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Abstract—Power Line Communication (PLC) harnesses the
existing infrastructure of power lines for data transmission.
As one application, PLC is being used for monitoring and
control in distribution networks. In this paper, we propose an
autonomous technique that exploits the communication channel
estimated inside legacy PLC modems to determine the health of
distribution cables. In particular, we consider paper insulated
lead covered (PILC) cables widely used in low- and medium-
voltage distribution networks that are most susceptible to thermal
degradations. Measurement campaigns have shown that these
thermal degradations cause dielectric property changes in PILC
cable insulations, which also result in changes in PLC channel
conditions. However, through channel characterization of healthy
and degraded cables, we demonstrate that the estimated channel
frequency responses are not sufficiently distinctive for manual
diagnosis. We therefore propose a machine-learning based tech-
nique that not only achieves our set target, but is also able
to estimate the cable health under varying load conditions.
Simulation results show that our proposed technique accurately
estimates thermal degradation severities in PILC cables. We thus
believe that PLC based cable health monitoring can be used as
an autonomous remote diagnostics method that can be integrated
into a smart-grid concept and has the promise of being more cost-
effective than deploying personnel and/or dedicated equipment.

I. INTRODUCTION

An important constituent of utility assets are the power ca-
bles, which are increasingly being deployed underground due
to their robustness to weather conditions, reduced impact on
the environment, and improved aesthetics in dense neighbor-
hoods [1], [2]. Constant monitoring of cable health is critical,
since the smart-grid is expected to essentially provide utilities
with complete control and visibility over their assets and
services using information and communication technology [3].
Consistent surveillance of power cables enables utilities to
prevent cable in-service failures, which can potentially lead
to hazardous situations and huge financial losses [4].

As the cable aging progresses, the dielectric properties of
the cable insulation continuously deteriorate [5, Ch. 2, Ch.
7], [6]. Consequently, this deterioration manifests itself as
changes in the broadband power line communication (BB-
PLC) channel [7], [8]. We exploit this principle in our paper
to devise a cable health monitoring scheme by inspecting the
communication channel estimates computed inside the power
line modems (PLMs).

This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

Using PLC for cable condition monitoring provides several
benefits. By reusing the existing grid infrastructure for ad-
vanced grid control and communications in the distribution
network, PLC has been widely deployed, e.g., in relaying
smart metering data to substations with smart meter gateways
as data concentration centers [9]–[13]. This minimizes the
device installation costs required for cable diagnostics. Fur-
thermore, enabling PLMs with grid sensing abilities can be
achieved by using the communication channel state informa-
tion that is already estimated inside legacy PLMs, and hence
imposes no additional hardware modifications. Finally, PLMs
allow us to design online diagnostics solutions that can be
remotely performed off-site without de-energizing any part of
the grid.

In our previous works, we have designed PLM-based di-
agnostics schemes for extruded cables, where cable aging
is mainly caused by electrical degradations, including water-
treeing, electrical-treeing, and partial discharge [8], [14], [15].
However, the electrical stress imposed in low-voltage (LV)
grid is below the critical value for the inception of electrical
degradations [16]. In this paper, we investigate the applica-
bility of using PLMs to design techniques that can diagnose
thermal degradations, which is the main aging mechanism in
paper insulated lead covered (PILC) cables that are widely
deployed in both LV distribution networks [14], [17], as well
as medium-voltage (MV) distribution networks [18], [19].

Based on measurements reported in the literature, we first
develop a thermal aging model to characterize dielectric
properties of a PILC cable susceptible to the thermal aging.
Next, we use multi-conductor transmission line (MTL) theory
to model PLC channels and generate channel frequency re-
sponses (CFRs) of healthy and degraded cables. Through this
process, we show that the difference between the cable CFRs
under healthy and degraded conditions are insignificant to the
naked eye, which renders manual diagnosis hardly feasible for
this scenario. To address this issue, as well as to counter situ-
ations where CFR changes could be caused by other factors,
such as changing load conditions, we use machine-learning
(ML) techniques to monitor the cable health by predicting
its thermal degradation severity level. ML techniques used in
some form for grid diagnostics have been widely applied in the
past, e.g., [8], [15], [20], [21]. However, in this paper, we detail
the procedure to choose the right features extracted from the
estimated CFRs to predict the extent of thermal degradations.
Finally, we present a discussion on our proposed solution,
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Fig. 1. Extrapolated values of the real part of the relative permittivity of the
insulation.

including its applicability using narrowband PLC (NB-PLC)
modems, which are widely used for communication between
smart meters and secondary transformers in LV networks [22].

Nomenclature: We use <{x} and ={x} to denote the real
and imaginary parts of a complex number x, respectively.

II. MODELING THERMAL AGING

Thermal degradations are internal effects on the insulation
caused by long term elevated operating temperature [23]. Dur-
ing the process of thermal aging, the chemical properties of the
insulation material continuously change, and the mechanical
and electrical properties of the insulation material continu-
ously deteriorate [17]. While most of the existing work on
thermal aged PILC cable dielectric property characterization
provide measurement results in the low frequency range (up
to 1 kHz) [17]–[19], the measurements in [24] cover a broader
frequency range from 10−2 Hz to 1 MHz. Furthermore, since
the trends of the relative permittivity and the dissipation
factor (DF) stabilize with increasing frequency, we extrapolate
these values to obtain a thermal aging model covering our
considered BB-PLC operating band of 2−30 MHz [25], [26].
Specifically, for the healthy and degraded samples in [24, Fig.
2 and Fig. 10], we use linear extrapolation for the real part
of the relative permittivity and quadratic extrapolation for the
DF to obtain the results shown in Fig. 1 and Fig. 2, respec-
tively. Note that the measurement results vary with operating
temperature. Since the maximum operating temperature of a
PILC cable is typically 80◦C [23], we use the measurement
results for an operating temperature between 50− 70◦C.

The results of Fig. 1 and Fig. 2 are based on the measure-
ments provided in [24], where a degradation was introduced in
the cable through manually accelerated thermal aging of nine
days. Following this, we denote the real parts of measured
relative permittivity and DF subject to a degradation severity
level γ as ε′PILC(γ) and tan δ(γ), respectively, where γ = 0
represents an intact condition and γ = 1 represents the
nominal degradation severity level after manually accelerated
thermal aging of nine days. However, as Fig. 2 shows, thermal
degradation does not cause any noticeable changes in DF.
Therefore, we let tan δ(γ) = tan δ throughout the rest of the
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Fig. 2. Extrapolated dissipation factor values of the insulation.

TABLE I
PROPERTIES OF THE BS6480 THREE-CORE PILC CABLE [29]

Conductance separation (dcond) 12.28 mm
Conductance radius (rcond) 3.34 mm
Copper conductance (σcond) 5.96× 107 S/m
Normal Operating Voltage 6.35 kV
Maximum Rated Voltage 11 kV

Maximum Operating Temperature 80◦C

paper. We then compute the imaginary part of the relative
permittivity associated with a degradation severity of γ as

ε′′PILC(γ) = ε′PILC(γ) · tan δ, (1)

and the final complex relative permittivity of the PILC cable
insulation as

εPILC(γ) = ε′PILC(γ)− jε′′PILC(γ), (2)

where j =
√
−1.

III. PLC CHANNEL MODELING

Having obtained εPILC under different degradation severities,
we use a bottom-up approach to generate the CFRs. The
cable can be viewed as a uniform line with electrically small
cross-sectional dimensions, in which case, the PLC signal
propagation can be assumed to follow the quasi-transverse-
electromagnetic (quasi-TEM) mode, and the PLC channel can
be modeled using the MTL theory [27].

The solution of the MTL equations require the per-unit-
length (PUL) parameters that capture all the cross sectional
information about the cable [28, Ch. 1]. Therefore, we first
determine the PUL parameters, namely, line resistance (R),
line inductance (L), shunt capacitance (C), and shunt conduc-
tance (G) matrices for the given cable.

We consider a three-conductor PILC mains power distri-
bution cable BS6480 [29], whose normal operating voltage
and maximum rated voltage allows us to use it in both LV
and MV networks. The cable parameters are listed in Table I
for reference. Of the three conductors, we assign an arbitrary
one as the reference and denote it as the 0th conductor, and
the remaining two as the 1st and 2nd conductors. For the
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Fig. 3. The load condition at the receiver-end of the line.

ith conductor, the PUL resistance, Ri (0 ≤ i ≤ 2), can be
computed by considering the skin effect as [28, Eq. 4.103b]

Ri =
1

2riπσcondΛ
, (3)

where ri = rcond (see Table I) is the radius of the i-th
conductor and Λ is the skin depth defined as

Λ =
1√

µπfσcond
, (4)

where µ is the permeability of the insulation material, which,
for our cable is that of free space, i.e., µ = µ0 = 4π ×
10−7 H ·m−1, since paper insulation is non-ferromagnetic in
nature, and σcond is the conductivity of the copper conductor.
Note that (3) is valid when Λ� ri, which holds true for our
considered cable and the operating frequency range. The PUL
resistance matrix can then represented as [28, Eq. 3.12]

R =

[
R0 +R1 R0
R0 R0 +R2

]
. (5)

Since the paper insulation is non-ferromagnetic, the sur-
rounding medium can also be deemed as free space for
the purposes of computing the inductance matrix. In such
a condition, the computation of L under the wide-separation
assumption for round conductors is given by [28, Eq. 5.23]

L =

 µ0

2π ln
(
d201
r1r0

)
µ0

2π ln
(
d01d02
d12r0

)
µ0

2π ln
(
d01d02
d12r0

)
µ0

2π ln
(
d202
r2r0

)  , (6)

where ln(·) represents the natural logarithm and dij = dcond
(see Table I) is the separation between the ith and the jth
conductor.

With the assumption of a homogeneous surrounding paper
insulation, we use closed form approximations for the com-
putation of C and G matrices to obtain [28, Eq. 5.24]

C = µ0ε0<{εPILC(γ)}L−1, (7)

G = −2πfµ0ε0={εPILC(γ)}L−1, (8)

where ε0 = 8.8 × 10−12 H m−1 is the permittivity of free
space. We then input the PUL parameters to an open-source
PLC channel emulator [30] to generate CFRs for any given
load condition and network architecture.

For an initial investigation, let us consider a simple network
topology with no branches between the transmitter and the
receiver. The transmitter is assumed to have a zero source
impedance, which is consistent with a typically low transmit
impedance used by PLC modems [31]. At the receiver-end of

0 0.5 1 1.5 2 2.5 3

Frequency [Hz] 10
7

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

M
a

g
n

it
u

d
e

 o
f 

C
h

a
n

n
e

l 
G

a
in

 [
d

B
]

100m intact

100m degraded

500m intact

500m degraded

Fig. 4. CFR of intact and degraded cables of varying line lengths.

the line, we consider a general load condition as shown in
Fig. 3. From Kirchhoff’s current law, we obtain

I1 =
V1 − V2
Z1

+
V1
Z0
, (9)

I2 =
V2 − V1
Z1

+
V2
Z2
. (10)

By simplifying (9) and (10), we represent[
I1
I2

]
=

[ 1
Z0

+ 1
Z1

− 1
Z1

− 1
Z1

1
Z2

+ 1
Z1

]
·
[
V1
V2

]
. (11)

Therefore, the load impedance matrix follows as

ZL =

[ 1
Z0

+ 1
Z1

− 1
Z1

− 1
Z1

1
Z2

+ 1
Z1

]−1
. (12)

As an example, we consider the case where Z0 = Z1 =
Z2 = 50 Ω. The resulting CFRs for intact (γ = 0) and
nominally degraded (γ = 1) cable conditions are presented
in Fig. 4 for two line lengths of ` = 100 m and ` = 500 m.
We observe that the thermal degradation causes a marginally
higher signal attenuation due to the increased dielectric losses.
However, apart from this insignificant difference, the nature
of the response shows no noticeable differences irrespective
of degradation for either of the two line lengths. Therefore, in
Section IV, we present ML techniques that are able to capture
these subtle deviations caused by the degradations, for differ-
ent line lengths and varying load conditions. Furthermore, such
solutions can be automated in real-world implementations to
enable PLMs with intelligent grid diagnosis abilities.

IV. MACHINE LEARNING FOR CABLE DIAGNOSTICS

In this section, we introduce the applied ML technique and
the method of selecting the required features for training the
machine, and present performance results of our proposed
solution.

A. Cable Health Monitoring as a Regression Task

ML techniques have been used extensively for grid diagnos-
tics, for e.g., in [8], [15], [20], [21]. Such techniques are highly
beneficial, especially when sufficient data is available, but the
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relationship between the input data (CFR, in our case) and the
function to predict (γ, in our case), is complicated, specifically
in our scenario, due to unknown and changing load conditions,
and because of marginal differences between CFRs of healthy
and degraded cables that are indistinguishable by manual
inspection. Furthermore, once a machine is trained using cable
CFRs with known degradation severity levels, it can then
be loaded on to an operating PLM simply through software
upgrades, and can also be regularly updated, if required.

We formulate the degradation severity assessment prob-
lem as a supervised learning task, where we use regression
techniques in ML to predict the thermal degradation severity
γ, using features extracted from the PLM-estimated CFRs.
Among the various available regression methods, we use the
least square boosting (LSBoost) technique, since LSBoost,
as an ensemble learning algorithm that consolidates multiple
weak learners into a strong learner, generally shows a good
prediction performance and is less prone to over-fitting [32].
Specifically, when a total of N samples are used for training,
LSBoost attempts to minimize the mean squared error

∆ =
1

N

N∑
i=1

(y(i)− f(xi))
2, (13)

where y(i) is the label associated with the data xi, and f(xi) is
the predicted label by the machine for xi. It uses the principle
of gradient descent to iteratively minimize ∆ beginning with
an initial f(0). During each iteration, k (k > 1), the algorithm
uses weak learners to approximate the gradient at k − 1,

∆′(k−1) = − 2
N

N∑
i=1

(y(i) − f(k−1)(xi)), to get ∆̂′(k−1), and

updates the prediction function f(k) with a chosen learning
rate α, i.e., f(k) = f(k−1) − α∆̂′(k−1) [33, Ch. 16].

B. Feature Extraction

Selecting the right features is a crucial procedure that drives
the performance of ML algorithms. From experience gained
during our previous works [8], [15], we have learned that the
moment statistics of the CFR, i.e., mean, variance, skewness,
and kurtosis, computed across the operating bandwidth provide
critical information to the machine to predict the state of
the cable health. We can also observe in Fig. 4 that the
CFR variance seems to be a distinguishing statistic since
the degraded cable imposes slightly higher signal attenuation.
Further, we know from the literature [15], [21] that the
velocity of wave propagation is affected by cable degradations.
Therefore, we also use the channel impulse response (CIR),
and specifically, the peak locations in the CIR as features in
our ML framework. These constitute our considered library
for feature selection. For each ML task, different features
present different degrees of importance, as will be presented
in Section IV-C and Section V-B, where we select the most
appropriate set of features that give the best performance.

C. Performance Evaluations

We test the effectiveness of our proposed schemes for two
PILC cables, a long-run cable of 500 m, and a shorter 100 m
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Fig. 5. Thermal degradation severity prediction results for a short cable of
length 100 m.

0 1 2 3 4 5

Actual 

0

1

2

3

4

5

P
re

d
ic

te
d

 

data

fitted curve

Fig. 6. Thermal degradation severity prediction results for a longer cable of
length 500 m.

cable. Since the dielectric property measurements are only
available for γ = 0 and γ = 1 [24], in our evaluation, we
extrapolate to obtain the relative permittivity of any degrada-
tion severity level as

ε′PILC(γ) = ε′PILC(1) + (1− γ)(ε′PILC(1)− ε′PILC(0)), (14)

Note that γ does not necessarily vary linearly with the cable
age under the accelerated or actual degradation. γ only indi-
cates the degree of deterioration defined for our evaluations,
with increasing values of γ representing an increase in the ther-
mal degradation severity. Meanwhile, to emulate realistic load
variations [34, Table 1.1], we generate random load conditions
conforming to Z0, Z1, Z2 ∼ (U (0, 50) + j ·U (−50, 50)) Ω,
where U (a, b) denotes a uniform distribution between a and
b. To train and test the machine, we generated cable CFRs
with varying degradation severities of γ ∼ U (0, 5).

To ensure satisfactory performance, we trained our machine
with sufficient number of training samples of 3600. We then
tested the accuracy of the trained machine with another 1000
different CFRs to obtain a noticeable performance trend. We
show the resulting regression performance in Fig. 5 and Fig. 6.
For both these tested scenarios, we notice that the fitted curve
is essentially a straight line of unit slope passing through the
origin. This substantiates that the prediction of our scheme is
significantly accurate. Furthermore, all individual predictions
are also in close proximity to the fitted line, displaying a
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Fig. 7. A T-sub-network, which is part of a possibly more complicated
distribution network.

relatively low prediction variance across different degradation
severities.

In each of the two line length conditions, we choose the
most appropriate set of features from the library specified
in Section IV-B based on their usefulness in each test case.
Specifically, for the results in Fig. 5, the first peak of the CIR,
and variance and kurtosis of the CFR magnitude are mostly
critical in descending order of importance. On the other hand,
for the results in Fig. 6, the CFR magnitude variance and the
skewness of the CIR are more crucial. Therefore, selecting
useful features depend on the nature of the CFR and CIR under
varying load conditions, type of cables, and line lengths. Thus,
an oblivious selection of features from the literature, for e.g.,
choosing the same features as those used in, say [15], [21],
does not guarantee yielding a satisfactory performance.

V. DISCUSSION AND SUPPLEMENTARY RESULTS

In this section, we provide a brief discussion on our pro-
posed solution and possible challenges that we could face in
practical deployments.

A. General Network Topology and Cooperative Diagnostics

Throughout the evaluations in our paper, we have con-
sidered a rather simple network topology with no branches
between the transmitter and the receiver. However, realistic
LV networks typically have more complicated structures with
multiple branches in between [35, Fig. 2.14], [13], [36]. For
such networks, the topology can generally be decomposed
into a concatenation of several T-networks. We have already
shown the diagnostics procedure for elementary T-networks in
our previous works [8], [15], following which, our proposed
scheme can be extended to T-networks and thereby to other
more general network architectures. At the same time, larger
networks also have a larger number of PLMs available. In
such cases, a cooperative diagnostics method can be applied
for tackling the added network complexity. For example,
consider the sub-network shown in Fig. 7, which is a part of a
larger complicated LV distribution network. For a degradation
assessment on, say, the BP−N3 branch, CFRs from the other
two nodes, N1 and N2, can also be used by N3 to gain more
insight into the situation of degradation. Such a scheme is
also beneficial in avoiding topology ambiguities in the tasks,
where the presence of a degradation or a line fault needs to be
identified and localized. Naturally, cooperative diagnostics can
be used to enhance prediction results for a simple topology as
considered in Section IV as well.
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Fig. 8. Thermal degradation severity prediction results using NB-PLC CFRs.

B. Suitability for Narrowband PLC

Similar to the BB-PLC systems considered above, NB-PLC
systems using frequency bands below 500 kHz [35, Ch.1, Ch.
9] can be used for cable health monitoring. First, we notice
that the dielectric property changes in cable insulations due to
thermal degradation are more pronounced at relatively lower
frequencies [24]. Furthermore, NB-PLC systems are widely
used for communication between smart meters and secondary
transformers [22]. We thus also investigate the possibility of
operating our proposed scheme under the NB-PLC scenario.
Specifically, we conform with the PoweRline Intelligent Me-
tering Evolution (PRIME) NB-PLC specifications and apply
the CFRs for the PLC carriers between 41.9 kHz and 88.9 kHz
lying within the CENELEC A-Band [37] as input to the same
ML techniques discussed in Section IV.

With these NB-PLC settings, we trained and tested our
machine with 3600 and 1000 samples, respectively, to obtain
the results shown in Fig. 8, which shows the performance of
our prediction for two different cables of lengths 1500 m and
500 m. For this scenario, we found the most useful features
to be the kurtosis and skewness of the CTF phase.

While the fitted curve for the longer cable in Fig. 8 is
still essentially a unit-slope line nearly passing through the
origin, the prediction variance has noticeably increased when
compared to the results obtained with BB-PLC (see Fig. 5 and
Fig. 6). However, for the shorter cable, the performance with
respect to prediction accuracy as well as variance of individual
predictions are significantly degraded. These can be attributed
to the new challenges introduced by using NB-PLC. First,
since the operating frequency range and the available number
of data sub-carriers are lower, we have a smaller data size per
sample for training and testing our machine. Second, due to
the large signal wavelength (over 1.8 km at 88.9 kHz) relative
to the cable length, the noticeable sinusoidal fluctuations of
CFR magnitude with frequency obfuscate the higher signal
attenuations introduced by the degradation, which are clearly
observable in the BB-PLC range due to the negligibility of
such sinusoidal fluctuations. Therefore, the moment statistics
computed using the CFR estimates are not as beneficial as
in the case of BB-PLC. In conclusion, while our solution
is applicable for cables of longer length under NB-PLC
scenarios, prediction accuracy for shorter length cables could
be challenging, as seen in Fig. 8.
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C. Possible Limitations

For all our simulation evaluations, we have used the thermal
degradation model based on the measurement results presented
in [24] and its extrapolations at higher frequencies. Although
this helps us in evaluating our scheme under different degra-
dation severities, the comprehensiveness of the measurement
campaign and the accuracy of the resulting model can only
be verified through field trials to gauge the extent of possible
emulation mismatches.

VI. CONCLUSION

In this paper, we have investigated thermal aging condition
monitoring of paper insulated lead covered cables using power
line modems. We have presented a machine learning based
solution to endow power line modems with intelligent grid
sensing abilities for automatic diagnostics by estimating ther-
mal degradation severities in underground distribution cables
of varying lengths under different network load conditions.
Our proposed solution can be conducted online when the
network is in full operation and can assist utilities in remotely
monitoring the grid without requiring any additional dedicated
equipments/components or dispatching technical personnel on-
site. Our simulation evaluations have shown promising results
with high accuracy and low prediction variance in degradation
severity estimations. Finally, we have also presented tech-
niques to extend our solution to larger LV/MV distribution
networks with non-trivial network topologies and discussed
feasibility of our proposed schemes using narrow-band power
line communications.
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