · y3homo
α0ν0f0F2ε0<{εw}

)2

. (2)

This equivalent age provides an intuitive indication into the
WT degradation severity that the cable has experienced.

B. DIELECTRIC PROPERTIES OF WT DEGRADED CABLES
The dielectric properties of WT degraded XLPE insu-
lation material have been investigated in the literature,
e.g., in [20], [27]. The relative permittivity of WT degraded
XLPE insulation (shown as the shaded region in Fig. 1) can
be computed as [27, Eq. 1]

εWT = εPE

(
1+

qw(εw − εPE)
D(1− qw)(εw − εPE)

)
, (3)

where the relative permittivity of water is given by εw =
81 − j σw

2π f ε0
for any operating frequency f , where j =

√
−1.

Please refer to Table 2 for descriptions and values of all other
parameters. For the overall cross section of XLPE insulation
with both WT degraded and intact regions, the equivalent rel-
ative permittivity can be computed using the series dielectrics
model as [20, Eq. 6.3],

εtotal =

(
y

rinsul

1
εWT
+
rinsul − y
rinsul

1
εPE

)−1
, (4)

where y is the WT degradation depth.

1The accuracy of (1) has been validated with real-world measurements
in [19].

2Note that the properties of XLPE insulation material vary with the
manufacturing process and depend on various factors including its density
and crystallinity [24]. The parameters listed in Table 2 are values obtained
under typical situations and serve as nominal parameters.
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To further determine and establish degradation severities,
we define γ , y

rinsul
as the relative depth of the XLPE

insulation that is impacted with the WT degradation. For a
cross section with a localized WT degradation (e.g., cross
section A in Fig. 1), we have y = ylocal and γlocal =

ylocal
rinsul

.
For other cross sections without a localized WT degradation
(e.g., cross section B in Fig. 1), we have y = yhomo and
γhomo =

yhomo
rinsul

. For an aging profile without any localized
WT degradation, we have γ = γhomo =

yhomo
rinsul

along the
entire length of the cable segment.

III. PLC CHANNEL MODEL
Our next step involves generating several power line channels
for healthy and degraded cables that will be used as training
and testing samples in our ML framework. PLC channel
modeling is typically addressed either through the top-down
or the bottom-up approach. While the top-down approach
could be computationally simpler, we adopt the bottom-up
approach of modeling PLC channels in this investigation in
order to accurately capture the influence of the insulation
dielectric property changes resulting from a specific aging
profile [28].

For a given aging profile of cable insulation, each seg-
ment along the cable with the same degradation severity
can be viewed as a uniform line with electrically small
cross-sectional dimensions, in which condition PLC sig-
nals are transmitted in the quasi-transverse-electromagnetic
(quasi-TEM) propagation mode, and the PLC channel can be
modeled with the multi-conductor transmission line (MTL)
theory [29, Ch. 1].We then concatenate each of these sections
to obtain the overall PLC channel modeling. By using theWT
degradation model of (4) in the MTL per-unit-length (PUL)
parameter computations specified in Section III-A, we model
the PLC channel for cable sections with arbitrary degradation
conditions. For the software implementation, we feed the
computed PUL parameters to an open source bottom-up PLC
channel emulator of [30] to generate PLC channels.

A. COMPUTATION OF PUL PARAMETERS
The MTL theory models the PLC channel with the MTL
equations, whose coefficients are determined by the PUL
parameters, which contain all cross-sectional information of
every cable segment [29, Ch. 1]. Therefore, the first step in
MTL analysis is to determine the PUL resistance (R), induc-
tance (L), capacitance (C), and conductance (G) matrices.
For an N conductor cable with N ≥ 2, R, L, C, and G
matrices are all of dimensions (N − 1)× (N − 1).
Let us denote the 0th line as the reference conductor.

Accordingly, we obtain each of the (i, j)th element of R
as [29, Eq. 3.12]

Rij = R0 + Rj, i = j, (5)

Rij = R0, i 6= j, (6)

where Ri is the PUL resistance of the ith conductor (0 ≤ i ≤
(N − 1)). Since the surrounding medium of the conductors is

typically non-ferromagnetic with permeability of free space,
i.e., µ = µ0 = 4π × 10−7 H ·m−1, and since its permittivity
is irrelevant in determining L, we apply the wide separa-
tion approximations for round conductors in free space to
get [29, Eq. 5.23]

Lij =
µ0

2π
ln

(
d20,j
r0rj

)
, i = j, (7)

Lij =
µ0

2π
ln
(
d0,id0,j
r0di,j

)
, i 6= j, (8)

where rj is the radius for the j-th conductor and di,j is the
separation distance between the ith and jth conductors.
Further, for computational simplicity we can assume

a homogeneous surrounding medium with a permittivity
of εtotal. Under such conditions, we compute the capacitance
and conductance matrices as [29, Eq. 5.24]

C = µ0ε0< (εtotal)L−1, (9)

G = −2π f µ0ε0=(εtotal)L−1. (10)

Note that this simplification only leads to a faster PUL
computation and does not affect the operation of our pro-
posed solution. With these PUL parameters, we generate
PLC channels under different aging conditions and varying
network loads and topologies using the channel generator
tool of [30].

FIGURE 2. Portion of the distribution network considered.

B. NETWORK TOPOLOGY AND LOADS
Along with the knowledge of cable PUL parameters, chan-
nel generation also requires information about the network
topology and the connected loads. Typical medium volt-
age (MV) distribution networks consist of few intermediate
branches and can be divided into smaller T and chain net-
works [31]. Therefore, for a realistic grid emulation, we con-
sider a T -network with three PLMs, as shown in Fig. 2,
with possible network extensions beyond each of the PLMs.
Each of the six branches in the considered network topology
assumes an aging profile shown in Fig. 1with the same γhomo.
In addition, a localized WT degradation with γhomo and `WT
may be present on any of the six branches or not. Without
loss of generality, we consider a symmetrical topology with
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an equal separation distance of 500 m between each PLM and
the branch point (BP) [32]. Further, we also place a 500 m
transmission line between each PLM and any further branch
extensions (BEs). To emulate a range of realistic network
extensions [33, Table 1.1], at every BE in Fig. 2, we consider
equivalent load impedances randomly chosen in U (0, 50)+
j ·U (−50, 50) � between each pair of conductors as shown
in [12, Fig. 3], where j =

√
−1.

C. CABLE SETTINGS
The final aspect of characterizing the PLC channel is to
specify the physical cable parameters. In our evaluations,
we consider the XLPE multi-core cable N2XSEY [34], with
equidistant conductor separations of dcond = 15.88 mm,
equal conductor radii rcond = 3.99 mm and a maximum
rated voltage V0 = 12 kV. We then apply an approximate
cylindrical geometry to compute the electric field under V0 at
a distance rcond from the center of the conductor [35, Eq. 1],
where the electric field strength is at its maximum and is most
prone for WT inception [35], as

Fmax =
V0

rcond ln
(
dcond
2rcond

) . (11)

Considering an expected maximum service time of tmax =

30 years [5, Ch. 6] in (1), we derive the maximum homo-
geneous degradation severity, max(γhomo) = 0.0481 under
nominal conditions shown in Table 2. Therefore, in our eval-
uations, we confine γhomo ≤ 0.05, and to clearly distinguish
a salient localized WT degradation, we let γlocal ≥ 0.1.

D. PLC CHANNEL GENERATION
We use the PLC channel emulator of [30] to generate PLC
channels in the frequency range of 2 − 30 MHz with a
frequency resolution of 1f = 24.414 kHz. The channel
generator of [30] provides the end-to-end channel frequency
response (CFR), Hf, and the line access impedance, Zin.
Using Zin and the known PLM output impedance, we com-
pute the reflection channel transfer function, Href, which
characterizes the behavior of the portion of the transmitted
PLC signal that is reflected into the modem [36]. Therefore,
in our ML framework, we use both Hf and Href to extract
features for the training and the testing. Note that both these
channels are inherently estimated within the PLMs in some
form, and hence introduces no additional overhead [13], [37].
While Hf is directly estimated within all legacy PLMs, Zin or
Href can be obtained in either of two ways. Newer PLMs that
support adaptive power boosting, regularly estimate Zin to
compute the input return loss [13]. Alternatively,Href can also
be acquired using in-band full-duplex (IBFD) communication
functionality which inherently involves estimating the self-
interference (SI) channel to cancel the echo [37]. In the
context of PLC, the echo/SI channel essentially indicates
Href [37], [38]. In this work, we consider Hf and Href to be
perfectly estimated by the PLMs in order to focus specifically

on determining the potential of using PLC channel variations
to estimate cable degradations.

IV. ML FRAMEWORK FOR CABLE HEALTH MONITORING
In this section, we introduce our proposed ML solution for
automated cable diagnostics.

FIGURE 3. Our proposed multi-step cable diagnostics.

A. CABLE HEALTH MONITORING
We conduct the evaluation of cable health conditions through
a series of procedures as shown in Fig. 3. In the first stage,
we perform an aging profile type classification, where we
either detect a localized degradation (LD) or a homogeneous
aging profile. When the cable has undergone homogeneous
degradation, we assess its degradation severity. The case of
a healthy cable is encompassed within this condition when
a severity assessment results in zero degradation. In cases
where the cable is subject to an LD, we locate this defect and
assess its severity.

B. PLM-JTFDR
The state-of-the-art in reflectometry for LD diagnostics is
JTFDR, which transmits a reference signal that is customized
based on the application, and then conducts advanced post-
processing of the received reflected signal before ana-
lyzing [18]. While JTFDR shows promising results in
cable anomaly detection and location, applying conventional
JTFDR in its native form requires external equipments, which
incur extra costs, as described in Section I. To overcome this
implementation drawback, we propose a new method called
PLM-JTFDR, to synthesize the results of JTFDR operation,
i.e., to obtain the resultant JTFDR waveform, hJTFDR, within
PLMs by using Href. We describe PLM-JTFDR in greater
detail in Appendix A.

Since JTFDR is limited to LD diagnostics due to its nature
of operation, we consider PLM-JTFDR for developing parts
of our solution focused on detecting, locating, and assess-
ing LDs. An LD causes discontinuities in dielectric proper-
ties of cable insulations, which results in parts of the PLC
signal to be reflected back to the PLM from the locations
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of these discontinuities. By determining the presence and
locations of such reflections, which can be noticed as peaks
in the PLM-JTFDR waveforms, an LD can be identified and
localized.

FIGURE 4. (a) hJTFDR and −|href | (normalized to the magnitude of
peak A) when a degradation is present between PLM1 and BP.
(b) Zoomed at the degradation locations B and C .

As an example, we study the use of PLM-JTFDR for
LD diagnostics under a network topology shown in Fig. 2.
We first run PLM-JTFDR with an aging profile that con-
tains an LD located between the transmitting PLM, i.e. TX,
and BP. We set the LD to be of the minimum degradation
severity, γlocal = 0.1, to evaluate the sensitivity of our
methods tomild degradations.We set an arbitrary degradation
length of 166 m to be present between 211 m and 377 m from
PLM1 as TX. The resultant waveforms obtained for this setup
is shown in Fig. 4.3 For comparison, we also show −|href|

alongside, which is essentially the resultant waveform of con-
ventional time-domain reflectometry (TDR) [39]. We notice
from Fig. 4 that hJTFDR is smoother and its peaks are
more prominent than for href. Therefore, compared to TDR,
i.e., directly using href for cable diagnostics, PLM-JTFDR
has superior sensitivity and performance to detect less salient
localized WT degradations. The superior performance of our
solution is more prominent when the LD is further away from
themeasurement point (PLM1), e.g., betweenPLM2 andBP,
as shown by the results in Fig. 5.

The peak locations in Fig. 4 are seen to be at nA = 0,
nB = 129, nC = 232, nD = 305. Since the network topology
is known a-priori, i.e., that BP is `0 = 500 m away from
PLM1 and that nD indicates the reflection from BP, we can
compute the two ends of the LD to be `0nB/nD = 211 m
and `0nC/nD = 380 m apart from PLM1, respectively. While
we predict the start location of the degradation accurately,
the slight disagreement in locating the degradation end point
can be attributed to the slower wave propagation speed in the
LD region. For a section of cable with εtotal (see (4)), the wave

3For illustration clarity, we only show the first 330 time samples of the
signal, which contains all pertinent reflection peaks. The signal is normalized
with respect to the magnitude of its first peak.

FIGURE 5. (a) hJTFDR and −|href | (normalized to the magnitude of
peak A) when a degradation is present between PLM2 and BP.
(b) Zoomed at the degradation locations C and D.

FIGURE 6. Prediction of γlocal using peak magnitudes and locations of the
PLM-JTFDR waveforms. (a) Linear regression. (b) SVM regression with
Gaussian kernel.

propagation velocity can be computed as

v =
1

√
µε0<(εtotal)

. (12)

When γlocal � γhomo, v at the region with a localized WT
degradation is noticeably different from other regions. This
is also shown in [11], [20], [40], where fault or degradation
localization in severely aged service cables yields significant
deviance from their true values.

Our evaluations thus far show the capability of our pro-
posed PLM-JTFDR in identifying and locating an LD. How-
ever, this only completes a portion of the LD diagnostics
tasks. In the following, we attempt to perform the remaining
LD severity estimation by exploiting the principle that a
more severe degradation causes stronger discontinuities in
cable insulation dielectric properties, and thus results in a
higher reflection peak in hJTFDR. Therefore, we monitor the
peak amplitudes to infer the extent of degradation. How-
ever, we find the relationship between peak amplitudes and
the degradation severities to be non-linear, and furthermore
affected by signal attenuations along the line and changing
load conditions. This can be observed from Fig. 6, where
we apply regression techniques in an attempt to predict the
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degradation severity level of an LD. We train our machine
with 3600 aging profiles using the peak amplitudes and loca-
tions as features, and their associated γlocal ∼ U (0.1, 1) as
labels. Our prediction results for 1000 other aging profiles
subject to LD with γlocal ∼ U (0.1, 1) is shown in Fig. 6.
We observe in Fig. 6(a) that applying linear regression

to predict γlocal provides an unsatisfactory prediction per-
formance. On the other hand, the results in Fig. 6(b) are
more encouraging, where the performance is improved by
using a support vector machine (SVM) regression with the
Gaussian kernel. This further motivates us to include the
results of PLM-JTFDR in some form within an ML-based
cable diagnostics solution.

FIGURE 7. Proposed ML framework for cable health monitoring.

C. A MACHINE LEARNING FRAMEWORK
Our proposed ML-based cable diagnostics solution is shown
in Fig. 7. We formulate the problems of aging profile type
identification and branch location as supervised classification
tasks, and the problems of degradation location and aging
severity assessment as supervised regression tasks. For each
of these supervised learning tasks, we train the machine using
features extracted from the synthetically generated channel
transfer functions with their associated known aging profiles
following the procedure outlined in Section III. In particular,
for each of the supervised classification tasks, we use the
presence or absence of an LD as the training label/tag. Sim-
ilarly, for every supervised regression task, we use the value
to be predicted, e.g., γhomo and `wt, as shown in Fig. 7, as the
training label/tag.

Throughout our analysis, we consider the generic
T -network topology of Fig. 2. To determine the presence of
an LD, we run classifiers in each of the PLMs to identify an
LD in their nearest branch(es). We then employ a cooperative
technique, by which we conclude that no LD exists if all
of the PLMs report the absence of an LD at their nearest
branches. In such a case, the cables are predominantly subject
only to homogeneous degradation across the network. On the
other hand, when a PLM reports the presence of an LD,
we face the challenge of topological ambiguity, where the

degradation could be located on a branch in either direction
of the PLM.4 In the network of Fig. 2, when the ith PLM, pi,
reports an LD, the LD can lie either between pi − BP or
pi − BEi. To eliminate this ambiguity, we perform a second
round of classification to detect the LD branch location.
In the second round, we let pj (j ∈ {1, 2, 3}, j 6= i) confirm
whether the degradation resides between pi and BP using a
similar classification procedure. Once the presence of an LD
is confirmed within the considered network, we use different
ML regressors in the PLM closest to the LD for severity
assessment and localization. In particular, we use an ML
regressor to find the associated γlocal, another one to predict
its length, i.e., `wt, and a final one to predict the distance
between the PLM and the near-end of the LD, which we also
refer to as the target location.
On the other hand, when the aging profile is identified

to be homogeneous, we use an ML regressor to predict an
equivalent cable age, teq, which provides an intuitive indi-
cation into the overall degradation severity of the evaluated
cable insulation. Specifically, we train a machine to predict
γhomo of the evaluated homogeneous aging profile and use (2)
to compute teq with the nominal cable parameters listed
in Table 2.

D. MACHINE LEARNING ALGORITHMS
For both classification and regression, we use two sets of
ML techniques, namely SVM and boosting, following their
success both in previous cable diagnostics evaluations as
well as in other domains [1], [11], [41]. SVM is a classical
and popular ML technique, which constructs support vec-
tors of hyperplanes, from a subset of the training data, for
predictions. It encodes sparsity in the hinge loss function,
which is a convex upper-bound for the non-smooth 0 − 1
loss function, and results in a small number of support vectors
compared to the number of training samples [41, Ch. 14]. The
sparsity and the well-known large margin principle allows
SVM to provide accurate predictions for unseen data samples.
Furthermore, optimization problems in SVM operation can
be efficiently solved by convex quadratic programming, and
a high-dimensional space can be explored by kernel tricks.

Boosting is one of the meta-ML algorithms that works by
consolidating multiple weak learners into a strong learner.
It applies the weak learners sequentially to weighted versions
of the data, where a higher weight is allocated to exam-
ples that suffered greater inaccuracy in earlier prediction
rounds [41, Ch. 16]. These weak learners are typically only
marginally better than random guessing but are computation-
ally simple. Boosting is also known to be robust to over-
fitting, and can be efficiently executed since it is a forward
stage-wise additive model [41, Ch. 16]. We use the adap-
tive boosting (AdaBoost) for classification and the gradient

4For our evaluations, we address the condition where only one LD is
present in the considered network. We believe that this assumption is not
far from reality since we expect multiple LDs to occur sequentially, and
therefore can be addressed one at a time.
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boosting with square loss function, known as least-square
boosting (L2Boost), for regression.

Apart from the specific choices of the algorithms, the per-
formance of our solution also depends on the number of
samples used to train the machines, nTR. We detail our
choice of nTR as well as the number of testing samples, nTE,
in Appendix B, followed by a discussion of our strategies to
prevent over-fitting of our model in Appendix C.

E. FEATURE SELECTION
For each of the ML tasks, selecting the feature set is crucial
for a successful ML performance.We have shown in our prior
works [1], [11] that cable degradations cause higher dielec-
tric losses and thus greater attenuation in Hf across the fre-
quency band. Therefore, we include the mth-order moments
(m ∈ {1, 2, 3, 4}) of |Hf| in our feature library to train
our machine. Additionally, various studies in the literature,
e.g., [11], [20], [40], have shown that degradations reduce the
velocity of wave propagation in the degraded section of the
cable. Thus, we also include the locations and amplitudes
of the peaks in the channel impulse response, hf, and the
mth-order moments (m ∈ {1, 2, 3, 4}) of 6 Hf in our feature
library. Similarly, we also include the mth-order moments
(m ∈ {1, 2, 3, 4}) of |Href| and 6 Href in our feature library
to provide additional insights for cable health monitoring.

Further, our evaluation results in Figs. 4-6 have also shown
that PLM-JTFDR provides cleaner waveforms for extracting
features for degradation identification and location, and also
indicative information in predicting the LD severity. There-
fore, we also extract peak locations and magnitudes from
the resultant PLM-JTFDR waveforms as features for our ML
operation.

V. SIMULATION RESULTS
In this section, we demonstrate the effectiveness of our
ML solution through numerical evaluations for automated
cable health condition monitoring. Throughout our simu-
lations, we apply the network topology shown in Fig. 2,
and the cable aging model and PLC channel characteriza-
tion described in Section II and Section III, respectively.
In addition, we set γhomo ∼ U (0, 0.05), since the expected
lifespan of typical power cables is 30 years [5, Ch. 6], which
corresponds to γhomo = 0.048 as computed from (1). Further,
to clearly distinguish an LD from homogeneous degradation,
we vary γlocal ∼ U (0.1, 1). Additionally, we use `WT ∼

U (100, 300) m and the center of the localized WT degra-
dation randomly located within 100 m from the center of a
branch in Fig. 2. Since nTR and nTE vary for each of the ML
tasks, we specify our chosen tuple (nTR, nTE) with all our
results.

A. COOPERATIVE LD IDENTIFICATION
We use the ith PLM, pi, (i ∈ {1, 2, 3}) to identify the pres-
ence of a localized WT degradation, regardless of whether it
resides between pi−BP or pi−BEi. For such a task, we use
nTR = 7000 and nTE = 6600. Of the 7000 training samples,

1000 are characterized with a homogeneous degradation, and
1000 each with an LD on each of the six branches in the
considered network topology shown in Fig. 2. We label the
training samples with an LD residing between either pi−BP
or pi−BEi as positive, and the other training samples as nega-
tive. Thus, we have 2000 positive and 5000 negative training
samples. In the testing sample set, for each of the value of
γlocal between 0 to 1 with a step size of 0.1, we generate
100 samples with an LD located on each of the six branches
in the considered network. As a result, for each γlocal ≥ 0.1,
we generate 200 positive and 400 negative testing samples.
Furthermore, for γlocal = 0, we generate 600 negative testing
samples with a homogeneous degradation.

FIGURE 8. Detection and FA rates for cooperative LD identification, with
(nTR,nTE) = (7000,6600).

The result of this exercise for varying γlocal is shown
in Fig. 8. We observe in Fig. 8 that using hJTFDR to extract
features provides near-perfect detection with negligible FA
rates across all values of γlocal, while using href provides
unsatisfactory detection especially at lower γlocal, with either
SVMwith radial basis function (RBF) kernel or the AdaBoost
as our consideredML algorithms. The improved performance
is expected due to the nature of hJTFDR in comparison to
that of href, i.e., more prominent peaks and a smoother floor
in hJTFDR, as discussed in Section IV-B. Therefore, the result
of Fig. 8 shows that the detection performance can be sig-
nificantly improved by adopting PLM-JTFDR into the ML
framework.

B. LD BRANCH LOCATION
Once a localizedWT degradation is detected between pi−BP
or pi − BEi, we let pj (j ∈ {1, 2, 3}, j 6= i) confirm whether
the degradation resides between pi andBP. For such a setting,
we generate 2000 positive samples with an LD between pi −
BP and 2000 negative samples with an LD between pi−BEi,
for training the machine. Next, for every γlocal between 0.1
to 1 with a step size of 0.1, we generate 200 positive samples
with an LD between pi−BP, and 200 negative samples with
an LD between pi − BEi, for testing the machine.
The detection results for this phase is shown in Fig. 9.

At first, we use the same feature set for this task as that used
in the cooperative LD identification. We observe in Fig. 9(a)
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FIGURE 9. Detection and FA rates for LD branch location with (a) the
feature set used for Fig. 8, and (b) with optimized features for improved
results, both of which are obtained with (nTR,nTE) = (4000,4000).

FIGURE 10. Degradation severity assessment with
(nTR,nTE) = (3600,1000) for (a) homogeneous aging and (b) LD.

that this results in detection rates that are less than desirable,
especially for lower values of γlocal. However, by optimizing
the selected features, such as using the variance of hJTDFR,
the detection rates can be substantially improved across all
values of γlocal, as seen in Fig. 9(b).

C. HOMOGENEOUS AGING SEVERITY ASSESSMENT
When the aging profile type classification determines a
homogeneous aging profile, we use L2Boost to train a
machine for the prediction of the degradation severity level.
We train and test with different homogeneous degradation
severities quantified by their equivalent age as computed
in (2). To emulate realistic degradations, we limit t ∼
U (0, 32.5) years in our simulations [5, Ch. 6]. In particular,
we use nTR = 3600with a homogeneous aging and a different
set of nTE = 1000. For the homogeneous aging severity
assessment, we use the equivalent age computed by γhomo
and Equation (2) as the training/testing label.

The equivalent age prediction performance is shown in
Fig. 10(a). We observe that the estimated age closely matches
the actual age. Furthermore, the prediction accuracy is con-
siderably improved when compared to the state-of-the-art [1],

as we now use not only Hf, but also Href. Recall that the
equivalent age, teq, is an intuitive artificial-age indication
into the overall degradation severity of the evaluated cable
insulation. Therefore, it serves as a reference manifestation of
the degradation, where a cable replacement is recommended
when the prediction of teq is nearing or beyond its nominal
service lifespan.

D. LD SEVERITY ASSESSMENT
Next, we consider the condition where the classifier indi-
cates the presence of an LD, to assess its severity. To this
end, we train an LSBoost regressor with a degradation ran-
domly located anywhere in the TX − BP branch, since we
rely on the node closest to the degradation for assessment.
We apply nTR = 3600 and nTE = 1000, with training
and testing samples each with an LD between TX and BP.
For this task, we use γlocal as the training/testing label. The
prediction results are presented in Fig. 10(b). Similar to the
performance gains seen in Section V-C, our results show
significant improvement in prediction accuracy when com-
pared to the state-of-the-art [1], due to the additional insight
obtained from the waveform of PLM-JTFDR and other fea-
tures extracted from Href.

FIGURE 11. LD location results with (nTR,nTE) = (3600,1000) for
predicting (a) the target location and (b) the degradation length.

E. LD LOCATION
Thus far, we have predicted the type of degradation present
and its severity. As our final diagnostics stage, we attempt to
locate the salient localized cable degradation so that further
efforts in preventing an in-service fault can be concentrated.
Locating an LD consists of determining the positions of its
two ends. For this purpose, we follow the procedure of first
determining its starting point, or the target point, and then
estimating the degradation length. For the localization of the
target point, we train an SVM for regression with linear ker-
nel. Similar to our choice in Section V-D, we set nTR = 3600
and nTE = 1000, with training and testing samples each with
an LD between TX and BP. For this regression task, we use
the target location as the training/testing label. The results
of predicting the target location can be seen in Fig. 11(a).
We notice that the prediction accuracy is near perfect with
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negligible variance of individual predictions from the fitted
curve. This accurate target location prediction is made possi-
ble due to the peak location clarity in hJTFDR.
Next, we predict the length of the degradation to identify

its end point. However, we found that the length predic-
tion was highly inaccurate with any ML algorithm or any
combinations of extracted features. Therefore, we device a
workaround to this challenge by instead predicting the prod-
uct `WT · γlocal, which can be predicted with high accu-
racy, and then using our previously predicted values of γlocal
(in Fig. 10(b)) to determine `WT. We continue with using
nTR = 3600 and nTE = 1000, with training and testing
samples each with an LD between TX and BP. Here, we use
the product (`WT · γlocal) as the training/testing label. The
prediction results for `WT ·γlocal is shown in Fig. 11(b), where
we clearly notice that the fitted curve of the predictions is a
straight line with unit slope and nearly passing through the
origin, thereby confirming the high accuracy of our results.

VI. DISCUSSION
In this section, we provide a brief discussion on our proposed
solution by comparing it with prior arts and exploring its
robustness in non-ideal settings.

A. RELATED WORK
1) REFLECTOMETRY METHODS
Reflectometry methods, such as TDR or JTFDR, are used
by utilities for detecting faults and degradations on the
line [18], [42]–[44]. While our solution includes the use of
the same underlying principle to enhance our proposed ML
framework, we synthesize the results of JTFDR using the
already existing PLMs that inherently estimate the reflec-
tion channel. Therefore, no additional dedicated components
are required as in conventional reflectometry methods. Fur-
ther, by incorporating the reflectometry methods into an ML
framework, we are able to comprehensively infer the cable
health conditions, which conventional methods are unable to
achieve.

2) FAULT LOCATION
Several prior works have proposed and developed solutions
to use PLMs for fault detection and location, e.g., [45]–[48].
Apart from these works facing practical limitations, such as,
say, requiring a reference CFR measurement for any given
load condition, detecting the presence of a fault on the main
line is a reactive response to a service failure. In contrast,
we develop solutions in our work to estimate cable degrada-
tions in order to take preventive measures to avoid a fault.
Furthermore, assessing cable degradations is also non-trivial
when compared to fault detection as the signal reflections
tend to be more obscure [14], also as seen in Fig. 4 and Fig. 5.

3) ML TECHNIQUES
ML-based data-driven methods have also been previously
used for cable diagnostics, albeit without using PLC.

[49] provides a substantial literature review on fault diagnosis
using data-driven methods. Further, [40] and [50] also pro-
vide techniques to use SVM for cable diagnostics. However,
similar to the methods described in Section VI-A.2, these
solutions predominantly focus only on fault diagnostics, and
also do not involve using PLMs.

4) ALTERNATIVE COMPONENTS FOR DIAGNOSTICS
Fault identification and location methods have been proposed
in the literature by using phasor measurement unit (PMU)
measurements [51]–[53]. While PMUs are traditionally
installed in transmission networks for grid status monitoring,
use of distribution-level PMUs or micro-PMUs (µPMUs) has
been proposed for distribution networks as well [53], [54].
Nevertheless, the benefits of our solution over such meth-
ods are evident. Apart from the added installation cost,
the sampling rates and the number of installed µPMUs are
insufficient to perform degradation location and severity
assessment with the accuracy that we have demonstrated in
Section V.

B. ROBUSTNESS TO NON-IDEALITIES
Although the WT model we use in (3) is representative
of realistic WT degradations, we explored the robustness
of our solution to possible behavior deviations that could
be seen in practically encountered WT degradations. Fur-
thermore, typical operation of our method involves training
machines offline using synthetically generated channel con-
ditions with degradation models such as (3), and then deploy-
ing such machines on PLMs in the real-world. Therefore,
we investigate the performance of our solution using practical
measurement data as testing samples.

FIGURE 12. Robustness evaluation results of our proposed scheme with
(nTR,nTE) = (3600,1000) for (a) predicting the equivalent age of a
homogeneous degradation, and (b) the target location for an LD.

To this end, we evaluate our solution by training our
machine to associate the behavior of WT degradations with
the model of (3), and then testing its performance by
applying real-world WT degradation measurements reported
in [20, Ch. 6]. The results of this exercise can be seen
in Fig. 12. For illustration purposes, we present the result of
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two evaluations we performed, one each with and without
an LD. First, we predict the equivalent age of a cable that
is subject to homogeneous WT degradation. In comparison
to similar results obtained earlier in Fig. 10(a), we observe
in Fig. 12 that the prediction performance is noticeably
affected, as expected. However, our machine is robust enough
to provide a satisfactory performance with near unity slope of
the fitted line and low individual prediction variance. Next,
we focus on analyzing an LD, where we predict its target
location, as in Fig. 11(a). In this case, we notice in Fig. 12(b)
that the prediction results are still accurate, since locating a
degradation mainly relies on the reflection peaks caused due
to a discontinuity. The prominent peaks and smooth floor of
our proposed PLM-JTFDR make detecting and locating such
discontinuities fairly robust to the accuracy of the WT model
used.

The framework presented in our work also inspires future
engineering endeavors, e.g., investigating the extent of the
impact of channel estimation errors on the prediction accu-
racy, and examining the robustness of our solution when
trained with one form of degradation and tested on cables
subject to multiple types of degradations and various other
non-idealities (e.g., bending of cable or cable splicings).

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed methods to reuse power
line modems available across the smart-grid distribution net-
work to also monitor cable health conditions. We propose a
machine learning framework to present an automated cable
diagnostics procedure. Our solution includes multiple tasks
such as cable aging profile classification, cable degradation
severity assessment, and precise degradation location in case
of a localized degradation, performed in a sequential man-
ner. Our simulation results show high detection and predic-
tion accuracies for each of these tasks, which can also be
attributed to the enhanced features used for machine training
that we extract from our newly designed power line modem
synthesized joint-time-and-frequency-domain reflectometry
technique, as well as to the new insight gained from the
reflected channel we use in addition to the end-to-end channel
transfer function. The machine uploaded on the power line
modems can be updated as often as required with online
firmware upgrades. Our proposed technique provides utilities
with a low-cost solution that enables them to harness power
line modems as not only communication devices, but also
as probes to continuously monitor the cable health, which
assists in taking preemptive measures to avoid possible cable
in-service failures and resultant power outages.

APPENDIX A
PLM-JTFDR
Conventional JTFDR involves transmitting a Gaussian
enveloped chirp sequence, sgc(t) = g(t) · c(t), where g(t)
and c(t) are the Gaussian-shaped and the chirp sequences,
respectively, and subsequently sampling and processing the
reflected signal, ρ(t), to diagnose cable anomalies [18].

FIGURE 13. The waveform u as computed using (14).

To emulate this procedure in a PLM, we generate sgc(t),
which is sampled and pre-stored in the PLM as ŝgc[n], where
n is the time sample index. We then convolve ŝgc with the
estimated reflected channel impulse response, href, to produce
the equivalent received JTFDR waveform, ρ̂, as

ρ̂[n] = (ŝgc ∗ href)[n], (13)

where ‘∗’ indicates the linear convolution operation. Next,
we process ρ̂[n] as in conventional JTFDR to obtain loca-
tions and magnitudes of peaks in the resultant final wave-
form, hJTFDR, for detecting and locating any possible
cable degradations. Specifically, we first compute the cross-
correlation, u[n], as

u[n] =
∞∑

δ=−∞

ŝgc[δ]ρ̂[n+ δ]. (14)

An example of u[n] is shown in Fig. 13 as synthesized by
a PLM when an LD is located between itself and the BP
(refer Fig. 2 for the network topology). The reflections from
the PLM-line interface, the LD near- and far-ends, and the
BP correspond to the denoted points of A, B, C, and D,
respectively. The high-frequency fluctuations seen around
those points hinder accurate detection and location of a poten-
tial LD. Therefore, to extract clear and salient peaks caused
by each of the discontinuities, we further perform envelope
detection on u by passing umag[n] = |u[n]| through a low-
pass filter to obtain the final PLM-JTFDR waveform as

hJTFDR = f (m)LPF(umag), (15)

where f (m)LPF(·) is the mth order low-pass filter operation. For
our use-case, we choose the Butterworth filter implementa-
tion, resulting in

f (m)LPF(x)[n] =
(
F−1

(
H (m)

BW

)
∗ x
)
[n], (16)

for any input signal x, where F−1 is the inverse Fourier
transform operator and

H (m)
BW(f ) =

(
m∏
k=1

(
j
f
fc
− e

jπ (2k+m−1)
2m

))−1
(17)
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is the frequency response of the mth order Butterworth low-
pass filter at any frequency f for a 3-dB cut-off frequency fc,
where j =

√
−1. Using a trial-and-error approach, we deter-

mine that a 6th order Butterworth filter, i.e., m = 6, provides
us with sufficient accuracy in hJTFDR to extract features that
produce accurate results. We also summarize the operating
procedure in Fig. 14.

FIGURE 14. Flowchart of PLM-JTFDR following the underlying JTFDR
principle outlined in [18].

Since PLM-JTFDR uses the inherently estimated href,
it does not require any hardware modifications within the
PLM. However, additional computations are to be performed
digitally in the transceiver chipset to realize (13)–(17).

APPENDIX B
CHOICE OF NUMBER OF TRAINING
AND TESTING SAMPLES
As described in Section III, we use the bottom-up approach
to simulate BB-PLC channels subject to varying degradation
and load conditions as training and testing samples. In such a
manner, we independently generate nTR and nTE number of
training and testing samples, respectively.

We choose nTR such that the performance of the machine
is saturated given a chosen ML algorithm and a specific set
of extracted features, and nTE to ensure that we have a suffi-
cient number of testing samples to evaluate the performance
of the trained machine to obtain a consistent performance
trend in terms of prediction accuracy and prediction variance.
Therefore, we choose a large nTE for testing each step of
our proposed cable health monitoring scheme. In particular,
we choose nTE = 1000 for regression tasks to ensure that a
clear trend in the results is observable.

However, the choice of nTR is more intricate. To this
end, we present additional numerical results in Figs. 15−17,
where the variation in performance of the trained machine
with varying nTR for different ML tasks is shown. The
performance of LD identification, and degradation severity
assessments, for both a homogeneous aging profile as well
as an aging profile with an LD, are shown in Figs. 15−17,
respectively. We notice that while the performance improves
with increasing nTR, it saturates beyond a certain thresh-
old, nTH. nTH is dependent on the ML task, and also on the

FIGURE 15. Performance of LD identification versus nTR.

FIGURE 16. Performance of homogeneous degradation severity
assessment versus nTR.

FIGURE 17. Performance of LD severity assessment versus nTR.

channel and network conditions. In our investigations, for the
tasks in Figs. 15−17, we have chosen nTR = 7000, nTR =

3600, and nTR = 3600, respectively, which all well-satisfy
nTR > nTH. Specifically, the green curve in Fig. 15, and the
far-end points in the blue curves of Figs. 16 and 17 correspond
to the performance shown in Fig. 8 (with AdaBoost) and
Fig. 10. Similarly, for other tasks presented in our work,
we choose a sufficiently large nTR to ensure a saturated
performance of the trained machine.

APPENDIX C
STRATEGY TO AVOID OVER-FITTING
The training stage of supervised ML is essentially optimizing
the parameters involved in the ML algorithm. When the
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parameters of the ML model to be trained are large and the
number of training samples is low, the parameters are fitted to
the small number of training samples and the trained machine
lacks the capability of generalization, i.e., introduces over-
fitting. The number of parameters associated with an ML
model is closely related to the number of features that we
use to train the machine. Typically, ten times the number of
features used is the required number of training samples to
obtain meaningful results and avoid over-fitting [55]. Since
our ML implementation uses at most 16 features, we use at
least 3600 training samples (3600/16 = 225 � 10), and
therefore avoid over-fitting. We see from Fig. 15−17, that the
performance of the trained machine improves with increasing
nTR and saturates beyond a threshold, which is smaller than
our chosen nTR.

We note here that we have incurred the difficulty of
achieving good results by using a small number of fea-
tures (at most 16, in our case) in exchange for eliminating
risks of over-fitting. When a small number of features is
used, we increase the likelihood of encountering conditions
where the trained model is not sufficiently comprehensive
to predict the label, i.e., we face the issue of under-fitting.
In particular, the SVM enforces sparsity on the number of
trained support vectors, which determine the boundary for
classification or regression. This avoids over-fitting but could
result in under-fitting. For some of the tasks, e.g., equivalent
age prediction, using an SVM does result in under-fitting.
Therefore, we use the boosting technique in such cases, which
is able to avoid under-fitting and train a machine with suffi-
cient comprehensiveness to predict the label. In this context,
we also note that we use the boosting algorithm for a large
portion of our tasks, which is well known to be robust to over-
fitting [56]. In such a case, we can simply tune its iteration
limit to control the complexity of the trainedmodel and obtain
a trained machine that is not subject to over-fitting.
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