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Abstract—With an aging power distribution infrastructure, it
becomes increasingly important for the next generation smart
grid to self-monitor its transmission lines. In this paper, we
propose a road-map towards achieving a self-reliant grid surveil-
lance using power line communications (PLC). To this end, we
exploit the principle that cable faults or degradations manifest
themselves as changes in the PLC channel conditions. In par-
ticular, by monitoring the channel transfer functions that are
already computed in legacy PLC receivers, we enable power
line modems with intelligent grid sensing abilities to identify
and assess cable anomalies using machine learning techniques.
Through simulations, we show that our proposed monitoring and
diagnostics solutions successfully empower power line modems to
independently detect and predict the extent of water-tree degra-
dations commonly seen in cross-linked polyethylene insulated
power cables.

I. INTRODUCTION

A smart-grid (SG) equips utility companies with com-
plete visibility and pervasive control over their assets and
services [1]. To this end, a consistent monitoring of the
power cable status is of crucial importance as a large part
of the power distribution system infrastructure is aging and
suffering from considerable underinvestment [2, Ch. 2]. An
ever increasing demand and congestion level is also making it
increasingly difficult to schedule circuit outages for routine
maintenance and upgrades [2, Ch. 2]. As a result, a non-
destructive on-line monitoring of the wiring infrastructure is
desirable to utility companies so that preemptive measures can
be taken to avoid a possible in-service failure in the grid [3,
Ch. 6].

Several online monitoring and diagnostics methods have
been developed and applied in the past, such as, bulk property
diagnostics based on dissipation factor measurements [4], as
well as localized degradation diagnostics based on reflec-
tometry or partial discharge tests [5], [6]. However, these
methods do not possess the ability to self-diagnose, i.e., the
results demand manual interpretation, and require the use of
external devices or additional sensors, which introduces extra
costs [3, Ch. 6]. Therefore, a self-sustainable infrastructure
that can constantly monitor its health and auto-diagnose faults
or degradations is more suitable in the context of SGs.

Considering these requirements, the use of power line
communications (PLC) for grid surveillance and diagnosis is
an attractive alternative or a supplement to legacy methods.

This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

PLC uses the existing power distribution infrastructure for
data communication, and PLC-based communication systems
have already been developed for power distribution automation
systems [7], [8]. In our work, we further extend its usage by
utilizing the deployed power line modems (PLMs) for grid
surveillance. The use of PLMs for network sensing have pre-
viously been achieved to determine the network topology [9],
or detect high- and low-impedance faults [10]. Furthermore,
the communication channel estimate, which is commonly
computed inside legacy PLMs, has also been used in the
past to detect and localize a fault [11], [12]. However, these
works are unable to monitor the status of the power line in
terms of identifying non-localized homogeneous degradations
or estimating the extent of degradation.

In this paper, we exploit the principle that any fault or
degradation causes distinctive changes in the broadband power
line communication (BB-PLC) channel frequency response
(CFR), which can be used not only to detect the presence
of a fault or degradation, but also determine the type of
degradation, whether localized or homogeneous, and further
estimate the extent of the degradation. However, the problem
is perplexed by changes in load conditions that also lead to
a change in the CFR. To counter this issue, we use machine
learning (ML) techniques, analogous to [11], to train a ma-
chine with varying degradation situations under different load
conditions, so that it is then able to automatically diagnose
a degradation anytime in the future. Note that ML-based
approaches have also been previously employed in [13], [14]
to enable automatic detection of faults by passively monitoring
cable voltage and current values.

For our investigation, we consider power lines with cross-
linked polyethylene (XLPE) cable insulations that are often
subjected to water-tree (WT) degradations [15]. However, our
methods can also be applied for diagnosis of alternative types
of degradations and faults as well.

Nomenclature: Throughout this paper, we use <(x) and
=(x) to indicate the real and imaginary parts of a complex
number x. We denote a uniform random distribution between
a and b as U (a, b).

II. MODELING WATER TREE DEGRADATION

We first describe our WT degradation modeling strategy,
including the cable aging profile that we use to emulate a
realistic cable degradation.
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Fig. 1. Aging profile of water tree degradation along a cable.

TABLE I
CABLE PARAMETERS [20]–[22], [23, P. 794]

Dielectric yield strength (Y ) 2× 107 Pa
Size of the free-volume voids (v0) 2.5× 10−28 m3

Diffusion constant of water into the dielectric (n0) 1.44× 104

Absolute permittivity (ε0) 8.8× 10−12 F/m
Relative permittivity of non-degraded XLPE (εPE) 2.3− 0.001j

Depolarization factor (D) 1
12

Absolute water content in the WT region (qw) 0.06
Conductivity of water (σw) 0.22 S

Mains frequency on the line (f0) 60 Hz

A. Cable Aging Profile

Widely deployed extruded cables with insulations like
XLPE are mainly degraded by electrical aging, i.e., WT
and electric treeing (ET) degradation [16]. In this paper, we
focus on monitoring WT degradation, which is an important
contributing factor to ET inception [17]. It has been shown that
many power lines exhibit near-uniform degradation across the
length after many years of service [18]. However, spots with
intensive water ingress and/or local defects (e.g., protruded
semiconductor coating, and voids), are breeding grounds for
salient localized WT degradations [19]. Thus, to faithfully em-
ulate a realistic degraded cable, we model the WT degradation
to be homogeneous along the cable with a degradation depth
yhomo, which is a portion of the total insulation thickness rinsul.
On top of this, we include a possible localized WT degradation
with a degradation depth ylocal (ylocal > yhomo) and a length
`wt, which may be present anywhere along the cable, as shown
in Fig. 1.

B. Effect of WT Degradation

The impact of WT degradation on the dielectric properties
of the XLPE insulation has already been investigated in the
literature [22], [24]. For the WT degraded region, i.e., the
shaded region in Fig. 1, the relative permittivity can be
computed as [24]

εWT = εPE

(
1 +

qw(εw − εPE)

D(1− qw)(εw − εPE)

)
, (1)

where εw is the permittivity of water that is given by εw =
81 − j σw

2πfε0
, with σw being the conductivity of water and f

being the frequency of operation. All other parameters of (1)
are tabulated in Table I along with the values used. We can then
compute the overall permittivity for any degradation depth y
of the the total insulation thickness rinsul as [22, Eq. 6.3]

εtotal =

(
γ

εWT
+

1− γ
εPE

)−1

, (2)

where the degradation severity is defined as γ , y/rinsul.
For the structure shown in Fig. 1, the section of cable with
localized WT degradation has γlocal = ylocal/rinsul, while for
other sections of that cable, γhomo = yhomo/rinsul. Further, the
homogeneous WT degradation depth incurred over time t can
be computed as [21]

yhomo =
3

√
1

Y

(
n0v0f0F 2ε0<{εw}

√
t3
)
, (3)

where F is the electric field strength (see Section III-D). The
remaining parameters are all listed in Table I along with their
values that we use in our model.

III. MODELING BB-PLC CHANNELS

In this section, we describe the BB-PLC channel modeling
technique that we use, including the cable characterization in
the form of its per-unit-length (PUL) parameters.

A. Channel Modeling Strategy

In order to accurately capture the effects of the insulation
dielectric property changes on the channel frequency response
with a given aging profile (e.g., Fig. 1), we choose the
bottom-up method for channel modeling [25], [26]. Each
section along the cable with the same degradation severity
can be viewed as a uniform line with electrically small cross-
sectional dimensions, where BB-PLC signals are transmitted in
a quasi-transverse-electromagnetic (quasi-TEM) propagation
mode. Hence, we use the transmission line theory, and in
particular, multiconductor transmission line (MTL) theory to
account for a general case of power lines with more than two
conductors [25]. For each section of a constant degradation
severity we model the channel using the MTL equations [27,
Chs. 1, 3], and finally concatenate all sections to obtain the
overall CFR between any two points of interest.

B. PUL Parameters Computation

CFR computation using MTL equations require the charac-
terization of the cables in the form of their PUL parameters
of resistance (R), inductance (L), capacitance (C), and con-
ductance (G) matrices. For power line cables consisting of N
conductors (N ≥ 2), each of the R, L, C, and G matrices are
of dimensions (N − 1)× (N − 1). By denoting the reference
conductor as the 0-th line and PUL resistance for the i-th line
as Ri (0 ≤ i ≤ (N−1)), we obtain each of the (i, j)th element
of R as [27, Eq. 3.12]

Rij= R0 +Rj , i = j, (4)
Rij= R0, i 6= j. (5)

Since the medium surrounding the conductors, in most
cases, is non-ferromagnetic with permeability of free space,
i.e., µ = µ0 = 4π×10−7 H·m−1, and since permittivity of the
surrounding medium is irrelevant in determining L, we deem
the surrounding medium to be free space for the computation
of L [27, Ch. 3]. Under such conditions, we apply the wide

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works.



TX RX

BE

BP1 BP2

BP

BP1’ BP2’

Fig. 2. An example of a PLC network topology, where a localized degradation
is present either in the section BP1-BP2 or BP1′-BP2′.

separation approximations for round conductors to get [27, Eq.
5.23]

Lij=
µ0

2π
ln

(
d20,j
r0rj

)
, i = j, (6)

Lij=
µ0

2π
ln

(
d0,id0,j
r0di,j

)
, i 6= j, (7)

where rj is the radius for the j-th conductor and di,j is the
separation distance between the ith and jth conductors.

For a general wire configuration with an inhomogeneous
surrounding medium, a numerical solver based on the finite
element method is required to solve the Laplace equation to
derive the C and G matrices [26]. However, we found this to
consume enormous amounts of time for PUL calculations for
various degradation severities. Therefore, to reduce complexity
of PUL computation, we assume a homogeneous surrounding
medium with a permittivity of εtotal. Under such conditions, we
can compute the capacitance and conductance matrices as [27,
Eq. 5.24]

C= µ0ε0< (εtotal)L
−1, (8)

G = µ0σL
−1, (9)

where σ is the conductance of the insulation, which can
be represented in terms of the complex permittivity as [26,
Eq. 7], [22]

σ = −2πfε0=(εtotal). (10)

Using (10) in (9), we get

G = −2πfµ0ε0=(εtotal)L
−1. (11)

Note that this simplification only leads to a faster PUL
computation and does not affect the operation of our proposed
solution. We then feed these PUL parameters into the open-
source channel generator tool of [26] to obtain CFRs of
different aging profiles and under varying load and network
topology conditions.

C. Grid Topology

Grid surveillance and diagnostics are conducted by the util-
ity company that already has knowledge of the grid topology.
Thus, we consider a static network topology as shown in
Fig. 2, where TX and RX indicate the locations of two SG
PLMs alternatively operating as a transmitter and a receiver,
respectively, BP is a branch point, and BE is an equivalent

TABLE II
PROPERTIES OF THE N2XSEY THREE-CORE CABLE [31]

Conductance separation (dcond) 15.8 mm
Conductance radius (rcond) 3.99 mm

Number of strands 19
Strand radius 0.915 mm

Copper conductance 5.96× 107 S/m
Maximum Rated Voltage (V0) 12 kV

branch termination load. Note that the network shown in Fig. 2
is only a part of the operating grid and the impedances seen by
the line at the nodes TX, RX, and BE are equivalent aggregated
load representations of a possibly more complicated grid
topology.

D. CFR Generation

Along with specifying the PUL parameters and the net-
work topology, CFR generation also requires the knowledge
of the wire configuration. We consider a symmetric three
conductor configuration; specifically, the XLPE multi-core ca-
ble N2XSEY from HELUKABEL with equidistant conductor
separations of d0,1 = d0,2 = d1,2 = dcond and equal conductor
radii r0 = r1 = r2 = rcond. All properties of the cable required
to compute the PUL parameters are also listed in Table II.

Next, we specify the severity of cable degradation in the
form of γhomo and γlocal. To determine a realistic limit for
γhomo associated with an aging profile, we apply t = tmax =
30 years in (3), which is the life expectancy of a service-aged
cable [3, Ch. 6]. Further, for the computation of F in (3), we
consider the electric field at a distance rcond from the center
of the conductor, where the electric field strength is at its
maximum and is most prone for WT growth initialization [28].
By applying approximate cylindrical geometry as [28, Eq. 1],
we get

F =
V0

rcond ln
(
dcond
2rcond

) . (12)

With (3) and (12), we can thus compute max(γhomo) = 0.0481
at tmax = 30 years. Therefore, we let 0 ≤ γhomo ≤ 0.05 in
our evaluations. In order for a localized WT degradation to be
noticeable, we further limit γlocal > 0.1.

Finally, we use the network topology shown in Fig. 2, with
the segment lengths of TX−BP, BP−RX, and BP−BE to be
500 m, 500 m, and 100 m, respectively. Using these values,
we generate CFRs with a frequency resolution of 24.414 kHz
in accordance with the HomePlug Green PHY and IEEE 1901
Access specifications [29], [30].

IV. GRID SURVEILLANCE METHODOLOGY

In this section, we present the remote grid surveillance and
auto-diagnosis procedure that we propose for self-reliant grid
diagnostics.

A. Surveillance Procedure

We use the CFR estimated at the PLMs to continuously
monitor the status of the line. In the first step, we pass every
CFR into a degradation-type classifier to identify whether a
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Fig. 3. Proposed road-map for a self-reliant grid surveillance.

localized WT degradation is present on the main line (either
between TX−BP or BP−RX). If the localized WT degradation
is present on BP − BE, we rely on other PLMs for whom
the degradation lies on their main line. If no salient localized
WT degradation is identified, we classify them as cables with
homogeneous degradation, and predict the degradation severity
γhomo along the cable. On the other hand, if a localized WT
degradation is identified, we assess its condition by predicting
the associated γlocal and `wt. We let the PLMs perform all
these actions independently by using ML techniques described
in Section IV-B.

B. Constructing the Classifier and Predictor

We use ML classifiers for degradation-type classification
and ML regressors for the degradation condition prediction.
We apply supervised learning techniques where we train our
machine with the CFRs generated under different load condi-
tions as well as their known aging profiles. We use the adap-
tive boosting (AdaBoost) algorithm for classification, which
exhibits extraordinary adaptability in iteratively consolidating
multiple weak learners into a strong learner without requiring
manual tuning of machine parameters [32]. For the same
advantages, we also use least-squares boosting (LSBoost) for
regression.

The performance of classification and regression relies
significantly on the features that are chosen to train the
machine. To determine potentially useful features, we generate
intact and degraded CFRs for different degradation types,
load conditions, and degradation severity. As an anecdotal
observation, Fig. 4 shows the CFRs of a cable with homo-
geneous WT degradation with γhomo = 0.025, and localized
degradation with γlocal = 0.5 under a load condition where
the impedance connected between each pair of conductors
at the nodes TX, RX, and BE are all equal to 50 Ω. It is
noticeable that a localized WT degradation causes increased
attenuation at higher frequencies. Through comparisons of
CFRs of a localized degradation using different combinations
of `wt and γlocal, we discovered that this trend holds, and the
attenuation also increases with γlocal and `wt. Therefore, we
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Fig. 4. Channel frequency response with homogeneous and localized WT
degradations.

choose the mean and variance of the channel attenuation over
all frequency bins in the BB-PLC operating band as two of
the features to train our machine. A prior work also suggests
that the kurtosis and skewness of the CFR magnitude and
phase are helpful in identifying the presence of a localized
WT degradation [11]. Thus, we also include these features
for our machine training. Further, as the velocity of signal
propagation, v = (µ<(εtotal))

− 1
2 , is dependent on the relative

permittivity, <(εtotal), of the surrounding medium, the time
domain channel impulse response also provides insight into the
degradation condition. In particular, we use the peak locations
in the channel impulse response as another feature in our
machine.

V. SIMULATION RESULTS

Using the PUL parameter computations, CFR generation
strategy, and the ML-based grid surveillance techniques pro-
posed in the previous sections, we perform a numerical evalua-
tion of our surveillance methods in MATLAB. For our results,
we assume a perfect channel estimate at the PLM receiver as
we are currently interested in determining if channel character-
istics are actually useful in obtaining meaningful diagnostics
results. To generate CFRs under different load conditions, we
set the load connected between each pair of conductors at the
nodes TX, RX, and BE with a randomized impedance value
conforming to U (0, 50)+ jU (−50, 50) Ω. For homogeneous
degradations, we let γhomo ∼ U (0, 0.05), while for localized
degradations we select `wt ∼ U (100, 300) m whose centre
lies randomly within 100 m from the centre of the cable
segment.

A. Degradation-Type Classification

The first step of our surveillance procedure is to detect the
presence of a localized degradation. To this end, we compare
our results using the AdaBoost algorithm with a classical
supervised classification method of support vector machine
(SVM), which is also used in [11] for cable diagnostics.
We use the linear kernel as well as a radial basis function
(RBF) kernel for the SVM. For both types of classification
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Fig. 5. Detection and false alarm rates versus γlocal when trained with (a)
γlocal ∼ U [0.1, 0.2] and (b)γlocal ∼ U [0.1, 1]

algorithms, we train our machine with 1000 CFRs generated
with a homogeneous degradation, and 2000 CFRs with a
localized degradation of `wt = 200 m located evenly in either
the TX − BP section or the BP − RX section. For testing,
we generate 100 samples for each γlocal condition, including
γlocal = 0 that denotes the condition without a localized
degradation.

The results of detection and false alarm (FA) rates are shown
in Fig. 5. Fig. 5(a) presents the rates when the machine is
trained with localized degradations of γlocal ∼ U [0.1, 0.2].
In this case, AdaBoost shows excellent adaptability and per-
formance over an extended range of tested γlocal. On the
other hand, the performance of SVM strongly depends on the
machine parameters tuning, i.e., the kernel function. However,
when trained with a wider range of γlocal ∼ U [0.1, 1], all
methods present similar performance results, as shown in
Fig. 5(b). In practical scenarios, we envision the training
samples typically to be obtained from manually degraded
cables. Therefore, a machine that is able to better learn the
cable conditions using a smaller range of training γlocal, which
in this case is achieved with AdaBoost, could be potentially
more beneficial. At the same time, AdaBoost also presents
better detection rates and lower FAs in both training scenarios,
which justify our proposition of its use.

B. Equivalent Cable Age for Homogeneous Degradation

Once a cable is identified to be free of a localized WT
degradation, we use the LSBoost regression algorithm to
predict γhomo. We then use this predicted γhomo to calculate
the equivalent cable age by rewriting (3) to get

t =
3

√(
Y · y3homo

n0v0f0F 2ε0<{εw}

)2

, (13)

which is the equivalent service age of the considered cable
under nominal conditions specified with the parameters listed
in Table I. This equivalent cable age provides an intuitive
indication of the overall cable degradation extent and its
remaining life expectancy.

In this evaluation, we train the regressor with 3600 samples
of γhomo varying from 0 to 0.05. We then test with 1000
random CFRs with different load conditions and varying γhomo

between 0 to 0.05. The evaluation results are shown in Fig. 6,
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Fig. 6. Performance of age prediction for homogeneous cable degradations.
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Fig. 7. Predicted γlocal versus actual γlocal for localized degradations.

where we plot the variation of the predicted t for different
actual values of t. We clearly notice that the linear fit of the
prediction data has a near unity slope with a negligible ordinate
intercept, indicating a successful performance.

C. Predicting the Condition of a Localized Degradation

If a cable is identified with a non-homogeneous degradation,
i.e., localized WT degradation, we predict its associated γlocal
and `wt. In our evaluation, we randomly place the localized
degradation in the TX − BP or the BP − RX branch during
both training and testing.

1) Prediction of γlocal: We train the regressor with 3600
samples of γlocal varying in equal steps from 0.1 to 1, and test
with 1000 random CFRs generated with γlocal between 0.1
and 1. The performance of our regressor is shown in Fig. 7.
We observe that our predicted γlocal is around the actual γlocal
across all values. We also notice a non-negligible variance of
the actual data around the linear fit as we train and test with
different degradation lengths, degradations locations, and load
conditions. However, we note that an accurate value can be
obtained by averaging over multiple evaluations.

2) Prediction of `wt: We found through our evaluations that
a direct prediction of `wt yields unsatisfactory results. How-
ever, significant improvement in performance was observed
when we attempted to predict the product (γlocal · `wt) instead.
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Fig. 8. Predicted γlocal ·`wt versus actual γlocal ·`wt for localized degradations.

In this way, we can use the predicted (γlocal · `wt) together with
the predicted γlocal to determine `wt. To this end, we employ
the same training and testing scenarios as in Section V-C1.
The resultant performance is shown in Fig. 8, which reveals
that our predicted (γlocal · `wt) not only closely matches the
actual values, but also provides relatively low variance around
its linear fit.

VI. CONCLUSION

In this paper, we have presented solutions to enable power
line modems to independently monitor and detect cable degra-
dations using machine learning techniques. We tested our
proposed solutions with WT degradations in XLPE cable in-
sulations. To faithfully emulate realistic WT degradations, we
devised a scheme to generate CFRs for a given network topol-
ogy with any considered aging profile along the cable with
reduced computation complexity. We then showed through
simulation results that our solutions can successfully classify
homogeneous and localized WT degradations with an accuracy
of over 90% under lower degradation severities, and provide
perfect detection rates at more severe degradations. Further,
we also successfully predicted the equivalent cable age with
homogeneous degradations, and estimated the degradation
severity and the length of affected cable region for localized
degradations. Our cable aging profile prediction presents the
first results of this kind using PLC, which could further be
improved by designing methods to localize degradations and
evaluate the performance under varied types of faults and
degradations.
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