© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Machine Learning Based Physical-Layer Intrusion
Detection and Location for the Smart Grid

Gautham Prasad, Yinjia Huo, Lutz Lampe, and Victor C. M. Leung
The University of British Columbia, Vancouver, BC.
Email:{gauthamp, yortka, lampe, vleung} @ece.ubc.ca.

Abstract—Security and privacy of smart grid communication
data is crucial given the nature of the continuous bidirectional in-
formation exchange between the consumer and the utilities. Data
security has conventionally been ensured using cryptographic
techniques implemented at the upper layers of the network stack.
However, it has been shown that security can be further enhanced
using physical layer (PHY) methods. To aid and/or complement
such PHY and upper layer techniques, in this paper, we propose a
PHY design that can detect and locate not only an active intruder
but also a passive eavesdropper in the network. Our method can
either be used as a stand-alone solution or together with existing
techniques to achieve improved smart grid data security. Our
machine learning based solution intelligently and automatically
detects and locates a possible intruder in the network by re-
using power line transmission modems installed in the grid for
communication purposes. Simulation results show that our cost-
efficient design provides near ideal intruder detection rates and
also estimates its location with a high degree of accuracy.

I. INTRODUCTION

Communication technologies have played a crucial role in
realizing the concept of smart grid by providing means for
bidirectional data exchange to protect, monitor, and control
activities across the grid [1], [2]. Communications enable
several features of the smart grid including automated me-
ter reading (AMR), advanced metering infrastructure (AMI),
demand response, situational awareness, and distribution grid
management, among others [1]-[3]. Due to the nature of the
data transmitted as a part of these operations, security and
privacy in the smart grid is critical [4]-[6].

Security of the smart grid communication data must be en-
sured against broadly two kinds of attacks, namely, passive and
active. Passive attacks involve an adversarial entity snooping
the data and affecting the confidentiality of the transmitted
message, whereas active attacks attempt at tampering the data
to violate its integrity or hamper its availability [4]. Various
techniques have been proposed in past to defend against both
these types of attacks using methods primarily designed to
be implemented at higher layers of the network stack [4]-
[7]. Cryptographic encryption techniques are used to ensure
data confidentiality and privacy so that an eavesdropper is
unable to decode the communication message [8], [9], while
intrusion detection systems (IDSs), cryptographic hashing, and
digital watermarking are applied to verify data integrity and
availability [9]-[11].

To complement the above security techniques and introduce
a first line of defense against potential attacks, several physical
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layer (PHY) security solutions have also been proposed [12].
For example, intentional jamming by legitimate communi-
cation devices in the direction of a detected eavesdropper
assists in ensuring data confidentiality [13]-[15]. Similarly,
PHY signature-based intrusion detection solutions have been
designed to detect active attacks impacting data integrity [16],
[17]. While PHY intrusion detection solutions rely on an active
intruder (INT) for successful fingerprinting, intentional PHY
jamming ensures security even against passive eavesdroppers.
However, the performance of PHY jamming techniques typ-
ically rely on the knowledge of the transmitter-eavesdropper
channel. Therefore, they are more suitable to guarantee privacy
from legitimate network nodes as opposed to providing data
confidentiality against a malicious INT.

With this backdrop, we propose a PHY intrusion detection
and location (IDL) solution for the smart grid in this paper
that is capable of detecting the presence of and locating
a malicious communication node. To this end, we consider
the smart grid distribution network where communication is
often enabled over the power lines [18, Ch. 9]. Wired com-
munication systems are typically considered to be inherently
secure from malicious INTs. However, the power line is a
shared medium that is widely accessible and vulnerable to
potential intrusions despite power line communication (PLC)
restricting the mobility of the INT tapping in. Although some
measures exist to detect nodes that tap into the power lines
to steal energy by observing the energy consumption data
from smart meters or by installing dedicated radio-frequency
identification (RFID) tags and/or wireless sensors [19]-[21], a
PHY method to detect or locate passive INTs that only snoop
communication signals traveling through the power lines is not
found in the literature. Nevertheless, we show in this paper that
our proposed solution is also applicable to detect and locate
potential energy theft.

A. Contributions and Highlights

While an active illegitimate participant is relatively easier
to detect by listening for signatures, detecting and locating
a passive eavesdropper is more challenging. In this paper,
we propose a method that can successfully detect and locate
both these types of intruders in typical smart grid network
settings. We exploit the PLC channel state information (CSI)
inherently estimated by PLC modems, to detect and locate an
INT. PLC CSI is dependent on the physical characteristics of
the power line, the network topology, and the loads connected
to the line. A change in the nature of any of these parameters
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results in a change in the estimated CSI. When a malicious
INT is plugged in to the line at any part of the network, all
PLC modems that are in some proximity of the INT notice a
change in the estimated channel frequency responses (CFRs)
in their communication links. However, not all changes in
the CSI are caused by an INT. On the contrary, channel
changes are commonly caused due to changing load conditions
in the distribution network. Therefore, we face the task of
distinguishing CSI changes caused due to an INT and other
legitimate network activities. To this end, we apply machine
learning (ML) algorithms that can intelligently and automat-
ically determine the presence of an INT by continuously
monitoring the CSI, which is inherently estimated within the
PLC modems for communication purposes.

In addition to detecting the presence of an INT, we design a
solution to also precisely locate the INT as a relative distance
from one of the PLC modems. For this purpose, we exploit the
time domain version of the estimated CFR, i.e., the channel
impulse response (CIR). Portions of the PLC signals traveling
through the network reflect at locations where they experience
a change in impedance. Therefore, reflections commonly occur
at splices, junctions, and branch terminations [18, Ch. 2].
When an INT taps into the network, PLC signals also reflect
at those locations, unless the device impedance of the INT
is perfectly matched to the power line impedance across
the entire operating bandwidth. With the use of medium-
and broad-band PLC (BB-PLC), the communication signals
span a bandwidth of up to 85 MHz [22]. Designing perfect
impedance matching circuits across the entire frequency band
is not a practical solution [23]. Therefore, a portion of the
BB-PLC signal reflects at the location of the INT, which
we observe as signal peaks in the estimated CIR. We thus
design an ML-based solution, similar to our intrusion detection
method, to monitor the CIR to also estimate the location
of the INT. The foundational principle of using a change
in the estimated PLC CSI to identify abnormal behaviors
in the smart grid network has already been previously used
to assess cable damages and faults for preventing in-service
power outages [24], [25]. However, this paper contrasts itself
from these prior works in terms of the anomaly (INT v/s cable
defects) modeling, investigation methodology, ML operation,
and feature engineering involved.

Outline: The rest of the paper is organized as follows. In
Section II, we present our proposed ML-based solution by
also including the methodology of modeling the INT and
deriving its impact on the PLC channel. We evaluate our
solution in Section III, where we present simulation results
for a generic smart-grid distribution network under varying
load conditions. We present a brief discussion of our solution
in Section IV, where we reflect on some of the notable
characteristics of our proposed technique. Finally, we draw
conclusions in Section V.

II. PHY IDL

In this section, we present our PHY IDL solution by intro-
ducing the procedure for INT modeling, deriving its impact
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Fig. 1. A triple-core XLPE cable with an INT tapped into it to decouple
PLC data from any or all of the conductor pairs, and presenting a device
input impedance of Zinr.

on the PLC channel, and applying ML algorithms that can
effectively identify and locate the INT.

A. Intrusion Modeling

We introduced in Section I that the entry of an INT changes
the PLC CSI. However, to distinguish the channel changes
caused by an INT and from all other factors, the malicious
node and its impact need to be modeled accurately. In this
work, we consider a triple conductor cross linked polyethylene
(XLPE) insulated cable, such as [26] and also shown in
Fig. 1, which is applicable for both low- and medium-voltage
networks. We let the INT tap into the cable at any point in
the network. Although we consider single-input single-output
(SISO) PLC, we expect the INT to be capable of multiple-
input multiple-output (MIMO) operation, such that it is able
to decouple PLC signals from any/all pairs of conductors.
We characterize such an INT with its input impedance, Znr,
which is a 2 x 2 matrix for a 2 x 2 MIMO operation. We denote
Znt to be the composite input impedance that also captures
the effect of the coupler used by the INT. Fig. 1 shows a typical
capacitive coupling method used at the INT node. However, it
may also choose to decouple the differential mode signals from
the cable using an inductive coupler. Typically, we expect the
INT to be another PLC modem, and we therefore have a-priori
knowledge of Zint, since most PLC modems use a widely
accepted fixed input impedance value [27]. However, the INT
may choose to obfuscate its Znr to render its detection harder
simply by applying a series/parallel impedance preceding its
coupling circuity. Thus, we consider Z;yt to be an unknown
parameter in our work.

B. PLC Channel Modeling

To independently model and capture individual effects at
different parts of the PLC network, we use the bottom-up
approach of modeling the PLC channel [28]. We compute the
transfer function of each of the ¢th unit of the network, H(f),
where Hy(f) is the 2 x 2 matrix at every frequency f. The
final transfer function between any two points with £ total
units in between them can then be computed as

L
H(f) = [[ He(f). (1)
=1
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The computation of every Hy(f) requires the knowledge
of the sub-network topology of the /th network unit, the
loads connected at any branch terminations, and the cable
parameters characterized by its per-unit-length (PUL) param-
eters. We compute the PUL parameters of the cable with the
homogeneous insulation approximation to obtain the closed
form expressions for the PUL resistance (R), capacitance (C),
inductance (L), and conductance (G) values [29, Chs. 3, 5].
Further, we consider a known static network topology, which
is characteristic of smart grid distribution networks, and use
variable loads at different positions of the network, whose
variations are randomized. The loads here include electrical
loads, PLC modems, sensors, transformers, and any other valid
components connected to the network. Thus, when an INT taps
into the network at any fth unit, it changes the topology and
introduces an additional load to consequently change Hy(f).
To detect the resultant change in H(f) and distinguish it from
other changes introduced by valid network activities, e.g., load
variations, we use an ML-based detection approach.

C. ML for PHY IDL

For our PHY IDL solution we employ SISO PLC and
use one of the pairs of the power line conductors for data
transmission. Consequently, we use the end-to-end SISO CFR,
H(f), which is one of the elements of H(f) computed as
in (1). Along with this, modems that are enabled with the
in-band full-duplex functionality also regularly estimate the
single-ended reflection channel, Hgg, as a part of its self-
interference cancellation procedure [30], [31]. Since Hsg is
a single-ended transfer function and can be estimated without
requiring any pilot signal from a far-end transmitter, it can be
computed by the PLC modem even when it has no data to
transmit. It can be estimated by transmitting a known random
signal of relatively low power for channel estimation that
essentially manifests as noise for any other communication
signal traveling through the network. This is particularly
advantageous when considering PLC modems located at smart
meters that update data infrequently, e.g., up to once in 60
minutes [32].

We divide our IDL tasks into three categories of INT
detection, branch location, and position determination. We
formulate the INT detection and branch location tasks as su-
pervised ML classification, and the INT position determination
as a supervised regression task. We conceive that each of
our machines for the three tasks can be trained offline using
synthetic PLC channel data, and can then all be loaded on
to the PLC modems in the network. Therefore, we are not
limited by the number of H and Hgg samples required for the
training process.

For classification and regression, we consider the support
vector machine (SVM) and boosting ML algorithms due to
their known performance excellence in other use-cases [33].
SVM is a classical ML technique that creates support vectors
of hyperplanes for a given training data set for classification.
Due to the sparsity it provides, and because of the large margin
principle, SVM is able to provide accurate predictions for new

Fig. 2. The considered Y-network topology for the SNI, where we randomly
place an INT at any of the b; s or b; x branches (¢ = 1,2, 3). (JX: Junction)
data samples [33, Ch. 14]. On the other hand, boosting is
a meta-ML algorithm that consolidates several weak learners
into a strong learner [33, Ch. 16]. At each iteration, a new
machine is trained by allocating higher weights to each data
sample that suffers from inaccuracy in the previous iterations.
The new machine is trained quickly with updated weights
using weak learners and is added to the models trained
in the previous iterations to form the new ensemble. The
ensemble constructed through iterations is able to provide
accurate results for classification (adaptive boosting) as well
as regression (least-squares boosting).

Training the machines with either of the two ML algorithms
requires extracting features from the raw data of H and Hgg.
Since the introduction of the INT gives rise to additional
peaks in the CIR waveform, we use the peak amplitudes and
locations in the CIRs of H and Hgg, along with the mth
order moments (m = {1,2,3,4}) of ZH and ZHsg for both
detecting and locating the INT. Depending on the reflections
from the INT, the signal transmission undergoes a different
overall attenuation. Therefore, we also use the mth order
moments (m = {1,2,3,4}) of |H| and |Hgg| for detecting
the INT.

III. EVALUATION

We evaluate our solution in this section, by presenting
simulation results that show the performance of our method
in terms of detection and false alarm rates in identifying
the presence of an INT, and also the prediction accuracy in
locating it.

A. Simulation Settings

Most low- and medium-voltage network topologies can
be decomposed into multiple radial and/or Y-sub-networks.
Given typical PLC ranges [34], we consider an elementary
building-block sub-network such as the one shown in Fig. 2.
It consists of three PLC modems, p;, ¢ = 1,2, 3, located at
the branch end points of the Y-network, which we refer to as
the sub-network of interest (SNI). Without loss of generality,
we consider branch lengths of each b; g to be 500 m, and
branch extensions beyond every p; as b; x of length 500 m.
The latter are connected to equivalent extension impedances,
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Z;i x, which emulate realistic network extensions beyond
the extended branches. These extension branches introduce
topological ambiguity in locating an INT. For example, an INT
on by s and b;_x both introduce similar signal peaks in the CIR
of Hgg seen by p;. The use of the end-to-end transfer function,
H, together with Hgg assists us in countering this challenge.
Additionally, we also employ a cooperative IDL procedure,
where we collect the detection results from all p;, : = 1,2, 3,
in the SNI shown in Fig. 2, to arrive at a final decision on the
presence of INT in the SNI. The same procedure is applicable
in every SNI of the overall network.

We place the INT randomly on any of the six branches,
and use p;, ¢ = 1,2, 3, to detect the presence of the INT. As
specified in Section II-A, the INT may choose to obfuscate
its inherent device impedance using an external series/parallel
impedance. Therefore, for both training and testing phases of
our method, we model the INT with a randomized impedance
in U4(10,1000) 2, where U(a, b) represents a uniformly dis-
tributed random variable between a and b. We generate the
training and testing samples using the open-source channel
generator of [35].

B. Numerical Results

1) INT Detection and Branch Location: We jointly perform
the two classification tasks of detecting an INT and locating
the branch on which it lies. To this end, we cooperatively
determine if an INT is present between two PLC modems.
For example, we use p; and p, to both indicate if an INT
is present on either b; g or by g. Using the results from all
three pairs of modems, we can determine not only whether
an INT is present in the SNI, but also the branch on which it
has tapped into. For this task, we use 1000 training samples
for each INT condition, i.e., 1000 H and Hgg samples with
no INT, and 1000 each with INT on b; g or b; x for i =
1,2, 3. For every sample, we randomize the load conditions
Zix ~ (U(0,50) + jU(—50,50)) © to emulate realistic
network extensions [36, Table 1.1]. For training samples with
an INT presence, we place the INT at a random location on the
branch. We train the machine with an ample amount of training
samples and an appropriate number of iterations such that the
performance of the machine is saturated, while also ensuring
that we do not cause over-fitting. Recall that since we train
the machine using synthetic data even in real deployments, we
are not constrained by the number of training samples to use.

We then test our trained machine using 1400 test samples,
which contain all possible INT presence configurations, i.e.,
INT on b; 5 or b; x for i = 1,2, 3, and also without any INT.
We tested our results for four different INT characteristics,
each with 1400 test samples, for device impedances of 10 €2,
100 €, 500 2, and 1000 €2, which capture a wide range
of possible impedances that an INT modem might present
to the line. The results of our evaluation are presented in
Fig. 3. Our results show that using SVM yields unsatisfactory
performance while boosting techniques provide near perfect
detection rates as well as negligible false alarms across var-
ious INT impedance values. This is because SVM enforces
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Fig. 3. Detection and false alarm rates for detecting an INT using (a) SVM
with radial basis function kernel and (b) adaptive boosting classification.
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Fig. 4. The INT location performance of our solution, which shows that the
predicted location values nearly match the actual locations on an average.
sparsity on the resultant support vectors that determine the
classification boundary, which limits the expressive capability
of the trained machine and results in under-fitting. In contrast,
through stage-wise iteration, boosting techniques can train an
ensemble with sufficient comprehensiveness for the prediction.
Moreover, from the results of SVM, we can see that prediction
performance for extreme INT impedance values is even worse.
This also shows that the SVM is trained to deal with a range
of typical values and lacks the capability of generalization.
Therefore, for the classification task, the boosting techniques
are preferred over SVM models.

2) INT Location: Once we establish the branch on which
the INT lies on, we use the modem closest to the INT to
further estimate its precise location. For this regression task,
we use 4000 training samples that contain INT tapped into
the branch at a random location between 50 and 450 m
away from the nearest modem on the 500 m long branch.
The number of training samples are again chosen to ensure
saturated performance of the machine, which was trained using
the least-squares boosting algorithm [33, Ch. 16]. Next, we
test our solution with 1000 other samples with randomized
locations of the INT and random load conditions. We set our
testing samples to 1000 since this was sufficient to provide
us with a clear performance trend, as shown in Fig. 4. We
observe that the fit line of our predictions nearly matches the
actual INT locations, indicating a high degree of accuracy.

IV. DISCUSSION

In this section, we present a brief discussion of our solution
by reflecting on some of the notable characteristics of our
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proposed design, its implementation aspects, comparison with
related arts, potential drawbacks, and possible extensions.

A. Comparison with Related Works

1) ML-based IDS: ML-based IDSs have been proposed in
the past to detect the presence of an INT or identify suspicious
network activities, e.g., [37]. However, methods like these
rely on acquiring energy consumption data for analysis. In
contrast, our proposed solution requires only the communica-
tion CSI for IDL, and therefore ensures privacy of transmitted
data. Nevertheless, our solution does not necessarily intend
to replace the state-of-the-art IDSs, but can instead function
as a complementary technique to the existing methods as it
introduces little additional cost.

2) IDS with Alternative Data Collectors: 1IDSs have also
been proposed using different data acquisition devices, such
as dedicated sensors or micro-phasor measurement units [11],
[38]. On the other hand, our method proposes the re-use of
existing grid components, i.e., PLC modems installed for com-
munication purposes, for added functionalities of IDL. Note
that our solution is also applicable in distribution networks that
do not use PLC as the sole communications technology but
instead as a hybrid solution in conjunction with other wired
and wireless communication alternatives, e.g., [39]. For grids
that do not currently employ PLC, our solution, together with
other methods such as [40], [41] that re-use PLC modems
for grid health diagnostics, provide a compelling incentive for
the use of PLC as a multidimensional smart grid enabling
technology.

3) PHY Intrusion Detection of Passive Entities: A different
class of PHY IDSs have also been developed in the past,
which primarily aim at detecting passive entities, typically
humans, as INTs by exploiting fluctuations caused in PHY
parameters due to human motion or other human activities,
e.g., breathing [42], [43]. While our solution also aims at
detecting a passive entity, we are also able to locate its position
without relying on any INT activity. When the INT physically
moves or changes its state of operation, our solution is still able
to detect such changes and identify its presence, as evidenced
in Fig. 3, which shows successful detection of the INT across
a range of impedance behaviors.

B. Salient Features

1) Privacy: Unlike many higher layer INT detection tech-
niques [4], our solution does not involve decoding the trans-
mitted signals. Since our solution operates entirely at the PHY,
the application level data is protected during our evaluation,
ensuring complete privacy of the data being used for IDL.

2) Automated Solution: Our ML-based IDL solution pro-
vides an entirely automated procedure that does not require
any manual intervention either for collecting or interpreting
the data. Thereby, we substantially reduce human errors and
the involved cost when compared to many alternative INT
detection methods [4].

C. Alternative Adaptations of our IDL Solution

Our analysis thus far has focused on detecting and locating
an active or passive INT that may affect the confidentiality,
integrity, and availability of the communication data being
transmitted over the power lines. However, our solution can be
used in its native form to also detect potential energy thefts.
A device tapping into the line to steal energy also presents a
similar change in PLC CSI as we have considered. The device
impedance presented in this case is typically expected to be in
the order of a few Ohms. Our results in Fig. 3 has shown that
our solution is also able to detect an INT whose impedance is
as low as 10 Ohms, indicating that our detection technique is
also applicable to identify potential energy theft as well.

D. Applications of IDL

The results of IDL can be used in conjunction with con-
ventional INT detection solutions that are implemented at
the upper layers of the network stack for continued legacy
use with the combined results. Additionally, INT location
provides useful inputs to other PHY security techniques, like
intentional jamming, e.g., [15], which require knowledge of
the transmitter-eavesdropper channel to optimize the jamming
beamforming to degrade the decoding ability at the INT. With
a known network topology, cable characteristics, and INT
impedance, locating the INT provides complete CSI between
the malicious node and any PLC modem in the network.

E. Implementation Architecture

An instinctive implementation of our solution involves re-
motely loading our trained machines on to the PLC modems
throughout the network. They can be updated at any time
in the future and as often as required simply by reloading
an upgraded version of the machine, possibly trained with
new data or an improved ML algorithm. This then enables
all PLC modems to use their inherently estimated H and Hgg
to extract features from them and automatically detect and
locate a potential INT in a distributed manner. Alternatively,
the individual H and Hgg data from all PLC modems can
be collected at a central location, say, a sub-station, where
the data can then be processed in a centralized manner. Both
these methods have their own benefits and drawbacks. While
the distributed IDL method introduces additional storage and
computational requirements within the modem, the centralized
IDL solution presents additional signaling overheads. We note
that irrespective of the chosen implementation architecture, the
performance of our solution remains the same.

F. Performance in the Real World

Our simulation results in Fig. 3 and Fig. 4 are based on
our machines being trained and tested using synthetic PLC
data. However, for practical applications, we propose that our
machines be trained offline using computer generated data but
deployed in the real-world for IDL. Therefore, the performance
of our method relies on the accuracy of the PLC channel model
used for offline training. Practical performance evaluation thus
forms the natural extension of our work.
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V. CONCLUSION

We have presented a machine learning based intelligent and
automated intrusion detection and location solution using PLC
modems installed in the grid for communication purposes.
Our low-cost solution monitors the channel state information
inherently estimated by the PLC modems for behavior devi-
ations caused by an intruder. Our design can be used as a
stand-alone solution or in conjunction with existing IDSs to
obtain enhanced security and privacy of the smart grid data.
Our method can also be adapted to identify potential energy
theft without requiring any additional data acquisition devices
or the decoding of energy consumption data.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

“Communications requirements of smart grid technologies,” US Depart-
ment of Energy, Tech. Rep, pp. 1-69, 2010.

Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on smart grid com-
munication infrastructures: Motivations, requirements and challenges,”
IEEE Commun. Surveys & Tuts., vol. 15, no. 1, pp. 5-20, 2013.

V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati,
and G. P. Hancke, “A survey on smart grid potential applications and
communication requirements,” [EEE Trans. Ind. Informatics, vol. 9,
no. 1, pp. 2842, 2013.

N. Komninos, E. Philippou, and A. Pitsillides, “Survey in smart grid
and smart home security: Issues, challenges and countermeasures,” [EEE
Commun. Surveys & Tuts., vol. 16, no. 4, pp. 1933-1954, 2014.

S. Tan, D. De, W.-Z. Song, J. Yang, and S. K. Das, “Survey of security
advances in smart grid: A data driven approach,” IEEE Commun. Surveys
& Tuts., vol. 19, no. 1, pp. 397422, 2017.

P. Kumar, Y. Lin, G. Bai, A. Paverd, J. S. Dong, and A. Martin, “Smart
grid metering networks: A survey on security, privacy and open research
issues,” IEEE Commun. Surveys & Tuts., 2019.

F. M. Cleveland, “Cyber security issues for advanced metering infras-
tructure (AMI),” in IEEE Power and Energy Society General Meeting-
Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1—
5, 2008.

N. Liu, J. Chen, L. Zhu, J. Zhang, and Y. He, “A key management
scheme for secure communications of advanced metering infrastructure
in smart grid,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4746—
4756, 2013.

J. Benoit, “An introduction to cryptography as applied to the smart grid,”
Cooper Power Systems, 2011.

X. Liu, P. Zhu, Y. Zhang, and K. Chen, “A collaborative intrusion detec-
tion mechanism against false data injection attack in advanced metering
infrastructure,” IEEE Trans. Smart Grid, vol. 6, no. 5, pp. 2435-2443,
2015.

J. Hong and C.-C. Liu, “Intelligent electronic devices with collaborative
intrusion detection systems,” IEEE Trans. Smart Grid, vol. 10, no. 1,
pp. 271-281, 2019.

A. Mukherjee, S. A. A. Fakoorian, J. Huang, and A. L. Swindlehurst,
“Principles of physical layer security in multiuser wireless networks: A
survey,” IEEE Commun. Surveys & Tuts., vol. 16, no. 3, pp. 1550-1573,
2014.

L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, “Cooperative jamming
for wireless physical layer security,” in IEEE/SP 15th Workshop on
Statistical Sig. Proc., pp. 417-420, 2009.

G. Zheng, 1. Krikidis, J. Li, A. P. Petropulu, and B. Ottersten, “Improving
physical layer secrecy using full-duplex jamming receivers,” IEEE Trans.
Sig. Proc., vol. 61, no. 20, pp. 4962-4974, 2013.

G. Prasad, O. Taghizadeh, L. Lampe, and R. Mathar, “Securing MIMO
power line communications with full-duplex jamming receivers,” in
IEEE Int. Symp. Power Line Commun. Applicat. (ISPLC), pp. 1-6, 2019.
A. Tomko, C. Rieser, and L. Buell, “Physical-layer intrusion detection
in wireless networks,” in IEEE Military Commun. Conf. (MILCOM),
pp. 1-7, 2006.

K. Remley, C. A. Grosvenor, R. T. Johnk, D. R. Novotny, P. D. Hale,
M. McKinley, A. Karygiannis, and E. Antonakakis, “Electromagnetic
signatures of WLAN cards and network security,” in IEEE Int. Symp.
Sig. Proc. Info. Tech., pp. 484—488, 2005.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

(35]

(371

[38]

[39]

[40]

[41]

[42]

[43]

L. Lampe, A. M. Tonello, and T. G. Swart, Power Line Communications:
Principles, Standards and Applications from Multimedia to Smart Grid.
John Wiley & Sons, 2016.

S. McLaughlin, B. Holbert, A. Fawaz, R. Berthier, and S. Zonouz, “A
multi-sensor energy theft detection framework for advanced metering
infrastructures,” IEEE J. Sel. Areas Commun., vol. 31, no. 7, pp. 1319—
1330, 2013.

P. Jokar, N. Arianpoo, and V. C. Leung, “Electricity theft detection in
AMI using customers consumption patterns,” IEEE Trans. Smart Grid,
vol. 7, no. 1, pp. 216-226, 2016.

S. K. Singh, R. Bose, and A. Joshi, “Energy theft detection in ad-
vanced metering infrastructure,” in IEEE World Forum on loT (WF-IoT),
pp. 529-534, 2018.

L. Yonge, J. Abad, K. Afkhamie, L. Guerrieri, S. Katar, H. Lioe,
P. Pagani, R. Riva, D. M. Schneider, and A. Schwager, “An overview of
the HomePlug AV?2 technology,” Hindawi J. Elec. Comp. Eng., 2013.
N. Taherinejad, L. Lampe, and S. Mirabbasi, “An adaptive impedance-
matching system for vehicular power line communication,” IEEE Trans.
Veh. Tech., vol. 66, pp. 927-940, Feb 2017.

Y. Huo, G. Prasad, L. Atanackovic, L. Lampe, and V. C. M. Leung,
“Grid surveillance and diagnostics using power line communications,”
in IEEE Int. Symp. Power Line Commun. Appl. (ISPLC), pp. 1-6, 2018.
Y. Huo, G. Prasad, L. Atanackovic, L. Lampe, and V. C. M. Leung,
“Cable diagnostics with power line modems for smart grid monitoring,”
IEEE Access, 2019 (accepted, in-press).

HELUKABEL, “Medium voltage power cables,” http://mdmetric.com/
prod/helukabel/N.Medium%20Voltage%20Power.pdf, 2016.

“Integrated powerline communication analog front-end transceiver and
line driver,” http://www.maximic.com/datasheet/index.mvp/id/6333.

F. Versolatto and A. M. Tonello, “An MTL theory approach for the
simulation of MIMO power-line communication channels,” IEEE Trans.
Power Del., vol. 26, no. 3, pp. 1710-1717, 2011.

C. R. Paul, Analysis of multiconductor transmission lines. John Wiley
& Sons, 2008.

G. Prasad, L. Lampe, and S. Shekhar, “In-band full duplex broadband
power line communications,” IEEE Transactions on Communications,
vol. 64, no. 9, pp. 3915-3931, 2016.

G. Prasad, L. Lampe, and S. Shekhar, “Digitally controlled analog
cancellation for full duplex broadband power line communications,”
IEEE Trans. Commun., vol. 65, pp. 4419—4432, Oct 2017.

“Advanced metering infrastructure and customer systems,” Office of
Electricity Delivery and Energy Reliability, US Department of Energy,
pp. 1-98, 2016.

K. Murphy, Machine Learning: A Probabilistic Perspective. Adaptive
computation and machine learning, MIT Press, 2012.

devolo, “BPL modem MV: Data communication at the medium voltage
level,” https://bit.ly/2E3n10;j.

F. Gruber and L. Lampe, “On PLC channel emulation via transmission
line theory,” in Proc. IEEE Int. Symp. Power Line Commun. Appl.
(ISPLC), pp. 178-183, 2015.

L. T. Berger, A. Schwager, P. Pagani, and D. Schneider, MIMO power
line communications: narrow and broadband standards, EMC, and
advanced processing. CRC Press, 2014.

Y. Zhang, L. Wang, W. Sun, R. C. Green II, and M. Alam, “Distributed
intrusion detection system in a multi-layer network architecture of smart
grids,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 796-808, 2011.

A. Giani, E. Bitar, M. Garcia, M. McQueen, P. Khargonekar, and
K. Poolla, “Smart grid data integrity attacks: characterizations and
countermeasures 7,” in IEEE Int. Conf. Smart Grid Commun. (Smart-
GridComm), pp. 232-237, 2011.

Itron, “OpenWay powered by Itron Riva technology,” https://wwwl.
itron.com/Documents/OpenWay-Riva.pdf, 2014.

G. Prasad, Y. Huo, L. Lampe, A. Mengi, and V. C. M. Leung, “Fault
diagnostics with legacy power line modems,” in /[EEE Int. Symp. Power
Line Commun. Applicat. (ISPLC), pp. 1-6, 2019.

Y. Huo, G. Prasad, L. Lampe, and V. C. M. Leung, “Smart-grid
monitoring: Enhanced machine learning for cable diagnostics,” in IEEE
Int. Symp. Power Line Commun. Applicat. (ISPLC), pp. 1-6, 2019.

J. Lv, D. Man, W. Yang, X. Du, and M. Yu, “Robust WLAN-based
indoor intrusion detection using PHY layer information,” IEEE Access,
vol. 6, pp. 30117-30127, 2018.

C. Wu, Z. Yang, Z. Zhou, X. Liu, Y. Liu, and J. Cao, “Non-invasive
detection of moving and stationary human with WiFi,” IEEE J. Sel.
Areas Commun., vol. 33, no. 11, pp. 2329-2342, 2015.



