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Abstract—We investigate the problem of coded caching

for nonuniform demands when the structured clique

cover algorithm proposed by Maddah-Ali and Niesen

for decentralized caching is used for delivery. We apply

this algorithm to all user demands regardless of their

request probabilities. This allows for coding among the

files that have different request probabilities but makes the

allocation of memory to different files challenging during

the content placement phase. As our main contribution, we

analytically characterize the optimal placement strategy

that minimizes the expected delivery rate under a storage

capacity constraint. It is shown that the optimal placement

follows either a two or a three group strategy, where a set

of less popular files are not cached at all and the files within

each of the other sets are allocated identical amounts of

storage as if they had the same request probabilities. We

show that for a finite set of storage capacities, that we

call the base-cases of the problem, the two group strategy

is always optimal. For other storage capacities, optimal

placement is achieved by memory sharing between certain

base-cases and the resulting placement either follows a two

or a three group strategy depending on the corresponding

base-cases used. We derive a polynomial time algorithm

that determines the base-cases of the problem given the

number of caches and popularity distribution of files.

Given the base-cases of the problem, the optimal memory

allocation parameters for any storage capacity are derived

analytically.

I. INTRODUCTION

A. Background

The next generation wireless communication

networks deploy a dense composition of short-

range and low-power small-cells and combine them

with the macrocells into heterogeneous networks.

This architecture promotes localized communica-

tions and effectively increases the area spectral

efficiency of the network. The performance of such

networks is however challenged by the congestion

of the backhaul links that connect the small-cells to

the backbone communications network during the

peak traffic hours. Caching at the edge is a promis-

ing technique to alleviate the backhaul congestion

through the storage of popular content closer to the

end users [1]–[8].

Coded caching [8]–[10] is a novel approach

for content caching in a network that consists of

multiple caching nodes which communicate with

a central server over a shared broadcast channel.

This technique benefits from network coding and

coded multicasting to gain superlinear reduction in

the data delivery load on the shared link as the cache

capacity increases. In particular, during a placement

phase, popular content is carefully distributed over

the different storage nodes such as to create coding

opportunities among the caches. During a delivery

phase, the content that is requested but is missing

from the caching nodes is delivered to them by the

central server’s transmissions over the shared link.

The server exploits the coding opportunities created

during placement to embed the missing content

requested by multiple caches in a single message

that every target cache can decode for its desired

content. The load on the shared link is referred to

as the delivery rate.

The coded caching proposed by Maddah-Ali and

Niesen in their seminal work [10] efficiently utilizes

the side information that each cache has about the

requests of the other caches in order to build server’s

coded messages. This delivery algorithm can be

viewed as a structured way of clique-covering the

vertices of the side information graph that character-

izes the availability of the content requested by each

cache in the other caches. As a result, we call this

delivery algorithm Structured Clique Cover (SCC)

procedure throughout this paper.

The seminal works [9] and [10] aimed at mini-

mizing the peak delivery rate when different files

in the library are equally likely to be requested

by users, i.e., when the user demands are uni-
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form. However, a more practical scenario concerns

caching of files with different popularity levels. In

this scenario, it is expected to allocate more storage

to the caching of the more popular files during

placement. This idea is followed in several works

in the literature [11]–[16].

B. Related Work

Two major approaches are followed for coded

caching with nonuniform demands. The first ap-

proach is based on the grouping of files into differ-

ent popularity groups based on their request proba-

bilities [11], [12], [14]. With the files in each group

having relatively similar request probabilities, the

SCC algorithm is applied separately to the requests

belonging to each group for delivery. The advantage

of this method is the simplicity of the analysis of the

expected rate. Its main disadvantage is that it limits

the utilization of coding opportunities to the files

that are within each popularity group. The design

objective in this approach is to find the grouping of

files that achieves the lowest expected rate. A higher

number of groups provides higher degrees of free-

dom to assign different amounts of storage to files

with different request probabilities. On the other

hand, the larger the number of groups is, the more

underutilized are the coding opportunities among

the different groups. In [14], the library is grouped

into two categories of popular and unpopular files.

The requests for popular files are delivered by the

SCC algorithm while the requests of unpopular files

are delivered through uncoded messages. This is an

extreme case of the grouping approach and its ex-

pected rate is shown to be at most a constant factor

away from the information theoretic lower bound,

independent of the file popularity distribution.

The second approach is followed in [15] and [16]

which applies the SCC algorithm to all the user

demands regardless of their request probabilities and

the amount of storage allocated to each file. For

any fixed placement of content, this delivery scheme

outperforms the previously discussed group-based

delivery. However, optimization of the amount of

memory allocated to each file is challenging because

of the complicated interplay between the memory

allocation parameters and the expected delivery rate.

References [15] and [16] use a convex optimiza-

tion formulation of the memory allocation problem

which aims to minimize the expected delivery rate

for a given storage capacity per cache. We refer

to this problem as Rate Minimization with Storage

Constraint (RMSC). Reference [16] has followed a

numerical approach to solve the RMSC problem and

is mainly focused on reducing the computational

complexity of the numerical analysis involved. In

contrast, [15] follows a theoretical approach to find

structural properties in the optimal solution of the

problem.

C. Our Contributions

The results provided in [15] do not capture spe-

cific properties of the optimal solution which can

considerably facilitate solving the memory alloca-

tion problem. In this work, we find such structures

in the optimal solution and solve the RMSC problem

analytically when user demands are nonuniform and

the SCC procedure is used for delivery. In partic-

ular, we will show that such properties enable the

derivation of the optimal solution based on a search

over a finite set of points. The cardinality of this

set scales linearly with the product of the number

of caches and the number of files. The properties

that we derive also provide a unifying interpretation

of the optimal placement strategy for both uniform

and nonuniform popularity distribution of files, as

we will discuss in the remainder of this section.

As the first structural property, we show that for

instances of the problem with cache capacities that

belong to a finite set M, the optimal placement

for RMSC follows the simple pattern of splitting

the library of files into two groups. One group

consists of less popular files and the files in this

group are not cached at all. The files in the second

group are cached but are treated as if they had the

same request probabilities. We call such instances

of RMSC the base-cases.

For instances of the problem that are not among

the base-cases, we prove that the optimal solution is

achieved by a convex combination of the solutions

to certain base-cases of the problem. This solution

is identical to the placement parameters obtained

by memory sharing between the two base-cases of

the RMSC problem. Memory sharing is already

shown to be optimal when demands are uniform [15,

Lemma 5], [16, Theorem 1], [17, Proposition 1].

Hence, this result shows that memory sharing is also

optimal for nonuniform demands when applied to

the appropriately chosen instances of the problem.

To elaborate, let K, N and M be the number of

caches, files in the library and files that each cache
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can store, respectively. For optimal placement of

identically popular files when SCC delivery is used,

we have the following [15]–[17]:

• All files are treated identically during place-

ment, in particular, the same amount of storage

is allocated to the caching of each file.

• For a cache size M that corresponds to an in-

teger value of t = KM
N

, the optimal placement

breaks each file into
(

K
t

)

nonoverlapping seg-

ments. Then, it exclusively stores each one of

the segments in exactly one of the
(

K
t

)

subsets

of caches that have cardinality t. We refer to

these cases of the problem as the base cases and

denote by M the set of corresponding cache

sizes {0, 1
K
N, 2

K
N, . . . , N}.

• For other cache capacities, the optimal place-

ment can be obtained by memory sharing be-

tween the optimal placements for two instances

of the problem with cache capacities Ml =
max{m ∈ M | m < M} and Mu = min{m ∈
M |M < m}.1

We prove that a similar pattern exists in the optimal

placement for nonuniform demands. In particular,

we propose an algorithm with worst-case com-

plexity of O(K2N2) to derive the set M given a

nonuniform popularity distribution for the files. If

M 6∈ M, the optimal placement is obtained by

memory sharing between Ml,Mu ∈ M as it was

done for uniform demands using the derived setM.

In this case, optimal placement either follows a two

or a three group strategy depending on the specifics

of the two corresponding base-cases used.

For the optimal placement that we derive, the

memory allocated to different files does not show a

gradual and smooth increase as the request probabil-

ity increases. Instead, for base-cases where the two-

group strategy is optimal, the memory allocation

exhibits a binary behavior, i.e., as the request prob-

ability increases the amount of memory allocated to

the files shows an abrupt increase from zero to a new

level at a certain request probability and remains at

that level thereafter. A similar trend exists for non

base-cases, but there might be two thresholds on

request probabilities where the jumps in the memory

allocated to files occur.

1The idea of memory sharing for uniform demands was presented

in [9] as an achievable scheme when t is not an integer. References

[15]–[17] proved that memory sharing is optimal for SCC delivery

when demands are uniform.

Finally, we find the results in [14] closely con-

nected to the results that we derive in this paper.

Reference [14] considers the setting of randomized

placement algorithms and within that setting, it

shows that a two-group (or occasionally a three-

group) strategy guarantees a delivery rate within a

constant factor of the information theoretic lower

bound. In this work, we derive a deterministic

placement of files in the caches which solves the

RMSC problem, i.e., we analytically prove its opti-

mality when the SCC delivery algorithm is applied

to all user demands. We prove that the expected

delivery rate of our optimal solution is a lower-

bound on the expected delivery rates of the group-

based methods that apply the SCC algorithm within

each group of requested files for delivery. Given that

the coded caching in [14] follows such a scheme

and its rate is within a constant factor from the

information-theoretic lower bound, it concludes that

the delivery rate of RMSC is also within a constant

factor of the optimum delivery rate. Through nu-

merical examples we show that the grouping of files

given by these two schemes and the delivery rates

resulting from them can be significantly different

for specific regimes of problem parameters. Further,

we compare the expected rate of RMSC to the

information-theoretic outer-bound on the expected

rate of caching schemes with uncoded prefetch-

ing derived in [18]. This comparison suggests that

the expected rate of RMSC approaches the outer-

bound as the cache size increases. We provide a

detailed discussion to show that the existence of

this performance gap is, at least partially, due to

an inefficiency in the SCC algorithm for delivery.

We suggest directions for future research in order

to reduce or fully close this performance gap.

The remainder of this paper is organized as

follows. The setup of the problem and formulation

of the expected rate and the storage used in terms

of placement parameters are presented in Section II.

For better readability of the paper, a list of the

symbols and acronyms that we use in the paper

is provided in Table I. The RMSC problem is

formulated in Section III and a duality framework is

proposed for it. Structures in the optimal solution of

RMSC for the base-cases are derived in Section IV.

In Section V, we propose an algorithm to identify

the base-cases of the RMSC problem for any given

popularity distribution of files and we derive the

optimal solution of RMSC. We conclude the paper
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TABLE I. List of Symbols and Acronyms

RMSC Rate Minimization with Storage Constraint

JRSM Joint Rate and Storage Minimization

SCC Structured Clique-Cover algorithm

K number of caches

N number of files

M cache capacity (files)

F length of files (bits)

R delivery rate (files)

pn request probability of file n
P a placement of files in caches

AD a delivery algorithm

[n] set {1, . . . , n}
[n]i set {i+ 1, i+ 2, . . . , i+ n}
S a subset of [K]
Xn set of the bits of file n
Xn

S set of bits of file n that are exclusively cached in

caches in S
xn
S length of subfile Xn

S normalized by F bits

xn
s xn

S for S : |S| = s
yns

(

K
s

)

xn
s

dk index of file demanded by cache k
d demand vector (d1, . . . , dK)
dS subdemand vector for requests of caches in S
Gs set of all subsets of [N ] with cardinality less than

or equal s
πg
s probability that for a set of caches S : |S| = s,

g ∈ Gs is the set of files in dS

M set of cache capacities for base-cases of RMSC

R set of optimal rates for base-case of RMSC

Y∗ set of optimal solutions for base-cases of RMSC

Ml max{m ∈M | m < M}
Mu min{m ∈M |M < m}
Supp(w) support of vector w

γ Lagrange multiplier for capacity constraint

in Section VI.

II. PROBLEM SETUP AND FORMULATION OF

UTILIZED STORAGE AND EXPECTED DELIVERY

RATE

A. Problem Setup

We consider the canonical network of multiple

caches and a central server as modeled in [11]

for the general case where user demands can be

nonuniform (see Fig. 1). In particular, we consider

a library of N files, each of length F bits and a

network of K caches, each with storage capacity of

MF bits. All files are available in the central server

and the server can communicate with the caching

nodes over an error-free broadcast link.

Server

Cache 1 Cache 2 Cache K−1 Cache K

· · ·

Fig. 1. A network with K caches and a central server.

Notation 1: We use notation [n] to denote the set

of the first n positive integers {1, . . . , n}. Similarly,

we use [n]i to denote the set of the first n positive

integers larger than i, i.e., {i+ 1, i+ 2, . . . , i+ n}.
The placement of files in the caches can be

described as follows. Let Xn be the set of the bits

of file n. Then, for each S ⊂ [K], set Xn
S ⊂ Xn

represents the bits of file n that are exclusively

cached in caches in S.2 By definition, subsets Xn
S

are disjoint for different S and
⋃

S⊂[K]X
n
S = Xn.

Also, define xn
S = |Xn

S |/F as the ratio of bits of

file n that are exclusively cached in the caches in

S. Then, it follows that
∑

S⊂[K] x
n
S = 1 for every

n ∈ [N ]. We denote by x the vector of all placement

parameters xn
S .

The server is informed of all caches’ content. For

a fixed placement of files in caches, every cache

k ∈ [K] reveals one request for a file dk ∈ [N ]
at each time instant. We refer to d = [d1, . . . , dK ]
as the demand vector which represents the demands

of all caches at the current time instant. Similarly,

for a subset of caches S, subdemand vector dS

determines the files requested by the caches in S
in the same order as in d.

We assume that requests for different files are

independent and the request probabilities do not

change for different caches. Let {pn}n∈[N ] represent

the request probabilities of the files. Here, files are

2In other words, bits Xn
S ⊂ Xn are stored in every cache in S

and are not stored in any cache in [K] \ S .
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Algorithm 1 Delivery by SCC [10]

1: procedure DELIVERY(d; {Xn}n=1,...,N )

2: for s = 1, . . . , K do

3: for S ⊂ [K] : |S| = s do

4: server sends ⊕k∈SX
dk
S\k

5: end for

6: end for

7: end procedure

sorted in the decreasing order of request probabili-

ties, i.e., n > m implies pn ≤ pm. We refer to the

file request probabilities as popularity distribution.

For a demand vector d and every k ∈ [K], the

parts of file dk that are available in cache k are

locally delivered to its user. The missing parts are

provided by the server over the broadcast channel

through a signal of size R(d;P, AD) files. The

quantity R(d;P, AD) is the delivery rate measured

in the equivalent number of files for the demand

vector d, given a specific placement of files P and

a delivery algorithm AD. Placement P is fixed for

all the demand vectors that arrive during the delivery

phase. It is required that every cache that has

forwarded its request to the server be able to decode

the broadcasted signal for the content it requested.

We are interested in minimizing Ed (R(d;P, AD)),
where the expectation is over the randomness in the

demand vector d.

B. Delivery Algorithm

In this work, we apply the SCC procedure to

all user demands for delivery regardless of their

popularity levels and the memory allocated to them.

The delivery procedure is shown in Algorithm 1.

By following Algorithm 1, the server transmits

messages of the form

⊕k∈SX
dk
S\k (1)

for every nonempty S ⊂ [K]. All the components

XS\k embedded in the message are zero-padded

to the length of the largest component. Hence, the

length of the message is maxk∈S |X
dk
S\k|.

3

3From a graph theoretic perspective, this message corresponds

to XORing the requested subfiles that form a clique in the side

information graph [19, Section II.A] and [20, Section I.A]. Since

the set of messages ⊕k∈SX
dk
S\k delivers all the missing subfiles, it

covers all the vertices in the side information graph. Hence, one can

see the delivery procedure of [10] as a structured way of covering

the side information graph vertices with cliques.

As mentioned in Section I-B, Algorithm 1 con-

trasts the delivery schemes in [11], [14], [21]

which are also based on the SCC procedure but

separately apply it to the files with close request

probabilities. Algorithm 1 has the advantage that

it allows coding among all files regardless of their

request probabilities and can result in a smaller

delivery rate. To elaborate, message (1) delivers

every subset of bits in {Xdk
S\k}k∈S to the corre-

sponding requesting cache in S. Given a grouping

of files into groups l = 1, . . . , L, if instead of

applying the SCC to the whole demand vector

we applied it to subdemand vectors consisting of

files in the same popularity group, the exact same

subfiles delivered by (1) would have been delivered

through the set of messages
{

⊕k∈Ŝl
Xdk

S\k

}L

l=1
where

Ŝl = {k ∈ S|dk ∈ l-th group}. This message

has length
∑L

l=1maxk∈Ŝl
|Xdk

S\k| which is lower

bounded by maxk∈S |X
dk
S\k| which is the length of

(1) with SCC applied to the whole demand vector.

A direct consequence of this argument is that with

an optimal placement for Algorithm 1, its delivery

rate would be a lower-bound on the delivery rates

of caching schemes like the ones in [11], [14],

[21] which apply Algorithm 1 to subdemand vectors

that consist of files that are in identical popularity

groups. In particular, the fact that the delivery rate of

[14] is within a constant factor of the information-

theoretic lower-bound [14, Section III] implies that

the delivery rate of Algorithm 1 with the optimal

placement that we derive here is also within a con-

stant factor of the information-theoretic minimum

rate.

C. Formulation of Expected Delivery Rate and Stor-

age

To derive optimal placement for SCC delivery, we

need to formulate the expected delivery rate and the

storage used by the placement algorithm in terms of

the placement parameters xn
S .

Expected Delivery Rate: For Algorithm 1 as the

delivery algorithm, the delivery load is

R(d;x) =
∑

S:S⊂[K]
S6=∅

max
k∈S

xdk
S\k

for a given demand vector d and placement param-

eters xn
S . To formulate the expected delivery rate in

terms of the placement parameters, let RS(d;x) =
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maxk∈S xdk
S\k denote the rate required to deliver the

subfiles that are exclusively stored in the subset of

caches S. Then, the expected rate with respect to

randomness in user demands is

r(x) =∆ Ed (R(d;x)) =
∑

S:S⊂K
S6=∅

Ed(RS(d;x)).

We assumed that the popularity distribution of

files is the same for different caches. We use this

symmetry in the demand probabilities of the differ-

ent caches to simplify the placement formulation by

setting xn
S = xn

s for all S : |S| = s. In other words,

for a given file, the portion of bits that is exclusively

cached in any subset of caches S with cardinality s
is the same.

Proposition 1: The assumption xn
S = xn

s for all

S : |S| = s is without loss of optimality for the

RMSC problem.

Proof: See Appendix A.

Because of the symmetric structure of the place-

ment, Ed(RS(d;x)) is the same for all S : |S| = s,

and it can be denoted by R̄s(x). Hence, the average

rate can be written as

r(x) =
K
∑

s=1

(

K

s

)

R̄s(x).

Let Gs be the set of all subsets of [N ] with cardi-

nality at most s. Let πg
s denote the probability that

files g ∈ Gs be requested by a set of caches S with

|S| = s. Then,

R̄s(x) =
∑

g∈Gs

πg
s max

n∈g
xn
s−1

and therefore, the expected delivery rate is

K
∑

s=1

(

K

s

)

∑

g∈Gs

πg
s max

n∈g
xn
s−1,

which can equivalently be written as

K−1
∑

s=0

(

K

s+ 1

)

∑

g∈Gs+1

πg
s+1max

n∈g
xn
s .

Storage Used by Placement: The total storage

used by cache k ∈ [K] is

N
∑

n=1

∑

S⊂[K]:
k∈S

xn
S , (2)

where under the symmetry condition xn
S = xn

s for

all S : |S| = s, this quantity simplifies to

N
∑

n=1

K
∑

s=1

(

K − 1

s− 1

)

xn
s

for every cache. The inner sum is the storage that is

assigned to file n in each cache, as for each file n,

each cache k stores the subfiles Xn
S : k ∈ S. There

are
(

K−1
s−1

)

subsets of [K] of cardinality s with this

property for each file. The outer sum adds up the

storage used for all the files in the library.

Change of Variable for Placement Parameters:

For simpler exposition of the optimization problems

and better interpretability of the results, we find it

useful to use the change of variable

yns =

(

K

s

)

xn
s . (3)

Variable yns is the total portion of bits of file n that

is cached exclusively in all the
(

K
s

)

different subsets

of [K] with cardinality s. As argued in Section II-A,

we have
∑

S⊂[K] x
n
S = 1. Given that xn

S = xn
|S| and

using the change of variable (3), it follows that

K
∑

s=0

yns = 1, ∀n ∈ [N ]. (4)

As a result, the expected rate and storage can

be formulated as functions of the new placement

parameters yns as

r(y) =
K−1
∑

s=0

K − s

s+ 1

∑

g∈Gs+1

πg
s+1max

n∈g
yns , (5)

m(y) =

N
∑

n=1

K
∑

s=1

s

K
yns . (6)

Notice that the expected rate and the amount of

storage used are a convex and a linear function of

the placement parameters, respectively.

III. FORMULATION OF RMSC IN TERMS OF THE

PLACEMENT PARAMETERS AND

CHARACTERIZATION OF ITS DUAL PROBLEM

A. Formulation of RMSC

Using (3)-(6), the problem of finding the storage

parameters that minimize the expected delivery rate
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under the cache capacity constraint can be formu-

lated as

min
y

K−1
∑

s=0

K − s

s+ 1

∑

g∈Gs+1

πg
s+1max

n∈g
yns (7a)

s.t.

N
∑

n=1

K
∑

s=1

s

K
yns ≤ M, (7b)

K
∑

s=0

yns = 1, n ∈ [N ], (7c)

yns ≥ 0, n ∈ [N ], s = 0, . . . , K.
(7d)

B. Duality Framework and Derivation of Joint Rate

and Storage Minimization Problem

Optimization problem (7) is convex and Slater’s

condition holds for it as all inequality constraints are

affine [22, Section 5.2.3]. Hence, with (7) as primal,

the duality gap between the primal and the corre-

sponding dual problem is zero [22, Section 5.2]. To

derive the dual problem, we form the Lagrangian

that accounts for the capacity constraint (7b) as

L(y, γ) =
K−1
∑

s=0

K − s

s+ 1

∑

g∈Gs+1

πg
s+1max

n∈g
yns

+ γ

(

N
∑

n=1

K
∑

s=1

s

K
yns −M

)

which results in the Lagrange dual function

g(γ) = min
y

L(y, γ)

s.t.
K
∑

s=0

yns = 1, n ∈ [N ],

yns ≥ 0, n ∈ [N ], s = 0, . . . , K.
(8)

Then, the corresponding dual problem will be

max
γ ≥ 0

g(γ). (9)

By dropping the terms that are independent of the

placement parameters, (8) has the same minimizers

as

min
y

K−1
∑

s=0

K − s

s+ 1

∑

g∈Gs+1

πg
s+1max

n∈g
yns

+ γ
N
∑

n=1

K
∑

s=1

s

K
yns (10a)

s.t.
K
∑

s=0

yns = 1, n ∈ [N ],

yns ≥ 0, n ∈ [N ], s = 0, . . . , K. (10b)

We call (10) the Joint Rate and Storage Minimiza-

tion (JRSM) problem, as the objective is to min-

imize the total bandwidth (expected delivery rate)

and storage cost of coded caching. Following the

standard interpretation of the Lagrange multipliers,

parameter γ can be viewed as the relative cost

of storage per file. Moreover, since strong duality

holds, for each storage capacity M , the optimal

dual variable γ∗(M) determines a pricing of the

storage for which there exists the same minimizer

to both the RMSC problem (7) and the Lagrangian

minimization problem in (8) (or equivalently the

JRSM problem in (10)). As a result, we derive

the optimal solution of JRSM in Section IV as an

intermediate step in solving RMSC.

IV. OPTIMAL SOLUTION TO JRSM

Finding an analytical solution to (10) is challeng-

ing because of the presence of the max functions

that operate over overlapping sets of parameters in

the objective. These parameters are tied together

by constraints (10b) for different values of s. The

interplay between the outputs of the max function

applied to the overlapping groups under constraints

(10b) makes the analysis difficult. To facilitate the

analysis, we establish a connection between the

nonlinear part of (10a) and submodular set func-

tions. This allows us to benefit from the results in

submodular function analysis to find structures in

the optimal solution to JRSM. Appendix B provides

a review of submodular functions and the results

relevant to our analysis in this paper.

A. An Equivalent Formulation of JRSM

The placement parameters corresponding to s = 0
are {yn0}n∈[N ], which determine the portion of bits
that are not stored in any cache for each file n.
Also, each set g ∈ G1 includes exactly one file, say
g = {i}. Hence, maxn∈g y

n
0 = yi0 and πg

0 = pi. Thus,
the objective function (10a) can be written as

N
∑

n=1

Kpny
n
0 +

K−1
∑

s=1





K − s

s+ 1

∑

g∈Gs+1

πg
s+1 max

n∈g
yns +

s

K
γ

N
∑

n=1

yns





+ γ

N
∑

n=1

ynK .
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Notice that the first and last sums are in terms

of parameters yn0 and ynK , respectively, while the

summation in the middle accounts for parameters

yns for s ∈ [K − 1].
Lemma 1: At optimality,

∑N
n=1Kpny

n
0 +

γ
∑N

n=1 y
n
K can be written as

∑N
n=1(Kpnαn +

γ(1 − αn))z
n where zn = yn0 + ynK , and αn = 1 if

Kpn < γ and αn = 0 if Kpn ≥ γ.

Proof: For a fixed value of zn, we have
∑N

n=1Kpny
n
0 + γ

∑N
n=1 y

n
K = γ

∑N
n=1 z

n +
∑N

n=1(Kpn − γ)yn0 . Hence, if Kpn < γ, setting

yn0 = zn and ynK = 0 leads to the smallest objective

and if Kpn ≥ γ, the smallest objective results for

yn0 = 0 and ynK = zn.

Corollary 1: For some m ∈ {0, . . . , N}, we have

αn = 1, n > m and αn = 0, n ≤ m.
Using Lemma 1, and the fact that zn = 1 −

∑K−1
s=1 yns , we get

min
ỹ,α

K−1
∑

s=1

K − s

s+ 1

∑

g∈Gs+1

πg
s max

n∈g
yns (11a)

+

N
∑

n=1

K−1
∑

s=1

[( s

K
− 1 + αn

)

γ −Kpnαn

]

yns + l(α)

s.t.

K−1
∑

s=1

yns ≤ 1, n ∈ [N ], (11b)

yns ≥ 0, n ∈ [N ], s ∈ [K − 1], , (11c)

αn ∈ {0, 1}, n ∈ [N ], (11d)

as a problem equivalent to (10), where ỹ is the

same as y, except for parameters yn0 and ynK that are

removed, and l(α) = K
∑N

n=1 αnpn + γ
∑N

n=1(1−
αn).

To find structures in the optimal vector ỹ, assume
that the optimal parameters α∗

n are known. Then, the
optimization problem for ỹ becomes

min
ỹ, t

t+

N
∑

n=1

K−1
∑

s=1

[( s

K
− 1 + α∗

n

)

γ −Kpnα
∗
n

]

yns (12a)

s.t.
K−1
∑

s=1

K−s

s+1

∑

g∈Gs+1

πg
s max

n∈g
|yns | ≤ t, (12b)

K−1
∑

s=1

yns ≤ 1, n ∈ [N ], (12c)

yns ≥ 0, n ∈ [N ], s ∈ [K − 1]. (12d)

In constraint (12b), we used maxn∈g |y
n
s |, which is

the l∞-norm instead of maxn∈g y
n
s . This does not

affect the optimal solution as the two functions are

equivalent in the nonnegative orthant specified by

(12d) but makes the LHS in form of the l∞-norm

in Proposition B.1 of Appendix B.

Notice that objective function (12a) is linear, and

both the objective function and the constraints are

in terms of parameters yns for s ∈ [K − 1], n ∈
[N ]. For a linear objective function, if the feasible

set is convex and bounded with a finite number of

extreme points, then there exists an extreme point

that is optimal [23, Section 2.5]. In the following,

we will show that the feasible set defined by (12b)-

(12d) satisfies these properties for any given value

of t, and in particular for t∗ at optimality, and derive

structures in its extreme points. Any such structure

readily implies a structure in at least one optimal

solution to (12).

B. Connection to Submodular Functions

To find the extreme points of the region charac-

terized by (12b), we establish a link to submodular

functions. Let us define function

fc(ỹ) =
∆

K−1
∑

s=1

K−s

s+1

∑

g∈Gs+1

πg
s max

n∈g
|yns |.

The subscript c is used to highlight that this function

returns the average rate due to the delivery of the

bits that are cached in at least one of the caches

in the system. We show that fc(ỹ) is the Lovász

extension of a submodular set function. For that,

consider the set [(K − 1)N ]. For each s ∈ [K − 1],
objects (s− 1)N + 1, . . . , sN correspond to files

1, . . . , N , respectively. Notice that these objects

belong to [N ](s−1)N .

To define the corresponding set function, let us

introduce the following for any s ∈ [K − 1] and

g ∈ Gs+1:

• Operator u(s, g) that gives the set g̃ =
{(s− 1)N + n | n ∈ g} as output. This is

basically a mapping from the files in g and

set sizes s to the objects in [(K−1)N ]. Notice

that any resulting set g̃ is a subset of [N ](s−1)N

for exactly one s.

• Sets G̃s+1 = {u(s, g) | g ∈ Gs+1} and G̃ =
⋃

s∈[K−1] G̃s+1.

• The inverse operators s−1(g̃) and g−1(g̃) that

for g̃ ∈ G̃ return the unique s that satisfies g̃ ⊂
[N ](s−1)N , and the set g = {n | s−1(g̃)N + n ∈
g̃}, respectively.
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• Weights

ηg̃ =
K − s−1(g̃)

s−1(g̃) + 1
π
g−1(g̃)

s−1(g̃) (13)

for all g̃ ∈ G̃. Notice that when |g̃| = 1,

g−1(g̃) = {i} which is a singleton. In that case,

π
g−1(g̃)

s−1(g̃) = pi.

Using the operators and parameters defined above,

fc(ỹ) can be written as

fc(ỹ) =
∑

g̃∈G̃

ηg̃ max
n∈g−1(g̃)

|yns−1(g̃)|. (14)

Notice that (14) has the form of the norm function

in Proposition B.1 and as a direct consequence we

have the following proposition:

Proposition 2: Function fc(ỹ) is a norm and is

the Lovász extension of the submodular function

Fc(A) =
∑

g̃∈G̃:A∩g̃ 6=∅

ηg̃, (15)

where A ⊂ [(K − 1)N ].
From Proposition 2, one concludes that constraint

(12b) characterizes a norm-ball of radius t.
For A ⊂ [N ](s−1)N , let us define P (A) =

∑

n∈g−1(A) pn. Then, for the extreme points of the

norm-ball, we have the following lemma.

Lemma 2: The extreme points of the norm-ball

fc ≤ t are of the form

t
K−s
s+1

[1− (1− P (A))s+1]
v, (16)

where vector v ∈ {−1, 0, 1}KN , Supp(v) = A, and

set A is a subset of [N ](s−1)N for an s ∈ [K − 1].
Proof: Based on Proposition B.2, the extreme

points of the unit ball fc ≤ 1 are closely connected

to the set of stable inseparable subsets of [(K−1)N ]
with regard to Fc. We first argue that all subsets of

[(K − 1)N ] are stable. Consider a set A ⊂ [(K −
1)N ]. Augment A with a new object i to get A∪{i}.
Without loss of generality, let s−1({i}) = ŝ. Since

g̃ = {i} belongs to Gŝ+1 with ηg̃ > 0 and it does

not intersect with A, we have fc(A∪{i}) > Fc(A).
Hence, any set A ⊂ [(K−1)N ] is stable with respect

to Fc. Consequently, every subset of [N ](s−1)N for

s ∈ [K − 1] is also stable.

To find the inseparable sets, consider A ⊂ [(K −
1)N ]. Let Bs = {i ∈ A | s−1({i}) = s}. A

necessary condition for A to be inseparable is to

have only one nonempty Bs. To show this, partition

A to subsets Bs, s ∈ [K−1]. Notice that each group

g̃ ⊂ G̃ is a subset of exactly one [N ](s−1)N , s ∈
[K − 1]. Hence, if two or more subsets Bs are

nonempty, then Fc(A) =
∑

Bs 6=∅ fc(Bs) and A is

separable. Now, consider the case where only one

Bs, say Bŝ, is nonempty. In this case, A ⊂ [N ](ŝ−1)N

and A can only have nonempty intersections with

sets g̃ ∈ G̃ŝ+1. Since ŝ ≥ 1, for any partitioning

of A to P1, . . . , PJ for some J , there is at least

one group g̃ ∈ G̃ŝ+1 with |g̃| ≥ 2 that intersects

with both Pi and Pj for every pair i 6= j. Hence,

Fc(A) <
∑J

i=1 fc(Pi). As a result, the set of all

stable inseparable subsets of [(K−1)N ] with regard

to Fc is A = {A | A ⊂ [N ](s−1)N , s ∈ [K − 1]}.
According to Proposition B.2, the support of

every extreme point of the norm-ball of fc belongs

to A. Further, the nonzero entries of the extreme

point vector that corresponds to A ∈ A is either of

±1/Fc(A). Using Proposition 2:

Fc(A) =
∑

g̃⊂G̃:A∩g̃ 6=∅

ηg̃ =
∑

g̃⊂G̃
s−1(A):

A∩g̃ 6=∅

ηg̃

=
K − s−1(A)

s−1(A) + 1

(

1− (1− P (A))s
−1(A)+1

)

(17)

where we used the facts that 1) for A ∈ A,

all entries of A belong to only one [N ](s−1)N ,

so s−1(A) and g−1(A) are well defined, 2) ηg̃ =
K−s−1(g̃)
s−1(g̃)+1

π
g−1(g̃)

s−1(g̃) and 3)
∑

g̃⊂G̃
s−1(A):

A∩g̃ 6=∅

ηg̃ equals the

probability of having a demand vector with at most

s−1(A) + 1 distinct files from [N ] that has at least

one file in g−1(A). The use of A and (17) in

Proposition B.2 and scaling the radius of the ball

from 1 to t results in (16).

Corollary 2: For an extreme point ỹ of the norm-

ball defined by (12b), for all yns > 0, we have s = ŝ,

for exactly one ŝ ∈ [K − 1].
Theorem 1: There is an optimal solution to the

JRSM problem in (10) which is of form

(yns )
∗ =

{

1, s = 0, n ∈ [N − n∗]n∗ ,
1, s = s∗, n ∈ [n∗],
0, otherwise,

(18)

for some s∗ ∈ [K] and some n∗ ∈ {0, . . . , N}.4

Proof: See Appendix C.

4Notice that n∗ = 0 corresponds to the case where for all n ∈ [N ]:
yn
0 = 1 and yn

s = 0, s > 0.
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Theorem 1 implies that for every γ ≥ 0 there
exists an optimal solution to the JRSM problem that
is integral. For better illustration, we write such an
optimal vector y in the matrix form Y as follows.
Matrix Y has N rows corresponding to the files
and K+1 columns corresponding to the cardinality
of subsets of caches. In particular, Yn,s = yns , n ∈
[N ], s = 0, . . . , K. Based on the structures found
for yns in Theorem 1, Y is of form

Y =





























0 1 ... s∗−1 s∗ s∗+1 ... K

1 0 0 . . . 0 1 0 . . . 0
2 0 0 . . . 0 1 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

n∗−1 0 0 . . . 0 1 0 . . . 0
n∗ 0 0 . . . 0 1 0 . . . 0

n∗+1 1 0 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

N 1 0 . . . 0 0 0 . . . 0





























, (19)

i.e., i) all entries are either 0 or 1, ii) each row

has exactly one entry 1, iii) at most one column

with index s ≥ 1 has nonzero entries, iv) for that

column all entries are 1 for rows 1, . . . , n∗ and 0

for rows n∗ + 1, . . . , N , for some n∗ ∈ [N ]. As a

result, for all values of γ ≥ 0 there is an optimal

solution with matrix form (19). Hence, we have the

following corollary:

Corollary 3: There exists a finite set Y∗ of vectors

that correspond to matrices of form (19) where

|Y∗| ≤ KN + 1 and that set includes at least one

optimal solution to the JRSM problem (10) for every

γ ≥ 0.5

The structure of the optimal solution to JRSM in

Theorem 1 has direct implications about the solution

of the RMSC problem. In particular, based on the

duality framework detailed in Section III-B, for

γ = γ∗, i.e., the optimal Lagrange multiplier that

solves the dual problem (9), if the optimal solution

to JRSM with the structure in Theorem 1 uses a stor-

age equal to M in the capacity constraint of RMSC,

this solution is also optimal to the RMSC problem.

This implies that for certain storage capacities in the

RMSC problem, its optimal solution has the same

structure as in Theorem 1. In Section V, we fully

investigate the solution to the RMSC problem for

the general storage capacity M and its connection

to the solution of the JRSM problem.

5We show in Appendix E that for specific values of γ, there are

infinite number of solutions to the JRSM problem.

0 1 2 3 4 5 6
0

0.5

1

1.5

2
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γ
∗

1
Fig. 2. Here, N = 5, K = 4, and the popularity distribution

is Zipf with parameter α = 1.

V. OPTIMAL SOLUTION TO RMSC

A. Optimal Solution of RMSC in Terms of Optimal

JRSM Solution

Assuming that the optimal dual parameter γ∗

is known, we derived structures in the minimizers

of the Lagrangian or equivalently in the optimal

solution of JRSM. The derived structures limited

the search space for the optimal JRSM solution to

KN + 1 vectors specified by Theorem 1. In this

section, we derive the optimal solution to RMSC by

building on the results we derived for the solution

of JRSM in Theorem 1. For that, let us define two

sets as follows:

Definition 1: SetsM andR are finite sets defined

by storage values {m(y) | y ∈ Y∗} and expected

rates {r(y) | y ∈ Y∗}, respectively.

To characterize the solution of RMSC, we take the

following two steps. First, we assume that set Y∗

and consequently set M are known. Based on this

assumption, we derive the optimal dual parameter

γ∗ as a function of storage capacity M in the

primal problem. Second, we use the derived γ∗-M
relationship to find set Y∗ and derive the optimal

solution to RMSC.

Lemma 3: The optimal dual parameter γ∗ and the

storage capacity M in the primal RMSC problem

satisfy the following:

1) Parameter γ∗ is non-increasing in M ;

2) For certain storage capacities M , a continuum

of dual parameters γ∗ are optimal;
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3) For every two consecutive values M1,M2 ∈
M,M1 < M2, any M ∈ [M1,M2] leads to

the same dual optimal parameter γ∗.

Proof: See Appendix D.
Lemma 3 implies a stairwise relationship between
the optimal dual parameter γ∗ and the storage
capacity M in the primal problem. An illustration
of this relationship is shown in Fig. 2. The fact
that γ∗ is non-increasing in M is in agreement
with the interpretation of the Lagrange multiplier
γ∗ as the (relative) price per unit of storage [22]: as
more storage becomes available, the storage price
remains the same or decreases. The second point in
the lemma corresponds to the vertical line segments
in Fig. 2. Based on Definition 1, set M which is
derived from Y∗ is finite and has at most KN + 1
members. However, γ is a continuous variable and
for every γ ≥ 0 there is an optimal solution to
JRSM in Y∗. Hence, an interval of γ values must
map to the same M . Third, a range of values
of M are mapped into the same γ∗. Notice that
parameter M in the primal problem can take any
nonnegative value, while M is a set of discrete
values and is of finite size. Since every M ≥ 0
corresponds to at least one optimal dual parameter
γ, then a continuum of values for M must map
to the same γ∗. We show that parameter γ∗ and
the two solutions y1,y2 ∈ Y

∗ that lead to the two
endpoints (m(y1), γ

∗) and (m(y2), γ
∗) of the line

segment are related by γ∗ = r(y1)−r(y2)
m(y2)−m(y1)

. Notice

that m(y1), m(y2) ∈ M and r(y1), r(y2) ∈ R. In
particular, if we sort members of M in increasing
order as 0 = M0 < M1 < M2 < . . . < Ml = N ,
then rates Ri that correspond to storage values Mi

follow ordering K = R0 > R1 > . . . > Rl = 0.
Hence

γ∗(M) =

{

[ Ri−Ri+1

Mi+1−Mi
, Ri−1−Ri

Mi−Mi−1
], M = Mi

Ri−1−Ri

Mi−Mi−1
, Mi−1 < M < Mi

with γ∗(M0 = 0) = [K−R1

M1
,+∞] and γ∗(Ml =

N) = [0,
Rl−1

N−Ml−1
].

The next theorem determines the relationship

between the optimal solution of RMSC and the

optimal solution of JRSM which was derived in

Theorem 1.
Theorem 2: The RMSC problem (7) has an opti-

mal solution

y∗RMSC(M)=

{

y∗JRSM(M), M ∈M
Mu−M
Mu−Ml

y∗JRSM(Ml)+
M−Ml

Mu−Ml
y∗JRSM(Mu), M 6∈M

(20)

where y∗JRSM(m) is the optimal solution of JRSM of

the form in Theorem 1 that uses storage m, and Ml

and Mu are the largest element smaller than M and

smallest element larger than M in M, respectively.

Proof: See Appendix E

Optimality of Memory Sharing: Theorem 2

essentially extends a result known for the optimal

solution of RMSC for uniform demands to the

general case where demands can be nonuniform.

To elaborate, it has been shown that for uniform

demands, if M ∈ {1, N
K
, 2N

K
, . . . , K N

K
}, then the

optimal solution of RMSC is in the form in (19)

for some s∗ ∈ [K] and n∗ = N [15]–[17].

In particular, for uniform demands Muniform =
{0, N

K
, 2N

K
, . . . , K N

K
}6. For other values of M , the

optimal solution could be obtained by memory shar-

ing between the two values of storage in Muniform

closest to M . Theorem 2 shows that the same result

is valid for nonuniform demands except for the

fact that n∗ might be any value between 0 and N ,

depending on the popularity distribution of files. As

a result, we propose the following terminology:

Definition 2: For a given number of caches and

popularity distribution of files, we call set M the

set of base-cases of the RMSC problem.

Based on Theorem 1, for base-cases of RMSC,

there exists an optimal solution which is integral.

Also, from Theorem 2, for other storage capacities,

the optimal solution to RMSC can be obtained

by memory sharing between the solutions of two

certain base-cases.

B. Algorithm to Derive M

We derive an algorithm with a worst-case com-

plexity of O(K2N2) to find set Y∗ and consequently

M for any given number of caches and popularity

distribution of files. WithM determined, Theorem 2

analytically solves the RMSC problem for any cache

capacity.

To find Y∗, we need to search over the KN + 1
possibilities for y∗ of form (18). For each such

vector y, the storage it uses can be written as a

convex combination of the storage used by two

other vectors y1 and y2 that satisfy m(y1) ≤ m(y)
and m(y2) ≥ m(y). In other words, m(y) =
m(θy1+ (1− θ)y2), 0 ≤ θ ≤ 1.7 If for such y1,y2,

we further have r(y) ≥ m̃(y), then y does not

belong to Y∗. Hence, by removing such vectors

form the KN + 1 possibilities, the remaining set

6In the case of M = 0, we have n∗ = 0 for the optimal RMSC

solution.
7except for the two vectors with m(y) ∈ {0, N}.
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Algorithm 2 Procedure to Determine the Set of

Base-Cases M

1: procedure BASE(K,N, {pn})
2: # Calculate Storage and Rate for the KN+1

matrices of form (19)

3: Y0 ← 0N×(K+1), Y0(1 : N, 0) ← 1, M0 ←
0, R0 ← K

4: for s = 1, . . . , K do

5: for n = 1 : N do

6: i← (s− 1)N + n
7: Yi ← 0N×(K+1), Y0(n+ 1 : N, 0)←

1, Yi(1 : n, s)← 1
8: Mi ← m(Y )
9: Ri ← r(Y )

10: end for

11: end for

12: (M,R, Y ) ← sortM(M,R, Y ) # relabel

(Mi, Ri, Yi) tuples in increasing order of Mi

13: # Build M, R and Y by keeping solutions

that outperform memory sharing between other

cases

14: (Y0,M0,R0)← (0N×(K+1), 0, K)
15: c← 0
16: for i = 1, . . . , NK + 1 do

17: for j = i+ 1 : NK + 1 do

18: Rmsh ←
Mj−Mi

Mj−Mc
Rc +

Mi−Mj

Mj−Mc
Rj

19: if Ri < Rmsh then

20: c← c+ 1
21: (Yc,Mc,Rc)← (Yi,Mi, Ri)
22: break

23: end if

24: end for

25: end for

26: end procedure

of vectors constitutes Y∗. The BASE procedure in

Algorithm 2 implements this process by starting

from Y with all entries in the first column equal

to 1. This correspond to storage 0 and rate K
and belongs to Y∗. It then proceeds to the next y

with the smallest storage value. It checks whether

it outperforms memory sharing between the y that

is already in Y∗ with the largest storage and every

remaining vector that uses more storage compared

to y. If that is the case, it adds the new vector to

Y∗, otherwise drops the vector and proceeds to the

next vector.

Fig. 3 shows the expected delivery rate of the

Fig. 3. The effect of cache size on expected delivery rate

and the amount of storage used to cache subsets of files that

are exclusively stored in subsets of caches with cardinalities

1, . . . ,K for K = 5, N = 10. Here, the popularity of files

follows a Zipf distribution with parameter 1.4.

proposed method versus the cache capacity for a

nonuniform distribution of files that follows a Zipf

density with parameter 1.4. The expected rate is

once calculated based on the solution obtained by

Algorithm 2 and once by solving RMSC numeri-

cally. We observe that the resulting optimal rates

are in complete agreement. Fig. 3 also shows the

amount of storage used to cache subsets of files

that are exclusively stored in subsets of caches with

different cardinalities s ∈ [K]. In other words, for

each s, it shows Qs =
∆ ∑N

n=1
s
K
yns as a function of

the cache capacity. As we expect from our analysis,

either one or two values of Qs can be positive for

each choice of M .

C. Numerical Exploration

Fig. 4 shows the joint effect of the nonunifor-

mity of the file request probabilities and the cache

size M . The nonuniformity of the probability mass

function is controlled by parameter α of Zipf dis-

tribution. Fig. 4a shows the expected rate of RMSC

for 0 ≤ α ≤ 2 normalized by the expected rate of

SCC for the corresponding value of α when the the

placement for uniform demands is used. This nor-

malization puts the curves for different cache sizes

in the same scale for better visual clarity and more

significantly makes the curves more interpretable.

In particular, we observe that for a fixed cache

size, the normalized expected rate remains almost
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equal to 1 as α is increased from 0 up to some

threshold value. In other words, the optimal the

delivery rate for a slightly nonuniform popularity

distribution is almost identical to the delivery rate

given by the placement that treats the files as if

they were uniformly popular. The threshold value

of α depends on the available cache capacity. In

general, as the Zipf distribution gets more heavy-

tailed (smaller α) the normalized rate gets closer

to 1. Fig. 4b shows the expected delivery rate of

RMSC versus cache size for different values of α.

Consistent with our previous observation, for heavy-

tailed popularity distributions, like the cases with

α = 0, 0.5, 0.75, the optimal delivery rates are close

to each other and are only different when cache

storage is scarce (M/N ≤ 0.25).

Comparison to the caching scheme of [14]:

Reference [14] also proposed the use of a two-group

or three-group strategy for the caching of files with

nonuniform demands. Fig. 5 compares the delivery

rates obtained by RMSC to those obtained by [14].

Accordingly, Table II provides the groupings of the

files made by the two techniques, where n∗ and N1

represent the index of the last popular files given

by RMSC and [14], respectively.8 Also, R∗ and R1

represent the respective expected delivery rates of

the two techniques. The superior performance of

RMSC is evident in both Fig. 5 and Table II. In

Table II, one observes that the set of popular files

given by RMSC and [14] are identical for specific

set of problem parameters but the delivery rates

are different. This is because despite the identical

grouping of files, the placement of the popular files

and the delivery algorithms are still different for the

two techniques. In particular, [14] follows a ran-

domized placement algorithm while RMSC uses a

deterministic placement technique. The randomized

algorithm simplifies the placement at the expense of

a higher delivery rate.

Comparison to the information theoretic outer

bound: Also plotted in Fig. 5 are two lower-bounds

on the expected delivery rate of nonuniform de-

8For the caching technique in [14], it is possible for N1 to be

smaller than M . In Table II, this is the case for M = 4 (M/N =
0.1). In such cases, part of the memory would remain unused if only

the popular files were to be cached. In such a scenario, the authors

suggest that each cache stores the entirety of the first M files, and if

M is not an integer, use the remaining M − ⌊M⌋ capacity for the

partial caching of file ⌊M⌋ + 1. In this scenario, uncoded messages

are used to deliver the files that are not fully cached. For more details

refer to [14, Section V].
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Fig. 4. Joint effect of cache size and nonuniformity of the

file request probabilities on the expected delivery rate. In (a),

the expected rates are normalized by the expected rate of

the delivery algorithm SCC when the placement for uniform

demands is used instead of the optimal placement. Here K = 4
and N = 40.

mands which are reported in [14, Theorem 1] and

[18, Theorem 2]. The lower-bound in [18, Theo-

rem 2] is over the caching schemes with uncoded

placement of content. Since the SCC algorithm re-

lies on uncoded placement of content, the bound in

[18, Theorem 2] must hold for the expected delivery

rate of RMSC. The gap between the lower-bound in

[18, Theorem 2] and the expected rate of RMSC is

small in general, suggesting that the performance of

the RMSC is close to the optimal performance for
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Fig. 5. Comparison of the delivery rates of RMSC and

method of [14] with the information theoretic lower-bounds

for different parameters α of Zipf distribution. In all cases,

N = 40.

TABLE II. Comparison of sets of popular files of RMSC and

[14] and the resulting rates. In all cases N = 40.

α M M/N n∗ N1 R1/R
∗

0.25
4 0.1 40 0 1.1192

16 0.4 40 40 1.3056

32 0.7 40 40 1.2753

0.5
4 0.1 16 2 1.0424

16 0.4 40 32 1.3732

32 0.7 40 40 1.2753

0.75
4 0.1 8 3 1.0059

16 0.4 40 20 1.2063

32 0.7 40 40 1.2753

1
4 0.1 4 3 1.000

16 0.4 22 14 1.014

32 0.7 38 26 1.047

coded caching with uncoded prefetching of content.

More specifically, one can make the following two

observations. First, for a fixed cache size, this gap

increases as the file popularity distribution becomes

more nonuniform (larger α). Second, for a fixed

value of α, this gap shrinks and approaches zero as

M/N increases. The existence of this performance

gap is due to the sub-optimality of the SCC pro-

cedure as the delivery algorithm that we explore in

detail in the discussion section that will follow.

For completeness of our numerical exploration,

we also include the lower-bound derived in [14,

Theorem 1] in Fig. 5. Unlike [18, Theorem 2], the

bound in [14, Theorem 1] applies to all caching

schemes regardless of whether coded or uncoded

prefetching is used. However, we found this bound

to be loose in general. This can be seen at the

extreme case of M/N = 0, where the minimum

amount of information that can be sent over the

channel is equal to the number of distinct files

requested. Yet, we see that the lower-bound in [14,

Theorem 1] is considerably smaller than this value,

suggesting that the bound is loose. Notice that the

bound in [14, Theorem 1] is derived to prove order-

optimality of the caching scheme proposed in [14]

and is not guaranteed to be a tight bound on the

optimal rate.

Discussion of the performance gap to the

information-theoretic lower-bound: The existence

of the gap between the expected rate of RMSC

and the lower-bound in [18, Theorem 2], if not

fully, is at least partially caused by the insensi-
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tivity of the SCC algorithm in Algorithm 1 to

the presence of duplicate requests in the demand

vector. In other words, if multiple caches request

identical files, it still delivers them as if the files

were distinct. For instance, consider the case that

M/N = 0 and all caches request the same file.

In that case, no side information is available at

the caches and all requests must be delivered by

uncoded messages. The SCC algorithm delivers the

requests by transmitting the requested file K times.

This is clearly suboptimal, as in this case it suffices

to transmit the single file requested by all caches

only once. This inefficiency of the original SCC

algorithm for redundant requests becomes more

complex to characterize for M > 0, but it has

been thoroughly investigated in the literature [24],

[25]. In particular, a modified version of the SCC

algorithm was proposed in [25, Section IV.B and

Appendix C.A], which resolves this inefficiency

and is shown to achieve the optimal memory-rate

tradeoff for the case of uniform demands when

uncoded placement is used [25]. More specifically,

for any given demand vector d, the modified SCC

algorithm first chooses a set of leader caches U
that have the property that they have all requested

distinct files in d. Hence, the number of leader

caches is between 1 and K depending on d. Then,

contrary to Algorithm 1, which greedily transmits

the binary sums ⊕k∈SX
dk
S\k for every S ⊂ [K], the

modified algorithm transmits the binary sum for S
only if S ∩ U 6= ∅. The authors prove that with

extra processing at non-leader caches, the messages

transmitted by the modified SCC algorithm are

enough for retrieving all the requested files at the

caches. This difference between the original and

modified SCC algorithms can explain the behavior

of the performance gap in Fig. 5. In particular, as

M/N increases, the portion of bits cached at subsets

S ⊂ [K] with large |S| increases. At the same

time, larger |S| implies a higher probability that

S includes at least one leader cache. Hence, the

amount of information transmitted similarly by the

original and modified SCC algorithms increases as

M/N increases. As a result, the sub-optimality of

the SCC algorithm will have a minimal effect on the

delivery rate and the gap of the rate of RMSC to the

lower-bound shrinks as M/N increases.9 Similarly,

for a fixed M/N ratio, as α increases, more du-

plicate requests for the more popular files occur in

the demand vector due to their considerably higher

probability of request. Effectively, this reduces the

number of leader caches for the different demand

vectors on average. By reducing the number of

subsets S : S ∩ U 6= ∅, this directly translates into

the necessity of transmission of a smaller number of

coded messages, and therefore, a larger gap between

the performance of the original and the modified

SCC algorithms. This analysis explains why the gap

between RMSC and the lower-bound increases as α
increases.

VI. CONCLUSION AND FUTURE WORK

In this paper, we applied the structured clique

cover delivery algorithm that was proposed for

decentralized coded caching to deliver files with

nonuniform request probabilities. We fully char-

acterized the structure of the optimal placement

parameters. We showed that for a finite set of cache

capacities, called base-cases, the optimal placement

follows the two group strategy that does not cache a

subset of less popular files, but treats the other files

selected for caching identically regardless of their

popularities. A polynomial time procedure was also

proposed to derive this set of cache capacities. We

further showed that the optimal placement param-

eters for other storage capacities can be obtained

by memory sharing between certain base cases. In

this scenario, a grouping of files into two or three

groups is optimal.

Motivated by our numerical results as well as

the fact that for uniform demands, the modified

SCC algorithm proposed in [25] results in the ex-

act memory-rate tradeoff for caching with uncoded

prefetching, it is worthwhile to explore whether an

analysis similar to what we presented in this paper

can characterize the optimal placement for coded

caching with the modified SCC algorithm of [25]

for delivery. Furthermore, it is of interest to see how

the rate of such a caching scheme compares to the

information-theoretic lower-bound on the expected

delivery rate of caching with uncoded prefetching.

9A similar trend can be seen in [25, Fig. 5a] where the gap between

the expected rates of the SCC algorithm and the (optimal) modified

SCC algorithm vanishes as M/N increases, for the case of uniform

demands.
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APPENDIX A

PROOF OF PROPOSITION 1

Proof: Assume that there exists an optimal
placement P∗ of files for which there exist distinct
subsets S1 and S2 : |S1| = |S2| such that xn

S1
6= xn

S2
.

Since the popularity of files is identical for the
different caches, the delivery rate remains the same
if we use any permutation perm(k) of the cache
labels in the placement parameters {xn

S}S⊂[K]. We
denote the placement over the permuted cache labels
by P∗

perm. More specifically, we relabel cache k to

perm(k) for k ∈ [K], and use the placement pa-
rameters over the relabeled caches. In particular, if
under P∗ we have xn

S

∣

∣

P∗ = c, then under P∗
perm, we

set xn
perm(S)

∣

∣

P∗
perm

= c, where perm(S) = {perm(k) |

k ∈ S}. There exists K! permutations of K cache
labels, leading to placements P∗

perm,i, i = 1, . . . , K!,
all with the optimal delivery rate R∗. Hence:

R∗=
1

K!

K!
∑

i=1

r(x)
∣

∣

P∗

perm,i

=
1

K!

K!
∑

i=1

∑

S:S⊂K
S6=∅

Ed

(

max
k∈S

xdk

S\k

∣

∣

P∗

perm,i

)

=Ed









∑

S:S⊂K
S6=∅

1

K!

K!
∑

i=1

max
k∈S

xdk

S\k

∣

∣

P∗

perm,i









≥ Ed









∑

S:S⊂K
S6=∅

max
k∈S

1

K!

K!
∑

i=1

xdk

S\k

∣

∣

P∗

perm,i









= Ed









∑

S:S⊂K
S6=∅

max
k∈S

x̄dk

S\k









,

where we defined x̄n
S = 1

K!

∑K!
i=1 x

n
S

∣

∣

P∗
perm,i

and used

the convexity of the max function. Notice that the

RHS is the expected rate when for each file n and

subset S, we use the average of the corresponding

placement parameters over all permutations of the

optimal placement. Because of symmetry, x̄n
S has

the property that x̄n
S1

= x̄n
S2

if |S1| = |S2|. From

the facts that i) the LHS is the optimal rate, ii) the

placement parameters x̄n
S use the same amount of

cache storage as P∗ based on eq. (2) and iii) the sum

of x̄n
S over all subsets S ⊂ [K] is 1, we conclude

that the rate in the RHS must also be equal to R∗.

This implies that there exists an optimal placement

with the property that xn
S = xn

s for all S : |S| = s,

which completes the proof.

APPENDIX B

REVIEW OF SUBMODULAR FUNCTIONS AND

ANALYSIS

We review the definition of a submodular set

function and present the results that are related to

our analysis in Section IV. An extended discussion

can be found in [26].

Definition 3: Let V = {1, . . . , p} be a set of p
objects. For w ∈ R

p, Supp(w) ⊂ V denotes the

support of w, defined as Supp(w) = {j ∈ V, wj 6=
0}.

Definition 4: (Submodular function) A set-

function F : 2V → R is submodular if and only if,

for all subsets A,B ⊂ V , we have F (A)+F (B) ≥
F (A ∪B) + F (A ∩ B).

Definition 5: (Lovász extension) Given a set-

function F such that F (∅) = 0, the Lovász exten-

sion f : Rp
+ → R of F is defined as

f(w)=

p
∑

k=1

wjk [F ({j1, . . . , jk})−F ({j1, . . . , jk−1})] ,

where w ∈ R
p
+, (j1, . . . , jp) is a permutation such

that wj1 ≥ . . . ≥ wjp .

Consider vector δ ∈ {0, 1}p as the indicator

vector for subset A ⊂ V , i.e, for i ∈ V , δi = 1
if and only if i ∈ A. Consequently, A is the

support of δ. Notice that for the Lovász extension,

f(δ) = F (Supp(δ)). Hence, f can be seen as an

extension of F from vectors in {0, 1}p to all vectors

in R
p
+. The Lovász extension f has the following

properties: 1) it is piecewise-linear, 2) when F is

submodular, f is convex, and 3) minimizing F
over subsets, i.e., minimizing f over {0, 1}p, is

equivalent to minimizing f over [0, 1]p.
Definition 6: (Stable Sets) A set A is stable if it

cannot be augmented without increasing F , i.e., if

for all sets B ⊃ A, B 6= A, then F (B) > F (A).
Definition 7: (Separable Sets) A set A is sep-

arable if we can find a partition of A into A =
B1∪. . .∪Bk such that F (A) = F (B1)+. . .+F (Bk).
A set A is inseparable if it is not separable.

Proposition B.1: [26, Section 4.1] For a set of

objects V and a nonnegative set-function d(·), let

Ω(w) =
∑

G⊂V d(G) ‖wG‖∞ for w ∈ R
p, where

wG is the subvector of w that only includes entries

corresponding to the elements in set G. Function

Ω(w) is a norm if ∪G,d(G)>0G = V and it corre-

sponds to the nondecreasing submodular function

F (A) =
∑

G:A∩G 6=∅ d(G).



0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2946361, IEEE
Transactions on Information Theory

17

Proposition B.2: [26, Proposition 2]) The ex-

treme points of the unit ball of Ω are the vectors
1

F (A)
v, with v ∈ {−1, 0, 1}p, Supp(v) = A and A

a stable inseparable set.

APPENDIX C

PROOF OF THEOREM 1

To prove Theorem 1, we first prove the following

lemma.

Lemma C.1: The extreme points of the region

[fc ≤ t]+ defined by (12b) and (12d) are the origin

and points of the form

t
K−s
s+1

[1− (1− P (A))s+1]
v, (21)

where vector v ∈ {0, 1}KN , Supp(v) = A, and set

A is a subset of [N ](s−1)N for an s ∈ [K − 1].
Proof: To obtain the extreme points of [fc ≤

t]+ we begin with the extreme points of the norm-

ball fc ≤ t and remove the ones that have neg-

ative coordinates as they do not belong to the

non-negative orthant. Further, [fc ≤ t]+ has extra

extreme points that result from the intersection of

fc ≤ t and planes yns = 0. Norm-ball fc is

symmetric w.r.t. every plane yns = 0 and hence

the extreme point resulting from the intersection

of the norm-ball and such a plane will either be

an extreme point of the norm ball or the midpoint

of two extreme points of the norm-ball with yns
coordinates of +1 and −1. In the latter case, the

yns coordinate of the extreme point of [fc ≤ t]+ will

be 0. Either case, Supp(v) will still be a subset of

[N ](s−1)N for an s ∈ [K−1]. If there is no nonzero

entry left in the coordinates of the extreme point of

the intersection, which is the case when all planes

yns = 0 intersect, the resulting point is the origin.

We now prove Thereom 1.

Proof of Theorem 1: At optimality, we have

fc(ỹ
∗) = t∗, as otherwise the objective can be

decreased by replacing t∗ with fc(ỹ
∗), which con-

tradicts the optimality of t∗.
The objective function (12a) calculated at

an extreme point of form (21) with nonzero
parameters for s = so and A is [1 +∑

n∈g−1(A)(so/K−1+α∗
n)γ−Kpnα∗

n

(K−so)/(so+1)(1−(1−P (A))so+1 ]t, which is a factor of

t. Denote the denominator of (21) by tu(s, A), i.e.,
tu(s, A) = K−s

s+1
[1 − (1 − P (A))s+1]. Notice that

for t = tu(so, A), the extreme points of [fc ≤ t]+

are of form yns = 1 for s = so, n ∈ g−1(A), and

yns = 0 otherwise. These parameters satisfy (12b)-
(12d) and are feasible. Hence, for any so ∈ [K − 1]
and A ⊂ [N ](so−1)N , we have

[

1+

∑

n∈g−1(A)(
so
K
− 1 + α∗

n)γ −Kpnα
∗
n

K−so
so+1 (1− (1− P (A))so+1

]

tu(so, A)

≥ t∗+
N
∑

n=1

K−1
∑

s=1

[(
s

K
−1+α∗

n)γ −Kpnα
∗
n](y

n
s )

∗

=

[

1+

∑

n∈g−1(A∗)(
s∗

K
−1+α∗

n)γ−Kpnα
∗
n

K−s∗

s∗+1 (1− (1− P (A∗))s∗+1

]

t∗

where the equality holds as the extreme points of

[fc ≤ t∗]+ are in the form of (21), and one of

them, say ȳ, with s = s∗ and A = A∗ has the

smallest objective (12a) among the extreme points.

Since the inequality holds for every so ∈ [K − 1]
and A ⊂ [N ](so−1)N , it also holds for s = s∗ and

A = A∗ in the LHS. This yields tu(s∗, A∗) ≥ t∗ and

equivalently t∗

tu(s∗,A∗)
≤ 1. As a result, the extreme

point ȳ also satisfies (12c) and is feasible to (12).

Given that it has the smallest objective among the

extreme points of [fc ≤ t∗]+, it is optimal, i.e.,

ȳ = y∗.

Now, the objective
[

1 +
∑

n∈g−1(A∗)(
s∗

K
−1+α∗

n)γ−Kpnα∗
n

K−s∗

s∗+1
(1−(1−P (A∗))s∗+1

]

t∗ is linear

in t∗. Since t∗ ≤ tu(s∗, A∗) and t∗ = tu(s∗, A∗)
is achievable, at optimality we either have

t∗ = 0 or t∗ = tu(s∗, A∗), depending on the

sign of the coefficient of t∗. In the former

case, we either have cached all files, i.e.,

∀n : (ynK)
∗ = 1, (yns )

∗ = 0, s < K, or no file is

cached at all, i.e., ∀n : (yn0 )
∗ = 1, (yns )

∗ = 0, s > 1,

as in both cases the rate fc due to delivery of the

content cached in at least one cache is 0.

In the case of t∗ = tu(s∗, A∗), for s ∈ [K−1] we

have (yns )
∗ = 1, s = s∗, n ∈ g−1(A∗) and (yns )

∗ = 0
otherwise. Together with Lemma 1, this concludes

that at optimality (zn)∗ = 1−
∑K−1

s=1 (yns )
∗ ∈ {0, 1}.

Hence, when (zn)∗ = 1 we have (yn0 )
∗ = 1 and

(ynK)
∗ = 0 if Kpn < γ and (yn0 )

∗ = 0 and (ynK)
∗ = 1

if Kpn ≥ γ.

APPENDIX D

PROOF OF LEMMA 3

To prove Lemma 3, we first show the following

result:

Lemma D.1: The capacity constraint (7b) in

RMSC is satisfied with equality at optimality, i.e.,

no storage remains unused.
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Proof: Assume that for storage capacity M ,

there is an optimal solution y∗ with m(y∗) + ǫN =
M , where ǫ > 0. Then, construct solution y′ with

y′ns = (1 − ǫ)yns , s < K and y′nK = (1 − ǫ)ynK + ǫ.
Essentially, y′ splits every file into two parts of

lengths (1−ǫ)F and ǫF . It uses y∗ for the placement

of the parts of length (1− ǫ)F and caches the other

ǫF parts on every cache. This uses (1− ǫ)m(y∗) +
ǫ ≤ (1 − ǫ)M + ǫN < M of storage, which

implies that the storage constraint is satisfied for

y′. However, r(y′) = (1− ǫ)r(y∗) + ǫ× 0 < r(y∗).
This contradicts the optimality of y∗. Hence, the

optimal solution of RMSC must satisfy the capacity

constraint by equality.

Proof of Lemma 3: The first property fol-

lows from the shadow price interpretation of the

Lagrange multipliers for inequality constraints [22,

Section 5.6]. In particular, let denote the optimal

solutions to (7) with storage budgets M1 and M2 <
M1 by y∗

1 and y∗
2. Then, r(y∗

1) ≤ r(y∗
2). Since

duality gap is zero, the primal and dual objectives

are equal, this implies r(y∗
1) + γ∗

1m(y∗
1) ≤ r(y∗

2) +
γ∗
2m(y∗

2). Hence, γ∗
1 ≤ γ∗

2 as otherwise r(y∗
1) +

γ∗
2m(y∗

1) < r(y∗
1) + γ∗

1m(y∗
1) ≤ r(y∗

2) + γ∗
2m(y∗

2),
which contradicts optimality of y∗

2.

The second property follows from the fact that the

set γ ≥ 0 in the Lagrangian minimization problem

(8), or equivalently in JRSM, is continuous, while

set Y∗ (orM) is finite. Hence, a range of values of

γ must map to the same storage M ∈ M and they

are all dual optimal.

To prove the third property consider y1,y2 ∈ Y
∗

that correspond to two consecutive storage values

M1 = m(y1) and M2 = m(y2). Without loss of

generality assume that M1 < M2. Clearly, M 6∈ M
for any M ∈ (M1,M2). Now, notice that i) each

capacity M must correspond to some γ∗ in the dual

problem, ii) for each γ ≥ 0 there is an optimal

solution to JRSM in Y∗ and a corresponding storage

value in M, hence none of those solutions uses

an amount of storage M 6∈ M and iii) based on

Lemma D.1, at optimality all the available storage

must be used, and iv) based on property 1, γ∗

is nondecreasing in M . These point conclude that

the optimal dual parameter for any M ∈ [M1,M2]
must belong to {γ∗

M1
, γ∗

M2
}, where γ∗

m represents the

optimal dual parameter for capacity m and based

on property 1, γ∗
M2
≤ γ∗

M1
. More specifically, point

(iv) requires γ∗
M = γ∗

M1
for M ∈ [M1,M

′] and

γ∗
M = γ∗

M2
for M ∈ (M ′,M2], for some M1 ≤

M ′ ≤ M2. However, we must have γ∗
M2

= γ∗
M1

as

otherwise for any γ∗
M2

< γ′′ < γ∗
M1

corresponds to

a value of M 6∈ M, which contradicts point (ii).

This concludes property 3, i.e., for two consecutive

values M1,M2 ∈ M,M1 < M2, all capacities

M1 ≤ M ≤ M2 correspond to the same dual

parameter γ∗. Further, we can derive the optimal

dual parameter for m(y1) ≤ M ≤ m̃(y2) as it

satisfies r(y1)+γ∗m(y1) = r(y2)+γ∗m(y2) = L∗.

Hence,

γ∗ =
r(y1)− r(y2)

m(y2)−m(y1)
. (22)

APPENDIX E

PROOF OF THEOREM 2

Proof: To prove Theorem 2, we consider two

cases:

Case I (M ∈M): This case is straightforward

because of the zero duality gap in the primal-dual

framework established in Section III-B. In particu-

lar, vector y∗
JRSM ∈ Y

∗ with m(y∗

JRSM) = M is

also optimal to RMSC. 10

Case II (M 6∈ M): To derive the optimal so-

lution of RMSC for M 6∈ M, we use Lemma 3. Let

y1,y2 ∈ Y
∗ be the solutions corresponding to the

two consecutive storage values m(y1), m(y2) ∈M
such that m(y1) < M < m(y2). Let γ∗ and L∗

be the corresponding optimal dual parameter and

Lagrangian value, respectively. Since m(·) is linear,

for any given storage m(y1) < M < m(y2), there

exists a convex combination of y1 and y2 that

uses storage M . We show that the same convex

combination also minimizes the Lagrangian for γ∗.

In that case, we are back to a case similar to Case

I, and the same argument used there requires the

convex combination to also optimize RMSC.
Consider yθ;y1,y2

=∆ θy1 + (1 − θ)y2 for 0 <
θ < 1. For the θ for which m(yθ;y1,y2

) = M ,
we need to show that yθ;y1,y2

minimizes the La-
grangian for γ∗. This is equivalent to showing

10A direct proof for optimality of y
∗
JRSM with m(y∗

JRSM) = M
for RMSC is as follows. Based on Lemma D.1, the optimal solu-

tion of RMSC satisfies the capacity constraint with equality. Now,

assume that y
∗
JRSM is not optimal for the RMSC problem. This

means that r(y∗
RMSC) < r(y∗

JRSM). However, since m(y∗
RMSC) =

m(y∗
JRSM) = M , this implies that r(y∗

RMSC) + γ∗m(y∗
RMSC) <

r(y∗
JRSM) + γ∗m(y∗

JRSM). The last result contradicts the optimality

of y
∗
JRSM for JRSM. Hence, y∗

JRSM must be optimal for the RMSC

problem.
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that r(yθ;y1,y2
) + γ∗m(yθ;y1,y2

) = L∗.11 Since

m(yθ;y1,y2
) = θm(y1)+(1−θ)m(y2), it is sufficient

to that r(yθ;y1,y2
) = θr(y1) + (1 − θ)r(y2) to

prove r(yθ;y1,y2
) + γ∗m(yθ;y1,y2

) = L∗. To show

r(yθ;y1,y2
) = θr(y1)+(1−θ)r(y2), notice that each

y ∈ Y∗ has nonzero parameters yns for at most two
values of s, one s = 0 and one s ≥ 1. Assume
that y1 and y2 have nonzero entries respectively
for s1 > 0 and s2 > 0 and possibly for s = 0. Let
n1 and n2 be the largest indexes n with nonzero yns1
and yns2 in the respective two solutions. Notice that
since yi ∈ Y

∗, having ynsi > 0 implies ynsi = 1. We
consider two cases of s1 6= s2 and s1 = s2. In the

former case, r(y1) = K
∑N

n=1 pny1
n
0 + K−s1

s1+1
(1 −

(1 −
∑n1

n=1 pn)
s1+1), r(y2) = K

∑N
n=1 pny2

n
0 +

K−s2
s2+1

(1 − (1 −
∑n2

n=1 pn)
s2+1) and r(θy1 + (1 −

θ)y2)) = K
∑N

n=1 pn(θy1
n
0 +(1−θ)y2

n
0 )+

K−s1
s1+1

(1−

(
∑n1

n=1 pn)
s1+1)θ + K−s2

s2+1
(1 − (

∑n2

n=1 pn)
s2+1)(1 −

θ) = θr̃(y1) + (1 − θ)r(y2). For the case of
s1 = s2 = so, since m(y1) < m(y2), we must
have n2 > n1. Hence, for the rates we have

r(y1) = K
N
∑

n=1

pny
n
0 1 +

K − so
so + 1

∑

g∈Gso+1

πg
so+1 max

n∈g
ynso1

= K

N
∑

n=1

pny
n
0 1 +

K − so
so + 1

∑

g∈Gso+1,g∩[n1] 6=∅

πg
so+1

r(y2) = K

N
∑

n=1

pny
n
0 2 +

K − so
so + 1

∑

g∈Gso+1

πg
so+1 max

n∈g
ynso2

= K

N
∑

n=1

pny
n
0 2 +

K − so
so + 1

∑

g∈Gso+1,g∩[n2] 6=∅

πg
so+1

and

r(θy1 + (1− θ)y2)

= K

N
∑

n=1

pn(θy
n
0 1 + (1− θ)yn0 2)

+
K − so
so + 1

∑

g∈Gso+1

πg
so+1 max

n∈g
θynso1 + (1− θ)ynso2

= K

N
∑

n=1

pn(θy
n
0 1 + (1− θ)yn0 2)

+
K − so
so + 1

∑

g∈Gso+1,g∩[n1] 6=∅

πg
so+1(θ + (1− θ))

+
K − so
so + 1

∑

g∈Gso+1,g∩[n1]=∅,g∩[n2−n1]n1
6=∅

πg
so+1(1− θ)

11The equivalence results from the fact that if r(yθ;y1,y2
) +

γ∗m(yθ;y1,y2
) < L∗, then y1 and y2 could not be optimal for

γ∗, which is a contradiction.

= θ



K

N
∑

n=1

pny1
n
0 +

K − so
so + 1

∑

g∈Gso+1,g∩[n1] 6=∅

πg
so+1





+ (1 − θ)



K
N
∑

n=1

pny2
n
0 +

K − so
so + 1

∑

g∈Gso+1∅,g∩[n2] 6=∅

πg
so+1





= θr̃(y1) + (1− θ)r(y2)

where we used the fact that if g ∩ [n1] 6= ∅, then
n2 > n1 implies g ∩ [n2] 6= ∅. This completes the
proof of the third feature as we now have

r(yθ;y1,y2
) + γ∗m(yθ;y1,y2

)

= θr̃(y1) + (1− θ)r(y2) + γ∗[θm̃(y1) + (1− θ)m(y2)]

= θ[r(y1) + γ∗m(y1)] + (1− θ)[r(y2) + γ∗m(y2)]

= θL∗ + (1− θ)L∗ = L∗.
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