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Abstract—Recent works have shown the viability of reusing
power line communication modems present in the distribution
network for cable diagnostics. By integrating machine learning
(ML) techniques, power line modems (PLMs) are shown to
be capable of automatically detecting, locating, and assessing
different types of cable degradations and faults by monitoring
and analyzing their estimated channel frequency responses.
However, a single ML algorithm is not ideal for all different
diagnostics tasks. To aid us in choosing the most suitable ML
algorithm(s) for each of the tasks and to make our solution
layman accessible, we propose the use of automated ML, which
automatically constructs the best ML model from various al-
gorithms and preprocessing techniques for any given diagnostics
task. Our proposed diagnostics approach accelerates the practical
deployment of PLM-based grid monitoring by providing a ready-
to-use solution to utilities that can be applied without detailed
domain knowledge of ML operations.

Index Terms—Smart grid monitoring, cable diagnostics, asset
monitoring, machine learning, AutoML

I. INTRODUCTION

Seamless operation of the power grid and a continuous
supply of electricity are vital for our daily life. However,
reliability of the aging grid infrastructure is reducing as
it suffers from considerable underinvestment and increasing
congestion levels, and is also subject to inadequate main-
tenance and upgrades [1, Ch. 2]. This renders several grid
assets vulnerable to in-service failures causing power outages
and resultant economic losses [2]. Among these assets, in
this work, we focus on damages to power cables, where an
untreated power cable exposed to extended periods of cable
degradations is susceptible to an eventual fault. To avoid such
hazardous situations, several cable diagnostics schemes have
been developed in the past to identify issues in the cable, such
that preventive actions could be taken to avoid a possible cable
in-service fault [3, Ch. 6].

Conventional cable diagnostics methods carry several draw-
backs. They typically involve high implementation cost by
requiring dedicated test equipments and manual data interpre-
tation [4]–[10]. Furthermore, many of these techniques operate
only on de-energized cables, and therefore demand at least a
portion of the grid to be shut down before testing. To overcome
these drawbacks, a new class of diagnostics solutions was
proposed, which makes use of existing power line modems
(PLMs) for grid diagnostics [11]–[15]. They reuse the PLMs
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installed in the grid for smart-grid communication purposes
to also perform grid diagnostics by monitoring the communi-
cation channel inherently estimated within the legacy PLMs
to infer the status of the cable health. The solutions in [12]–
[15] additionally integrate machine learning (ML) techniques
to design a fully-automated independent cable diagnostics
solution that can operate on energized cables to provide
utilities with the ability to remotely monitor the distribution
grid.

The state-of-the-art cable diagnostics solution in [15] pro-
poses an ML framework for self-reliant diagnostics to pro-
gressively detect, assess, and locate cable degradations under
varying network load and degradation conditions. However,
we learn that a single ML algorithm is not appropriate for
all diagnostics tasks. For example, [15] shows that support
vector machine (SVM) [16] is more suitable for detecting
the presence of a localized degradation, while boosting tech-
niques [17] are preferable for degradation severity assessment.
Along similar lines, [14] also demonstrates that varying the
power line communication (PLC) transmission bandwidth, or
monitoring a different type of degradation, demands different
features to be extracted from the communication channel
estimate for machine training. These issues motivate us to
investigate techniques that could be globally applicable in
determining the most suitable ML algorithm/s for any given
diagnostics task, and also assist us in choosing the appropriate
features needed to be extracted from the raw data (say, channel
or signal-to-noise ratio estimates) for efficient machine training
and operation.

Our second goal of this work is to design a cable diagnostics
solution that is layman accessible. Such a method is appealing
to utilities or other cable maintenance enterprises, which can
apply our solution without also requiring to employ technical
personnel who are experienced in cable condition monitoring
or ML operation. This increases the practical applicability and
accelerates the deployment of a PLM-based grid diagnostics
solution.

To achieve the two outlined goals, we propose an auto-
mated ML (AutoML) [18] based diagnostics solution. We use
our previous works [13]–[15] as the baseline, and integrate
AutoML to automatically determine the most suitable data
preprocessing techniques, ML algorithm/s, and the associated
hyper-parameters that provide the highest performance in
terms of a pre-defined cost function within a fixed com-
putational and memory budget for any given ML task. We
expand the possible choices of ML algorithms beyond SVM978-1-7281-0289-4/19/$31.00 © 2019 IEEE
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Fig. 1. The ML framework for cable diagnostics [15].

and boosting to include a wider range of algorithms, out of
which, we choose one or more to build the most suitable model
for any considered diagnostics task. We test our design on
a generic medium voltage network topology under varying
grid load conditions and evaluate the performance accuracy of
our solution. Through these results, we show the significant
performance improvement we achieve when compared to
the state-of-the-art [15], by obtaining near-ideal accuracy in
detecting, locating, and assessing homogeneous and localized
cable degradations.

The rest of the paper is organized as follows. We present
our ML-based cable diagnostics framework in Section II. In
Section III, we detail the procedure to integrate AutoML
into our ML framework. We present our simulation results
in Section IV and conclude in Section V.

II. CABLE DIAGNOSTICS

Underground power cables are of either paper-oil or ex-
truded type [19]. Paper-oil cables suffer mainly from thermal
degradations, while extruded ones are mostly susceptible to
electrical aging, i.e., developing electrical-treeing (ET) and
water-treeing (WT) [20]. In this work, we consider the lat-
ter type of cables, since extruded cross-linked polyethylene
(XLPE) has long been the preferred and widely deployed
cable insulation material due to the low processing costs,
high reliability, and the suitable electrical and mechanical
properties it exhibits [19], [21], [22]. WT degradations are
one of the two main causes for premature failures of extruded
cables, and also lead to the other main cause, which is
ET [3, Ch. 6], [23]. Considering these factors, we focus our
investigations on cable aging caused by WT degradations in
XLPE cables. Our choice also has the added benefit that
the WT growth and the dielectric property of WT-degraded
XLPE cables are extensively studied and well-modeled in the
literature [24], [10].

WT degradations develop in XLPE cables in either a ho-
mogeneous or a localized fashion. Prior observations have
shown that a homogeneous near-uniform WT degradation
across the cable length is seen under typical operating con-
ditions [24], [25]. However, water ingress, or local defects,
such as protruded semiconductor coating and voids, may also
lead to a salient localized WT degradation on top of the
uniform homogeneous degradation [26]. Therefore, we use a
multi-step degradation diagnostics design, shown in Fig. 1, to
sequentially diagnose both these types of aging profiles [13],
[15].

The first step involves determining the presence of a salient
localized degradation (LD). If no LDs are identified, we clas-
sify the cable to have undergone homogeneous degradation.
We then estimate the degradation severity to determine the
extent of WT damage. A healthy cable is subsumed within
this condition, where the severity assessment returns near-zero
degradation. Note that severity estimation is a crucial compo-
nent in the broad scheme of diagnostics. One of the goals
of cable diagnostics is to achieve fault prediction/anticipation,
so that preventive actions can be taken to avoid an in-service
failure. Therefore, it is critical to not only identify the presence
of a degradation, but also estimate its severity.

When the first step instead indicates the presence of an
LD, we proceed to the second step, similar to the earlier
case, to determine the degradation severity. However, in LD
diagnostics, we additionally estimate the LD location, so that
concentrated efforts can be undertaken on the cable. We again
note that this is a critical step that ensures a speedy and
convenient cable treatment, and addresses one of the major
concerns in transitioning power lines into underground cables
despite their known benefits [27].

For all the above diagnostics tasks, namely, degradation
detection, assessment, and location, we use supervised ML
techniques to achieve an automated and independent operation.
We train a machine beforehand for every task using the
communication channel frequency response (CFR) estimated
by the PLM as the raw data from which we extract features1.
Additionally, along with the traditional end-to-end communi-
cation channel, we have shown in our prior works that the
reflection channel observed at the modem-line interface can
also be used as raw data to obtain greater insight into the
cable health [15]. Therefore, we consider both these channel
estimates for our diagnostic tasks.

We train separate machines for each of the tasks shown in
Fig. 1. We formulate the LD identification as an ML classifica-
tion problem, while the rest of them as regression problems. In
the following sections, we present enhanced ML techniques to
automatically select the most suitable ML algorithm/s and their
associated hyper-parameters for any given diagnostics task.

III. AUTOML FOR CABLE DIAGNOSTICS

In our previous work [13], [15], we considered two sets
of ML algorithms, SVM [16] and boosting techniques [17].
While we have shown that satisfactory results are achievable
for the tasks considered, we expand our algorithm choice set to
determine if one or more algorithms can provide more accurate
results. In particular, we apply AutoML for automatically
selecting the most suitable algorithms, and also for determin-
ing the appropriate data/feature preprocessing techniques and
hyper-parameters associated with the chosen ML algorithms
to optimize the user-defined cost function within a fixed
computational and memory budget [18].

1The procedure for generating PLC channels of WT degraded XLPE cables
using a bottom-up PLC channel emulator along with a WT degradation model
can be found in [13].
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For our supervised ML operation, we train our machine
using CFRs collected in a training set, Dtrain, along with the
labels, ytrain, corresponding to each entry in Dtrain. For LD
identification, ytrain contains binary indications of the presence
or absence of an LD in the considered CFR. Similarly,
for regression tasks, such as degradation severity prediction,
ytrain indicates the degradation severity values associated with
the CFRs in Dtrain. Further, we also use A, Λ, and P
as the set of candidate ML algorithms, their correspond-
ing hyper-parameters, and possible data/feature preprocessing
techniques, respectively. We formulate the problem of select-
ing the most suitable combination of ML algorithms, a? ∈ A,
its associated hyper-parameters, λ? ∈ Λ, and the data/feature
preprocessing technique p? ∈ P in practice as

(p?, a?, λ?) = argmin
p∈P,a∈A,λ∈Λ

L(a(p(Dtrain), λ), ytrain), (1)

where L is the pre-defined cost function2, e.g., cross entropy
for classification, or mean squared error (MSE) for regression.

For our software implementation of AutoML, we use the
Auto-SKLearn [18]. Auto-SKLearn builds on the existing Au-
toML methods in the literature by using meta-learning and au-
tomatic ensemble construction techniques to provide increased
efficiency and robustness. The meta-learning approach is used
to initialize the Bayesian optimizer of the random-forest-based
sequential model-based algorithm configuration [28], which is
used to fine tune the performance of hyper-parameter space
instantiations. Further, the automatic ensemble construction
ensures that we are less prone to over-fitting and results
in improved performance, especially when instantiations for
constructing the ensemble causes uncorrelated prediction error.
Thereby, Auto-SKLearn improves over state-of-the-art Au-
toML in terms of both implementation and performance. A
detailed description of Auto-SKLearn can be found in [18].

IV. RESULTS

In this section, we evaluate the performance of our ML
framework of Fig. 1 using Auto-SKLearn. For our evaluations,
we use a computation time limit for the AutoML of one hour
on a laptop computer with no storage use limit. However, note
that off-line training performed at, say, the central office of
utilities, is equipped with much larger computational capacity,
and we could, therefore, expect to obtain results with greater
accuracy in practice. We use both the traditional end-to-end
PLC CFR estimated by PLMs, He2e, as well as the reflection
channel, Href , as raw data for feature extraction. We denote
the total number of training and testing samples used for every
task as nTR and nTE, respectively.

A. Network Topology

We apply a T -network that can be used as a building block
to construct any complicated network topology. However,

2Note that the target of any ML task is to minimize the cost function
evaluated for future test samples, i.e., minL(a(p(Dtest), λ), ytest). However,
since Dtest is inaccessible in practice during the training phase, we use Dtrain,
which is generated synthetically, and whose samples are identically distributed
with Dtest.

PLM‐1 PLM‐2

PLM‐3

BP BE‐2BE‐1

BE‐3

Considered Network (CN)

Fig. 2. Portion of the distribution network considered with possible branch
extensions (BEs) beyond each PLM.
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Fig. 3. The cooperative diagnostics approach we employ at every PLM, with
i, j ∈ {1, 2, 3}, to resolve topological ambiguity during LD identification,
where PLMs look for an LD in the nearest branch in Stage 1, and, in Stage
2, cooperatively confirm the presence of an LD in CN by looking for an LD
anywhere within the CN.

typical medium-voltage networks, which are commonly radial
in nature, consist of few branches with segment lengths that
are beyond the coverage of a single PLM [29]. Therefore,
a T -network with PLMs at each node-ends well-represents
a practical topology. Specifically, we consider a network as
shown in Fig. 2, with equal segment lengths of all cables.
Additionally, we also capture possible extensions beyond each
of the PLMs that could lead to the issue of topological
ambiguity while detecting or locating a localized defect [11],
[30]. E.g., when PLM-i, i ∈ {1, 2, 3} determines the presence
of a defect, it is unable to ascertain if the defect lies in the
considered network (CN) or on a branch in the neighboring
network. To address this challenge, we apply a cooperative
diagnostics approach shown in Fig. 3.

When the first stage of our diagnostics task, i.e., LD
identification, indicates a homogeneous aging profile in the
cable, we use the WT growth model of [24] to calculate
an equivalent age, teq, as an indication of overall aging
condition along the cable sections. On the other hand, if an LD
present in the considered network, we conduct both the LD
severity assessment as well as degradation location. The LD
severity, γlocal, is defined as the portion of the WT degraded
cable insulation in a cable cross-section as compared to the
total insulation thickness (see [13, Fig. 1]). To ensure that a
salient LD is distinct against homogeneous aging, we confine
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Fig. 4. Detection rates (PD) and false alarm rates (PFA) obtained in identifying
the presence of an LD in the nearest branch to the PLM.

TABLE I
RMSE PERFORMANCE OF REGRESSION TASKS?

Training Data teq γlocal Target γlocal`WT

Sec. IV-B2 Sec. IV-B3 Sec. IV-B4 Sec. IV-B4
He2e 0.1212 0.0412 28.16 5.98
Href 0.6196 0.0648 23.1 9.51

He2e & Href 0.0.1817 0.05 25.77 6.6
Feature 0.7769 0.0134 0.6618 3.41

RMSE in [15] 1.4724 0.0253 3.0583 6.76
?We omit the units for brevity.

0.1 ≤ γlocal ≤ 1. We perform the LD location in two parallel
steps; predicting the target location, i.e., the distance from the
PLM to the near end of the LD, and estimating of its length,
`WT.

B. Numerical Results

1) LD Identification: We use nTR = 7000 for LD iden-
tification. Among these, we set 1000 with a homogeneous
aging profile containing no salient localized WT degradation.
We then introduce LD on one of the six branches of Fig. 2
for the next 1000 samples, and perform the same for all the
remaining five branches. We use a cooperative diagnostics
approach specified in Fig. 3 to detect a possible LD between
any PLM-i and BP. We feed in the 7000 known samples in
Dtrain and the corresponding ytrain ∈ {“positive”, “negative”}
to Auto-SKLearn.

The results of the two stages of LD identification are shown
in Fig. 4 and Fig. 5, respectively, for varying γlocal. We
illustrate the results that we obtain by using different raw
data in Dtrain. Detection rates obtained using He2e as raw data
show unsatisfactory results across all γlocal. However, the rates
are substantially improved by using Href , either independently
or in conjunction with He2e. For comparison, we also show
an additional result that we obtain by extracting features
from He2e and Href manually before feeding the values into
Auto-SKLearn. We detail the feature extraction procedure
in the Appendix. We observe that this provides near-ideal
detection and false alarm rates, which are only matched by
feeding raw data to AutoML beyond γlocal ≥ 0.3. This shows
that while using raw data directly simplifies implementation
procedures without incurring the effort of feature extraction,
its performance suffers in detecting LDs of low degradation
severity.

2) Homogeneous Aging Assessment: When LD identifica-
tion indicates the absence of an LD, we classify the cable
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Fig. 5. Detection rates (PD) and false alarm rates (PFA) obtained in
determining the right branch on which the LD lies.
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(c) He2e and Href as raw data
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(d) Manually extracted features

Fig. 6. Prediction accuracy in estimating the equivalent cable age that has
undergone homogeneous WT degradation, with (nTR, nTE) = (3600, 1000).

to be subject to homogeneous degradation. To estimate the
extent of degradation, we feed the known CFRs in Dtrain with
their associated equivalent ages as labels in ytrain, into the
Auto-SKLearn tool. We show the performance of our severity
estimation in Fig. 6. We ideally expect all our predictions to
match the actual equivalent age of the cable, i.e., the fitted
curve to be a unit-slope line passing through the origin. We
notice in Fig. 6(a)-(d) that we nearly obtain such a condition
under all considered scenarios, which are, using He2e and/or
Href as raw data, and applying manual feature extraction.
However, we observe that individual predictions vary in each
of these cases, as quantified by the root mean squared error
(RMSE) in Table I. We note that for the task of predicting the
equivalent age, teq, using He2e independently as the raw data
provides the least RMSE. This also shows the superiority of
AutoML in automatically extracting favorable features from
the raw data for this prediction task.

3) LD Severity Assessment: When our first task of LD
identification indicates the present of an LD, we begin by
estimating its degradation severity. Similar to the process in
Section IV-B2, we input known CFRs in Dtrain and their asso-
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Fig. 7. Prediction accuracy in assessing the LD severity, with (nTR, nTE) =
(3600, 1000).

ciated γlocal in ytrain, into Auto-SKLearn to train a regressor.
The performance results obtained while testing this machine
are shown in Fig. 7. From the fitted curve in Fig. 7 and RMSE
values in Table I, we observe that the prediction performance
is most accurate when we extract features from the raw
data manually, instead of relying on AutoML for the feature
extraction. Nevertheless, the chosen set of ML algorithms by
AutoML enables us to achieve superior prediction results when
compared to the state-of-the-art in [15, Fig. 10(b)], by reducing
the RMSE of the predictions by over 47%.

4) LD Localization: Our final diagnostics task is to pre-
cisely locate the position of the detected LD, i.e., to predict
the locations of its two ends. To this end, we rely on the
PLM that is closest to the LD for this task. We first locate
the distance of the near-end of the LD to the PLM, which
we refer to as the target location. The training procedure
for target location follows similar ones employed in Sec-
tion IV-B2 and Section IV-B3. The performance of such a
trained machine is shown in Fig. 8 and Table I. We notice
that automatic feature extraction from ML does not provide
satisfactory prediction accuracy, whereas extracting features
manually provides significant improvement in the estimation
precision, as well as a multi-fold reduction in the RMSE.
Further, AutoML continues to outperform results in [15, Fig.
11(a)] in terms of RMSE, due to its superior approach of
automatically constructing the optimized ensemble from a
wider range of available ML algorithms and the employed
data/feature preprocessing methods.

To predict the far-end of the LD, we estimate its degradation
length, `WT. However, we achieve unsatisfactory results when
we attempt to directly estimate `WT. As a work-around, we
instead estimate the product, γlocal · `WT, and then use the
predicted values of γlocal from Section IV-B3 to obtain an
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Fig. 8. Prediction accuracy in locating the near-end of the LD (target), with
(nTR, nTE) = (3600, 1000).

estimate for `WT. The results of this exercise using AutoML
is shown in Fig. 9 and Table I, where we notice that although
all results provide near-ideal fitted prediction curve, extracting
features manually provides lower RMSE.

C. Outlook

Based on the results in Fig. 4-9, we observe the follow-
ing. The use of AutoML for automatically constructing the
optimized ensemble of ML algorithms along with automated
data and feature preprocessing techniques provide superior
results over the state-of-the-art in [15] for all diagnostics tasks
we outlined in Fig. 1. Further, using Href in place of He2e

increases the rate of detecting LDs. However, He2e provides
greater insight into homogeneous WT degradations over Href .
Therefore, it is suitable to use both these CFRs in conjunction
with each other. Finally, if we can manually extract feature
from the raw data, Auto ML can be used to significantly im-
prove performance compared to conventional ML approaches.
However, a fully automated training procedure using AutoML
provides a layman accessible solution that can also provide
enhanced results over state-of-the-art ML designs without
requiring a detailed domain knowledge of the considered task.

V. CONCLUSION

In this paper, we have presented an automated machine
learning based cable diagnostics design. Our solution au-
tomatically determines the most suitable data preprocessing
techniques, machine learning algorithms, and the associated
hyper-parameters required to obtain the optimal performance
in terms of a user-defined cost function for any given diagnos-
tics task within a fixed computational and memory budget. For
software implementation purposes, we used the Auto-SKLearn
toolkit, which enhances existing AutoML methods by using
meta-learning and automatic ensemble construction to provide
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Fig. 9. Prediction accuracy of γlocal ·`WT, with (nTR, nTE) = (3600, 1000).

increased efficiency and robustness. Through simulation re-
sults, we devised strategies to suitably adapt Auto-SKLearn for
various cable diagnostics tasks that enable us to obtain near-
ideal performance accuracy. Our solution is layman accessible,
and can be used without detailed knowledge about machine
learning algorithms or cable degradation characteristics.

APPENDIX

In this appendix, we detail the set of features that we include
in our library for manual feature extraction. As discussed in
detail in [13]–[15], cable degradations cause higher dielectric
losses [25] and slower wave propagation speeds [31]. To
capture these two effects, we include mth-order moments
(m ∈ {1, 2, 3, 4}) of the magnitude and phase of He2e and
Href in our manually extracted features. Further, LDs cause
discontinuities in the dielectric properties along the cable
insulation. Therefore, we also include the peak locations and
their magnitudes observed in the time-domain versions of He2e

and Href in our feature library. However, note that we manually
select only those set of features that are most suitable for the
considered diagnostics task.
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