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Pre-equalized Faster-than-Nyquist Transmission
Mrinmoy Jana, Ahmed Medra, Lutz Lampe, and Jeebak Mitra

Abstract—Faster-than-Nyquist (FTN) transmission applies
non-orthogonal linear modulation to increase spectral efficiency
compared to the well-known orthogonal transmission at Nyquist
rate. This comes at a price of inter-symbol interference (ISI),
which usually is equalized through receiver processing. In this
paper, we investigate the alternative approach of pre-equalization
at the transmitter. First, we consider Tomlinson-Harashima
precoding (THP) for FTN and propose two novel soft demapping
algorithms to generate the soft-input for the error-correction
decoder. The developed demappers effectively compensate the
modulo-loss associated with conventional THP transmission.
Second, we propose a linear pre-filtering strategy to pre-equalize
the ISI induced by FTN. We show that the linear pre-equalization
approach is equivalent to an orthogonal transmission with a
modified pulse shape. It thus yields the optimal error-rate perfor-
mance while affording higher spectral efficiency. We validate our
proposed precoding algorithms through computer simulations of
a coded coherent optical communication system as a practical
application example for FTN.

Index Terms—Faster-than-Nyquist (FTN) transmission, non-
orthogonal signaling, Tomlinson-Harashima precoding (THP),
soft demapper, pre-equalization, spectral factorization, spectral
leakage.

I. INTRODUCTION

NEXT generation communication systems are evolving
towards deploying remarkably improved bandwidth-

efficient transmission schemes in order to cope with the
growing demand for data rates. One way to accomplish this is
by giving up the orthogonality condition in terms of time and
frequency spacing of adjacent symbols imposed by the Nyquist
criterion. From a communication-theoretic point of view,
transmitting at a faster-than-Nyquist (FTN) rate allows us to
approach the capacity of a bandlimited channel [2]. From a
practical implementation perspective, FTN is advantageous for
transmission systems such as coherent optical communication
where the application of higher-order modulation formats to
increase spectral efficiency renders the system more vulnerable
to the non-linear effects of an optical channel [3], [4]. Denser
time-frequency packing via FTN is also being considered in
the context of new modulation formats for fifth generation
(5G) networks [5].

The fact that FTN signaling can be an attractive choice
has been discussed extensively in the literature, see [6] and
references therein. While the original work by Mazo [7] and
other early works (e.g. [8]–[10]) focused on the minimum
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distance assuming optimal detection to deal with the inter-
symbol interference (ISI) introduced by FTN, the development
of sub-optimal equalization methods has received significant
attention more recently. These include reduced-state versions
of maximum a-posteriori probability (MAP) symbol equaliza-
tion based on the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm
[11]–[14] and frequency domain equalization (FDE) [15]–
[17], often in an iterative fashion together with forward-error-
correction (FEC) decoding. However, the complexity of this
turbo-equalization is still substantial compared to the absence
of FTN equalization in Nyquist transmission. On the other
hand, the performance of low-complexity linear equalization
methods is usually not sufficient especially when the ISI due
to FTN is severe.

We, therefore, turn our attention to pre-equalization tech-
niques which can significantly diminish or completely elim-
inate the computational burden from equalization at the re-
ceiver. To this end, the first key observation is that the FTN
introduced ISI is perfectly known at the transmitter. Hence,
pre-equalization does not require the feedback of channel
state information (CSI) from the receiver to the transmitter.
This renders the well-known Tomlinson-Harashima precoding
(THP) [18]–[20] an attractive choice for pre-equalization.
Indeed, THP for FTN has been considered in several recent
publications in the context of 5G mobile wireless communica-
tions [21], [22], microwave backhaul links [23] and coherent
optical communications [1], [24]–[27]. However, the disadvan-
tages of a coded THP system manifest themselves in the form
of the so-called “modulo-loss” and “precoding-loss” [20] and
a possible increase in the peak-to-average power ratio (PAPR).
While the precoding-loss causes a fixed signal-to-noise ratio
(SNR) penalty depending on the modulation format and, as
will be shown in this paper, the FTN parameters, the modulo-
loss causes an error-rate deterioration by providing inaccurate
soft information to the FEC decoder. A few recent works [28]–
[30] aim to address the modulo-loss problem by improving
the accuracy of the log-likelihood ratio (LLR) computation.
However, the presented methods are either computationally
prohibitive [30] or performance gains are limited [28], [29].

In this paper, as our first contribution, we propose two com-
putationally efficient demapping algorithms for an FTN-THP
system which outperform the existing memoryless demappers
from [28], [29] by significant margins. We show that the
demappers presented in this work not only compensate for the
modulo-loss but also make THP competitive to computation-
ally expensive MAP-based equalization techniques. Having
dealt with the modulo-loss, we then investigate the precoding-
loss associated with THP. For this, we make the second key
observation that FTN-ISI stems entirely from the transmit
pulse-shape and the receive matched filter. The transmit pulse-
shape thus contributes partially to the ISI and is a part of the
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Fig. 1. Baseband system model for a pre-equalized FTN transmission where the shaded blocks at the transmitter and the receiver represent the proposed FTN
pre-equalizer and symbol demappers respectively.

transmitter, whereas, a conventional ISI channel in a Nyquist
transmission lies outside the transmitter. As a consequence, the
precoding-loss for an FTN-THP transmission over an additive
white Gaussian noise (AWGN) channel is different from that
in a Nyquist-THP transmission over ISI channels. As our
second contribution, we derive the analytical expressions for
the precoding-loss in an FTN-THP system as a function of
the FTN and the pulse-shaping parameters. We show that the
precoding-loss of the FTN-THP scheme can be substantial
especially when the ISI induced by FTN becomes severe.
Motivated by this, we then turn our focus on the linear
precoding options. In particular, we propose a linear pre-
equalization (LPE) method to pre-compensate for the FTN-
ISI. Due to the fact that FTN is different from classical ISI
where the channel lies outside the transmitter, linear pre-
equalization does not suffer from noise enhancement. It does,
however, modify the transmit power spectral density (PSD),
and we show that our method converts FTN transmission into
orthogonal signaling with an equivalent pulse shape. In doing
so, the proposed LPE completely eliminates FTN-ISI. Our
method is related to other linear precoding techniques that
have been analyzed in the past in conjunction with FTN and
partial response signaling (PRS) [31]–[35]. However, these are
different in that they are either block-based matrix-precoding
techniques or attempt to obtain pre-filter coefficients from
optimization problems to maximize distance properties.

The remainder of the paper is organized as follows. The
system model is introduced in Section II. In Section III, we
propose two novel demappers for FTN-THP and present the
analysis for the precoding loss. The new linear pre-filtering
method for FTN is proposed in Section IV. In Section V,
we validate the proposed methods based on simulations for
a coherent optical transmission setup. Finally, Section VI
provides concluding remarks.

II. SYSTEM MODEL

A. Precoded FTN

We consider the baseband system model for precoded FTN
transmission scheme under an AWGN channel shown in Fig. 1.
The system model is common for both linear and non-linear
pre-equalization methods. As shown in Fig. 1, the data bits are
first FEC encoded and then the interleaved and modulated data
stream a is precoded with a discrete-time pre-filter to produce

the data symbols r. The precoded symbols r are pulse-shaped
by a T -orthogonal pulse h and then transmitted with an FTN
acceleration factor τ < 1. As in [2], the resulting linearly
modulated baseband transmitted signal can be written as

s(t) =
∑
k

r[k]h(t− kτT ) . (1)

For the following, we assume a root-raised-cosine (RRC)
pulse-shaping filter h with a roll-off factor β such that∫∞
−∞ |h(t)|2dt = 1.

At the receiver, the analog received signal, after passing
through the matched-filter, is sampled at τT -intervals and
then digitally processed by a noise whitening filter (WF) to
whiten the colored noise due to FTN. Thereafter, the τT
sampled signal v′ is sent to a symbol demapper to produce
soft information in the form of LLRs for the FEC decoder.

The overall discrete-time channel impulse response between
the precoded symbols r and the output of the τT -spaced
sampling is given by

g[n] = (h ∗ f)(nτT ) , (2)

where f(t) = h∗(−t), ·∗ is complex conjugate, and ∗ denotes
the linear convolution. We also introduce G = Z(g), where
Z{·} denotes the z-transform. In a Nyquist-system (τ = 1),
T -orthogonality of the pulse-shape h along with the condition∫∞
−∞ |h(t)|2dt = 1 makes G(z) = 1. But for an FTN

transmission with τ < 1, G(z) causes ISI across consecutive
transmitted symbols.

As THP can be seen as a dual to a decision-feedback
equalization (DFE) performed at the receiver [20], we apply
a spectral factorization to G (consistent with [20], [36]) as
detailed in the following subsection.

B. Spectral Factorization

THP requires the implementation of a feed-forward-filter
(FFF) F and a feedback-filter (FBF) B to pre-equalize the
ISI due to FTN. As the noise samples after the τT -sampler
in an FTN system are colored, the purpose of the FFF is
then two-fold: to whiten the received noise samples and to
shape the end-to-end channel transfer-function into a causal
and minimum-phase response [20]. The FBF is then used
as a pre-filter at the transmitter to pre-equalize the overall
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Fig. 2. FTN pre-equalization with THP and the modulo-equivalent linear
structure.

effective ISI-channel. Computation of FFF and FBF requires
the discrete-time spectral factorization [20]

G(z) = αQ(z)Q∗
(
z−∗

)
, (3)

such that Q(z) is casual, monic and minimum-phase and α >
0 is a scaling factor used to make Q(z) monic. The necessary
and sufficient condition for the realization of the above spectral
factorization (see e.g. [20], [37]) can be written in an FTN
transmission as

τT

∫ 1
2τT

− 1
2τT

| log
(
G(ej2πfτT )

)
|df <∞ . (4)

Since from (2),

G(ej2πfτT ) =
1

τT

∞∑
k=−∞

|Ĥ(f − k/(τT ))|2 , (5)

where Ĥ is the Fourier-transform of the pulse-shaping filter
h. We note that G(ej2πfτT ) in (5) is zero in the intervals[
− 1

2τT ,−
1+β
2T

]
and

[
1+β
2T , 1

2τT

]
when the FTN acceleration

factor τ < 1
1+β . This causes the condition in (4) to fail, which

consequently makes the spectral factorization (3) required
for THP unrealizable. Hence, in the following we restrict
ourselves to FTN with τ ≥ 1

1+β for a given β. Once the
factorization according to (3) is executed, we obtain the FFF
and FBF respectively as

F (z) =
1

αQ∗ (z−∗)
and B(z) = Q(z) . (6)

Using the FFF and FBF computed above, we now proceed
to introduce FTN-THP with an improved demapper in the
next section, and a new linear pre-equalization method in
Section IV.

III. NON-LINEAR PRECODING IN FTN SYSTEMS

In this section, we consider non-linear precoding for FTN
in the form of THP.

A. THP-precoded FTN

Since the effective ISI-channel caused by FTN is a-priori
known at the transmitter, the filters from Section II-B can be
computed and applied for THP without any feedback from the
receiver.

Fig. 2 depicts the detailed diagram and the associated linear
equivalent structure of the block “FTN Pre-equalizer” from
Fig. 1. The modulo operation in a classical THP system as
shown in Fig. 2 is used to keep the output stable especially
for channels with spectral zeros by bounding it within a

well-prescribed range [20]. The input symbols a in Fig. 2
consist of the modulated symbols and the feedback filter B,
as given in (6), is a function of the FTN parameter τ and the
pulse shape h. As the FTN-ISI is real-valued, without loss of
generality, we assume that the symbols a are drawn from an
M -ary one-dimensional constellation. In the equivalent linear
representation, the modulo operation of THP is replaced by an
equivalent addition of a unique sequence d to the data symbols
a so that precoded symbols r lie in the interval [−M,M).
The combination of a and d produces the intermediate signal
v, the elements of which are taken from an extended con-
stellation with more than M signal points. In an ideal noise-
free scenario, the signal v′ in Fig. 1 is same as v of Fig. 2,
and thus, to compensate for THP, conventionally a modulo
operation is performed on v′ at the receiver. However, for noisy
channels and particularly for a relatively low SNR, this modulo
operation is sub-optimal which makes the LLR computation
by a conventional soft-demapper unreliable. These inaccurate
LLRs are then passed on to the FEC decoder as shown in Fig. 1
and thereby causing a performance degradation, especially in
an FEC coded transmission, which is commonly known as the
“modulo loss”.

To overcome this loss, a modified modulo based demap-
per for a coded THP system was proposed in [28] and its
simplified implementation method was also presented recently
in [29]. However, the residual modulo-loss of these approaches
still causes a significant loss in the bit-error rate (BER).
Another near-optimal iterative method was shown in [30]. It
is based on a quantized-output THP, and its computational
complexity is of the order of MAP equalization. In the
following, we present two relatively simpler soft-demapping
algorithms which significantly outperform the demapper from
[28], which we refer to as Peh-Liang-Demapper (PLD), and
are competitive to optimal MAP equalization in terms of BER.

B. Expanded A-priori Demapper (EAD)
In order to counter the modulo-loss, we replace the modulo

operation of a conventional THP demapper with our proposed
new demapper, referred to as EAD, which now forms the
module “Soft Demapper” of Fig. 1. The proposed EAD is
based on the linear equivalent model from Fig. 2 and considers
the extended constellation of the intermediate data signal v to
compute LLRs. Let A = {aκPAM = ±1,±3, . . . ,±(M − 1)}
be the set of M -ary pulse-amplitude modulation (PAM) con-
stellation symbols. Then, the symbols v belong to the extended
signal set V = {v[k]} = A+2MZ. In particular, we note that
the probabilities of the signal points v ∈ V are not uniform.
Therefore, the EAD computes the LLR value corresponding
to the nth bit bn of the kth data symbol a[k] as

LLREAD
k,n = log

(
Pr (bn = 1|v′[k])

Pr (bn = 0|v′[k])

)
(7)

= log

∑
c∈C1,n

Pr(v′[k]|v[k]=c) Pr(v[k]=c)∑
c∈C0,n

Pr(v′[k]|v[k]=c) Pr(v[k]=c)
, (8)

where Ci,n is the subset of symbols in V corresponding to the
nth bit being equal to i ∈ {0, 1} and v′[k] is the kth received
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sample at the demapper input. The relation between v and v′

follows as

v′[k] = v[k] + η[k] , (9)

where η[k] is a zero-mean AWGN with variance σ2. Note
that the colored noise samples after an FTN-sampler at the
receiver are whitened by the FFF, as discussed in Section II-B.
Introducing the Gaussian probability density function (pdf) of
η in (9), we can simplify (8) as

LLREAD
k,n = log

∑
c∈C1,n

Pr(v[k]=c) e−
|v′[k]−c|2

2σ2

∑
c∈C0,n

Pr(v[k]=c) e−
|v′[k]−c|2

2σ2

(10)

≈ log
Pr(v[k]= c̄1,n) e−

|v′[k]−c̄1,n|
2

2σ2

Pr(v[k]= c̄0,n) e−
|v′[k]−c̄0,n|2

2σ2

(11)

= log

(
α1,n

α0,n

)
+
|v′[k]−c̄0,n|2−|v′[k]−c̄1,n|2

2σ2
,(12)

where (11) follows from the nearest neighbor approximation
(e.g. [28]), with c̄i,n as the nearest neighbor to the received
sample v′[k] representing the nth bit being equal to i ∈ {0, 1}
and αi,n = Pr (v[k] = c̄i,n).

The expressions in (10) and (12) are readily evaluated
given the received samples v′[k] and the a-priori probabilities
Pr (v[k] = c) for the signal points c ∈ V . To analytically
compute these probabilities for a given β and τ , we make
use of the following proposition.

Proposition 1. Expanded constellation symbols v[k] ∈ V in
Fig. 2 have the following probability mass function (PMF):

Pr
(
v[k]=a

(κ,i)
M,v

)
=

1

M

[
Φ

(
M+
i +aκPAM

σf

)
−Φ

(
M−i +aκPAM

σf

)]
,(13)

where aκPAM ∈ A, a(κ,i)M,v = aκPAM + 2iM , M+
i = (2i + 1)M ,

M−i = (2i − 1)M for i ∈ Z, σf is the standard deviation of
the signal f and Φ (x) = 1√

2π

∫ x
−∞ e

−x2

2 dx.

Proof: See Appendix A.
The standard deviation σf in (13) can be computed numer-

ically. Simulation results in Section V show that EAD can
offer substantial gains over PLD especially when the FTN-ISI
is less severe. The relation between the LLR calculation by
EAD and PLD from [28] for severe FTN-ISI is summarized
in the following proposition and its corollary.

Proposition 2. For 2PAM and 4PAM modulations, the LLR
expression in (12) becomes equivalent to the approximate LLR
expression computed by PLD as given in [28] if the extended
constellation symbols of the signal v are assumed to have
equal probabilities.

Proof: See Appendix B.

Corollary 2.1. For 2PAM and 4PAM modulations, when the
FTN-ISI becomes severe (i.e. τ reduces for a given RRC
roll-off β), the LLR expressions computed by EAD and PLD
become similar.

Proof: For an M -ary PAM constellation, an upper bound
on the maximum number of signal points in V with non-zero
probability is given in [20] as

Vmax = 2

⌊
M
∑P−1
k=0 |b[k]|+ 1

2

⌋
− 1 , (14)

where b = Z−1(B) is the THP feedback filter response, P
denotes the length of the ISI channel and the function bxc
denotes the largest integer contained in x. Therefore, with large
P , V contains more symbols with non-zero probabilities which
causes the bell-shaped PMF in (13) to flatten and its shape
starts resembling closer to that of a uniform distribution. Then
by Proposition 2, LLRs computed by EAD become similar to
those computed by PLD.

As evaluated above, the gains offered by EAD reduce for
decreasing τ . This can be attributed to the fact that while EAD
takes the probabilities of the extended constellation symbols
into account, it fails to incorporate the auto-correlation of the
intermediate symbol sequence v into the LLR metric in (12).
As τ reduces, correlation between successive symbols of v
can increase significantly due to severe FTN-ISI. In order to
account for this, we present the second demapper design in
the following.

C. Sliding-window-EAD (SW-EAD)

The SW-EAD includes L preceding and succeeding obser-
vations (corresponding to a sliding window of length 2L+ 1)
into the computation of LLRs for the current symbol. Depend-
ing on the severity of the ISI and the observed auto-correlation
of v, a suitable value L is determined. The modified LLR for
the nth bit bn of the kth transmitted symbol a[k] is computed
as

LLRSW-EAD
k,n =log

(
Pr(bn=1|v′[k−L],. . . ,v′[k+L])

Pr(bn=0|v′[k−L],. . . ,v′[k+L])

)
(15)

= log


∑

c∈C1,n,v[k−L],...,v[k+L]

Pr
(

#»

v′| #»v c
)

Pr ( #»v c)

∑
c∈C0,n,v[k−L],...,v[k+L]

Pr
(

#»

v′| #»v c
)

Pr ( #»v c)

 (16)

= log


∑

c∈C1,n,v[k−L],...,v[k+L]

Pr ( #»v c) e−
‖

#»

v′− #»v c‖2

2σ2

∑
c∈C0,n,v[k−L],...,v[k+L]

Pr ( #»v c) e−
‖

#»

v′− #»v c‖2
2σ2

 , (17)

where #»v c = [v[k − L], . . . , v[k] = c, . . . , v[k + L]]T ,
#»

v′ =
[v′[k − L], . . . , v′[k + L]]T and ‖ · ‖ denotes the vector norm
operator. The computation of (17), using the known extended
constellation symbols v ∈ V and the received samples v′,
involves pre-computing and storing the multi-dimensional a-
priori probabilities Pr( #»v c). For L = 0, SW-EAD metric (17)
reduces to the EAD-computed LLR given in (10). Note that, if
∆v= |V| denotes the cardinality of V , then among the ∆2L+1

v

multi-dimensional sequences, only a small fraction, ρLv number
of symbol-vectors can have non-zero probabilities, depending
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on the values of M , β and τ . It is sufficient to store only these
ρLv a-priori probabilities to compute (17).

The SW-EAD can be used recursively in iterations with an
FEC decoder. In this case, the extrinsic information provided
by the FEC decoder for the coded bits is used to update the
a-priori probability Pr( #»v c) in (17).

D. Precoding-loss for FTN-THP Systems

In a THP-precoded Nyquist transmission over an ISI-
channel, the precoding operation causes an increase in the
average transmit power which translates into the precoding
loss with respect to an equivalent DFE equalization scheme
[20, p. 144]. Moreover, an ideal DFE without error propagation
can incur an SNR degradation compared to the matched-
filter bound (MFB) depending on the parameter α in (3) [20,
p. 67-68]. Therefore, the combined SNR loss of a FTN-THP
transmission with respect to ISI-free orthogonal transmission
is

SNRFTN-THP
Loss = PTHP-DFE

Loss · SNRDFE-MFB
Loss , (18)

where SNRDFE-MFB
Loss = 1/α with α given in (3). While the

precoding loss PTHP-DFE
Loss has been well investigated in the

literature (e.g. [20]), the situation is slightly different for
FTN-THP systems, where the transmit power and hence the
precoding loss depend on the ISI channel through the transmit
pulse-shape. In order to quantify the precoding loss, we utilize
the results from the following proposition.

Proposition 3. For an FTN-THP system with the FFF and
FBF given in (6), the PSD of the transmitted signal is given
by

ΦTHP
ss (f) = αΦvv

(
ej2πτfT

) Ĝ(f)∑
k

Ĝ
(
f + k

τT

) , (19)

and the average transmitted power is

PTHP
Avg =

ασ2
v

τT
, (20)

where σ2
v and Φvv

(
ej2πτfT

)
are the variance and the PSD

of the extended constellation symbols v, respectively, Ĝ(f) =
|Ĥ(f)|2, and α > 0 is the constant given in (3).

Proof: See Appendix C.
Since (i) a THP and a DFE system with the same FFF and

FBF perform identically assuming no modulo loss for THP
and no error propagation for DFE and (ii) the transmit power
for non-precoded FTN is PAvg =

σ2
a

τT , where σ2
a is the variance

of the M -ary constellation symbol a (e.g. [2]), we have from
(20) that

P THP-DFE
Loss = α

σ2
v

σ2
a

. (21)

The overall SNR-loss of the FTN-THP system as compared
to the ISI-free transmission follows from (18) as

SNRFTN-THP
Loss =

σ2
v

σ2
a

. (22)
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Fig. 3. Linear pre-equalization of FTN ISI.

IV. LINEAR PRE-EQUALIZATION FOR FTN
FTN-THP not only incurs an SNR loss, but it may also

complicate pilot-based channel estimation. Since the THP
operation results in an expanded signal constellation v′ af-
ter the WF stage shown in Fig. 1, the receiver lacks the
prior knowledge of the exact representation of pilot symbols
introduced into the data stream. To alleviate this problem,
careful attention to the pilot-symbol design is needed [24] or a
coarse detection of the pilot symbol is required before channel
estimation [25].

These problems warrant the consideration of linear precod-
ing or pre-equalization methods. We note that linear precoding
is done in PRS transmission, albeit the purpose is not pre-
equalization but spectral shaping of the transmit signal or the
maximization of some performance criteria assuming receiver-
side equalization [2], [31]–[33]. Different from this, we pro-
pose a linear pre-equalization (LPE) technique to mitigate
the ISI introduced through FTN signaling. More specifically,
the pre-equalization is achieved through a linear pre-filtering
method which is derived from the THP transmitter structure
by dropping the modulo operator as shown in Fig. 3. The
exclusion of the modulo function renders the overall transmit-
ter of Fig. 3 a linear infinite impulse response (IIR) filtering
operation. The minimum-phase property of the feedback filter
B(z), as discussed in Section II-B, guarantees the stability of
the IIR filter.

In Nyquist transmission over ISI channels, linear pre-
equalization is usually not a preferred choice. In particular,
linear pre-equalization to eliminate ISI results in an elevation
of the average transmitted power, which creates a similar error-
rate degradation as the noise-enhancement phenomena encoun-
tered in a linear zero-forcing equalization [20]. However, as
pointed out earlier, in an FTN transmission, the ISI stems
from the transmitter pulse-shape and receiver matched filter.
In particular, the feedback filter B in Fig. 3 is a function of
the RRC filter h related through (3), (5) and (6). This leads
to the following results for the PSD and the average transmit
power for FTN-LPE transmission.

Proposition 4. For an FTN-LPE system in Fig. 3 with the
FBF given in (6), the PSD of the transmitted signal is given
by

ΦLPE
ss (f) = ασ2

a

Ĝ(f)∑
k

Ĝ
(
f + k

τT

) , (23)

and the average transmit power is

PLPE
Avg =

ασ2
a

τT
, (24)

where σ2
a is the variance of the input constellation symbols a

and α > 0 is given in (3).
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Proof: See Appendix C.

Corollary 4.1. For a Nyquist system, the transmitted PSD
becomes ΦNyq

ss (f) =
σ2
a

T Ĝ(f) with an average transmitted
power PNyq

Avg =
σ2
a

T .

Proof: For a Nyquist system, τ = 1, α = 1 from (3) and
1
T

∑
k

Ĝ
(
f + k

T

)
= 1. Putting these values in (23) and (24)

yields the well-known expressions.

Corollary 4.2. If τ = 1
1+β , the PSD of the transmitted signal

becomes rectangular with a bandwidth 1+β
T .

Proof: The expression
∑
k

Ĝ
(
f + k

τT

)
in (23) is the sum

of the frequency-shifted replicas of Ĝ(f), where the frequency
shifts are integral multiples of 1

τT . We note that,

Ĝ(f) = 0 ,when |f | > 1 + β

2T
. (25)

Therefore, when τ = 1
1+β , there are no overlaps be-

tween the replicas of Ĝ in
∑
k

Ĝ
(
f + k

τT

)
. Consequently,∑

k

Ĝ
(
f + k

τT

)
= Ĝ(f) in the frequency range − 1+β

2T ≤ f ≤
1+β
2T . Thus, from (23) we have

ΦLPE
ss (f) =

{
ασ2

a, −
1+β
2T ≤ f ≤

1+β
2T

0, otherwise
(26)

To investigate the power-penalty of the FTN-LPE transmis-
sion, we use the same procedure which was adopted in Section
III-D for the SNR-loss computation of an FTN-THP system.
Similar to (18), we can write the combined SNR-loss for the
LPE as

SNRFTN-LPE
Loss = PLPE-DFE

Loss · SNRDFE-MFB
Loss , (27)

where SNRDFE-MFB
Loss = 1/α as in (18) and following the same

reasoning as in Section III-D, the precoding loss PLPE-DFE
Loss can

be computed from (24) as

P LPE-DFE
Loss = α . (28)

Hence, the overall SNR-loss of the LPE-THP system as
compared to the ISI-free transmission can be written from
(27) as

SNRFTN-LPE
Loss = 1 . (29)

We conclude from (29) that FTN-LPE does not suffer from
a power penalty due to channel inversion and achieves the
same error-rate performance as an ISI-free transmission. To
do so, linear pre-equalization modifies the transmit PSD ac-
cording to (23) that exhibits τT -orthogonality. In fact, a closer
inspection of the FBF and FFF filters for LPE reveals that the
combination of the LPE pre-filter and the RRC pulse-shape at
the transmitter is equivalent to a new τT -orthogonal square-
root Nyquist pulse-shaping filter. Similarly, at the receiver, the
RRC filter, combined with the WF, constitutes an equivalent
square-root Nyquist matched-filter to the new transmit pulse-
shape. Hence, FTN-LPE with whitened matched-filtering and
τT sampling is ISI-free.

As an alternative τT -orthogonal signaling scheme, one
could directly use a τT -orthogonal RRC filter with roll-off
β̂ = τ(1 + β) − 1 for transmit pulse-shaping. For instance,
an FTN system with T -orthogonal RRC having β = 0.3 and
τ = 0.78 results in an effective β̂ = 0.014 for the direct τT -
orthogonal RRC design. We illustrate in Section V that due to
the stricter roll-off requirement for this new RRC pulse-shape,
the implementation of this filter needs more taps to maintain a
given threshold for the out-of-band power leakage compared
to that in the proposed LPE-FTN system.

Finally, we remark that the proposed pre-equalization shares
similarities with the matrix-based precoded FTN transmission
presented in [34], [35]. Similar to FTN-LPE, this method
divides the equalization task into pre-filtering at the transmitter
and post-filtering at the receiver. However, different from
our implementation it is based on block-processing of the
transmitted and received symbols and thus it suffers from inter-
block ISI [34] or needs guard intervals and thereby reduces
spectral efficiency, in addition to introducing a block delay.
An alternate way to minimize this additional overhead is to
increase the block size which requires more elaborate matrix
computations.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we illustrate and validate the proposed pre-
equalization techniques by way of numerical results, including
error-rate simulations for FTN transmission.

A. Simulation Setup

For the simulations, we consider a coherent optical single-
carrier (COSC) transmission system. Optical communication
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systems are a prime candidate for the introduction of FTN
as the use of higher-order modulation is challenging in such
systems [3], [4]. The block diagram of a COSC system
with polarization division multiplexing is shown in Fig. 4.
The precoding algorithms presented hitherto, considering the
AWGN system model in Fig. 1, are directly applicable to
linear optical channels as impairments such as chromatic
dispersion (CD) and polarization-mode dispersion (PMD) can
be compensated through a proper two-dimensional equalizer
[38].

In Fig. 4, the transmitter and receiver blocks for the discrete-
time baseband modules are same as those in Fig. 1 except
that the data processing for each of the two polarizations
is performed separately. For our simulations, we use a low-
density parity-check (LDPC) code of rate 0.8, a random bit-
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interleaver, quarternary phase-shift keying (QPSK) and 16-
ary quadrature amplitude modulation (16QAM) formats, and
a fixed baud rate of 32 Gbaud for all values of τ . The RRC
pulse-shaping filter is implemented with 2-times oversampling
having 73 time-domain taps with β = 0.3, and the THP/LPE
precoders are designed using 10-taps for the feedback filter.
The baseband analog data after the digital-to-analog converter
(DAC) is processed by the opto-electronic front-end and
transmitted as an optical signal through a 1000 km standard
single-mode fiber (SSMF) with CD and mean PMD parameter
values of −22.63 ps2/km and 0.8 ps/

√
km, respectively,

and then is received by the optical coherent receiver. The
whitened matched filter (WMF) is combined with the time-
invariant frequency domain CD compensator using overlap-
and-add method. For PMD compensation, we used a 13-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCOMM.2017.2704609

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

TABLE I
COMPUTATIONAL COMPLEXITIES OF THE THP-DEMAPPERS FOR EACH BIT AND ITERATION.

Operation EAD/SW-EAD PLD MAP-BCJR
Addition/Subtraction ρLv + ∆v + 4ρLv ∆v − 2 2M + 2 4NMAP − 2

Multiplication ρLv + ∆v M + 2 6NMAP
Division ∆v + 1 M + 3 2NMAP + 1

Non-linear (exp. and log.) ρLv + 1 M + 3 4NMAP + 1

TABLE II
COMPLEXITY COMPARISON OF THE DEMAPPERS PER BIT PER ITERATION: QPSK, β = 0.3,τ = 0.84 AND τ = 0.8.

τ Operations EAD PLD SW-EAD MAP (6-ISI taps)
L = 1 L = 2 L = 3

0.84

ADD. 6 6 52 290 1666 254
MUL. 8 4 14 36 132 384
DIV. 5 5 5 5 5 129

Non-Lin. 5 5 11 33 129 257
Total 24 20 82 364 1932 1024

0.8

ADD. 6 6 122 1082 6476 254
MUL. 8 4 28 124 502 384
DIV. 5 5 5 5 5 129

Non-Lin. 5 5 25 121 499 257
Total 24 20 180 1332 7482 1024

tap 2 × 2 butterfly-type fractionally-spaced adaptive LMS
equalizer [38], [39]. Following carrier recovery, the QAM-
demapper computes and passes on LLR values to the LDPC
decoder.

B. Performance of FTN-THP with Proposed Demappers
We first compare the performance of FTN-THP using the

proposed EAD scheme with respect to the conventional THP
(CTHP) demapper which employs a modulo operation at the
receiver and the modulo-based PLD proposed in [28], [29].
Fig. 5 shows the coded BER performance as a function of
the optical SNR (OSNR) for different FTN parameters τ with
QPSK modulation. We also include the BER performance with
MAP equalization, which considers 6-taps of the ISI channel
and performs 10 iterations between the MAP equalizer and
LDPC decoder, as a reference. As can be seen from the figure,
when ISI is relatively low with τ = 0.85, EAD achieves a
performance close to that for the computationally demand-
ing MAP equalization and also to the orthogonal Nyquist-
signaling (τ = 1). For this case, EAD outperforms CTHP
and PLD by 4.2 dB and 1.65 dB, respectively. When FTN-ISI
becomes higher with τ = 0.8, EAD shows a performance gain
of 0.9 dB over PLD which is 0.75 dB less compared to the
gain with τ = 0.85. The reduction in gap between EAD and
PLD with stronger ISI was predicted in Proposition 2.

The loss of performance gain by using EAD with τ = 0.8
can partially be attributed to the correlation between successive
symbols of the extended-constellation sequence v of Fig. 2.
The auto-correlation sequence of v is plotted in Fig. 6. This
correlation is not taken into account while computing the
EAD-LLR metric in (12).

Fig. 7 shows the additional performance gains obtained by
SW-EAD over EAD. The different curves represent distinct
values of L corresponding to the SW-EAD window-length
(2L + 1) with and without iterations between the demapper
and the LDPC decoder. We observe that SW-EAD get im-
provements of the order of 0.8 dB over EAD which makes

it competitive to MAP equalization. With higher values of L,
further improvements for SW-EAD are not expected as only
up to 3− 4 significant taps are observed in Fig. 6.

The primary reason for the gap in the BER plots between
the SW-EAD and MAP equalization can be ascribed to the
SNR loss associated with the THP precoding, which was
investigated in Section III-D. In Fig. 8, we plot the overall
SNR loss (22) of a THP-FTN system compared to an ISI-free
transmission as a function of the FTN parameter τ and for dif-
ferent values of β. For each β, we have considered only those
values of τ such that τ ≥ 1

1+β , as explained in Section II-B.
We observe that for each β, there exists an optimal τ up to
which no SNR loss is experienced. For example, with β = 0.3,
this optimal τ is 0.85, which corroborates the BER results in
Fig. 5 where FTN-THP transmission yields BER performance
close to that of Nyquist-signaling.

C. Computational Complexity Analysis
In this section we present an analysis of the computational

cost for the proposed THP-demappers and compare them
with the MAP equalization complexity [40]. To reduce the
implementation cost of the LLR metric computations for an
M2-ary QAM constellation, we have taken advantage of the
fact that the FTN-ISI is real-valued and hence, the in-phase
(I) and quadrature (Q) components of the received baseband
signals can be individually processed by the demappers and
the MAP equalizer. Let P be the number of FTN-ISI taps
considered for the MAP-equalization, then the complexity of
the BCJR algorithm [40] per bit per iteration is O(NMAP),
where NMAP = MP . With the quantities L, ∆v and ρLv
as defined in Section III-C, the details of the mathematical
operations, required for implementing the EAD and SW-EAD
LLR metrics for each bit in each iteration according to (10)
and (17) respectively, are furnished in Table I. To illustrate
this analysis with further clarity and ease of comparison, two
specific examples are provided in Table II with τ = 0.84 and
τ = 0.8 for β = 0.3 and QPSK modulation.
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The numbers in Table II reveal that the implementation
complexities of the LLR metrics computed by EAD in (10) and
PLD are similar for the FTN transmissions studied in this pa-
per, even though EAD demonstrated substantial performance
gains over PLD as shown in Section V-B. Moreover, Table II
shows that while EAD is significantly more computationally
efficient than the MAP equalization, the complexity of the
SW-EAD rises with increasing window size, especially for
low values of τ . We recall from Section V-B that the SW-
EAD performance is always limited even when the window
parameter L increases infinitely, as illustrated in Fig. 7. This
is because SW-EAD can successfully remove the modulo-
loss but fails to improve the power-penalty (SNR-loss) asso-
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Fig. 11. Normalized PSD of LPE-FTN with β = 0.3, τ = 0.78 and Nyquist
signaling with a τT -orthogonal RRC having β̂ = 0.014 vs. normalized
frequency fT using truncated RRC pulses to illustrate spectral leakage.

ciated with an FTN-THP transmission. Therefore, for a given
complexity requirement on the receiver side processing, RRC
roll-off β and FTN parameter τ , the window parameter L
and the number of iterations between the SW-EAD and the
LDPC decoder should be wisely chosen as a desired trade-off
between performance and complexity.

D. Performance of Proposed FTN-LPE

As described in Section III-D and shown in Fig. 8, an SNR
degradation is inherent to THP precoding for some values
of τ and β. Our proposed LPE scheme can overcome this
problem. Fig. 9 shows the FTN-LPE BER results for QPSK
and 16QAM. We observe that LPE precoding produces an
optimal performance, i.e., the BER is identical to that of
orthogonal signaling. The figure also includes the BER curves
from Fig. 5 with τ = 0.8 to show the gains offered by LPE
over THP. Similar observations hold true with higher order
modulation, such as 16QAM.

The optimal BER performance of LPE precoded FTN
systems comes at the expense of transmitted spectral shape
modification, as investigated in Section IV. Fig. 10 plots the
normalized analytical transmit PSDs of the LPE precoded
FTN system, which was derived in (23). We also include
the normalized PSDs for (non-precoded) Nyquist signaling
using the underlying T -orthogonal RRC with β = 0.3 and
a τT -orthogonal RRC with β̂ = τ(1 + β) − 1 = 0.105
for pulse shaping, respectively. For this comparison, all three
systems use the same bandwidth, which implies that the LPE-
FTN system and the Nyquist-system with the RRC with
β̂ = 0.105 operate at a higher baud rate. We observe that with
LPE precoding, the overall PSD behaves as a τT -orthogonal
pulse-shape. That is, the PSD has a odd-symmetry about the
normalized frequency fT = 1

2τ = 0.59 similar to the alternate
τT -orthogonal RC.
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The advantage of the proposed LPE scheme over a direct
τT -orthogonal RRC pulse-shaping is illustrated in Fig. 11
in terms of the out-of-band emission performance. Here, the
transmit pulse-shaping filters for both the LPE precoded FTN
system with β = 0.3, τ = 0.78 and the direct τT -orthogonal
Nyquist transmission (effective β̂ = 0.014) were implemented
by using 73 time domain taps. For both systems, transmit
PSDs are computed using the twice-oversampled discrete-time
samples before the DAC in Fig. 4. The normalized PSDs are
plotted in Fig. 11, as a function of the normalized frequency
fT . We observe that LPE transmission results in a significantly
lower (∼ 20 dB) spectral leakage in the side-bands. This
improved out-of-band emission performance is advantageous
for transmission schemes with strict spectral-emission mask
requirements to achieve low interference between adjacent
channels.

Precoding may cause a possible increase in the PAPR. We
demonstrate the PAPR behaviour for the precoded FTN tech-
niques by plotting the empirical complementary cumulative
distribution function (CCDF) of the instantaneous power in
Fig. 12 for QPSK and 16QAM constellations. The modulation
parameters are β = 0.3 and τ = 0.78, and the different
curves correspond to Nyquist signaling with T -orthogonal and
τT -orthogonal pulse-shapes (β̂ = 0.014), unprecoded FTN
transmission and FTN employing THP and LPE precoding.
All transmission schemes are normalized to the same average
transmitted power of 0 dB. As can be seen from Fig. 12a,
the PAPR of the FTN-THP system with QPSK modulation is
relatively higher than that for the LPE precoded FTN system,
whereas for 16QAM they perform similarly as presented in
Fig. 12b. Furthermore, FTN-LPE transmission yields almost
a similar PAPR performance as that of the alternate τT -
orthogonal signaling scheme for both QPSK and 16QAM
modulation formats.

Finally, we remark that the suitability of the two pre-
equalization methods, proposed in this paper, depends on the
specific application of FTN. In the current paper, where FTN-

LPE has been shown to outperform the FTN-THP scheme,
we have restricted the application of FTN to two different
channel models, (a) an AWGN channel for the simplicity
of the theoretical analysis, and (b) an optical channel as a
practical application example to present simulation results.
However, the efficiency of the proposed FTN-THP can be
more pronounced if we consider FTN transmissions under
different channel models. As the functionality of the proposed
THP-demappers depends only on the a-priori probabilities of
the symbols v and not on the actual channel parameters,
they can be directly applied under these circumstances, e.g.
(1) in FTN transmissions over multi-path ISI channels, THP
would be a suitable choice to pre-equalize the combined
ISI due to FTN and the multi-path channel, because LPE
may exhibit significant power-loss due to channel inversion,
as the multi-path channel lies outside the transmitter; (2)
in the previous example of FTN signaling over multi-path
channels, a combination of LPE and THP can also be used at
the transmitter, where LPE can be employed to pre-mitigate
the FTN-ISI, whereas, THP can be applied along with the
proposed demappers to pre-equalize the ISI component, arising
only from the multi-path channel; (3) in a multi-user, multi-
carrier FTN transmission scheme, where frequency-packed
sub-channels are allocated to different users, LPE is not good
choice for FTN pre-equalization as it requires joint receiver
processing in the form of feed-forward filtering, which is not
generally a viable option due to the geographical separation of
the users. However, THP can be employed in such a scenario
with both the feedback and feed-forward filters implemented
at the transmitter. While we have not explored the above
mentioned FTN applications in detail in the current paper,
they can be considered for possible future works as suitable
application examples for the proposed FTN pre-equalization
methods.

VI. CONCLUSIONS

FTN transmission is a non-orthogonal signaling scheme to
improve spectral efficiency at the expense of introducing ISI.
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As an alternative to computationally demanding equalization
at the receiver, in this paper, we have analyzed pre-equalization
techniques at the transmitter to mitigate the FTN induced
ISI. First, we have considered THP and proposed two new
symbol demappers to improve the reliability of the computed
LLRs by reducing the modulo-loss. Numerical results for a
coherent optical transmission system show that the proposed
demappers outperform existing THP demappers by significant
margins. Secondly, we have proposed a linear pre-equalization
technique which converts the FTN transmission into an or-
thogonal signaling at a higher baud rate. LPE precoded FTN
systems can thus yield optimal ISI-free BER performance.
Moreover, the numerical results also suggest that LPE can
cause substantially lower out-of-band emission compared to a
direct τT -orthogonal RRC pulse-shaping without significant
PAPR penalty. In conclusion, we have demonstrated that the
proposed FTN pre-equalization techniques are effective means
to achieve higher spectral efficiency promised by FTN.

APPENDIX A
PROOF OF PROPOSITION 1

To derive the a-priori probabilities, we consider the linear
equivalent THP transmitter in Fig. 2 and make use of the
assumption that the elements f [k] =

∑
m b[m]r[k − m]

of the filter output f are approximately zero-mean Gaus-
sian distributed with variance σ2

f [20]. For an M -ary PAM
constellation, the expanded signal set V can be written as
V = {A+ 2iM : i ∈ Z}. Furthermore, from the construction
of the equivalent block diagram shown in Fig. 2, one can
see that the elements d[k] of the sequence d are from the
set {2iM : i ∈ Z} and d[k] = 2iM if

−2iM −M ≤ a[k]− f [k] ≤ −2iM +M . (30)

Hence,

Pr (v[k] = aκPAM + 2iM) (31)
= Pr

[(
−M+

i ≤a[k]−f [k]≤−M−i
)
∩
(
a[k]=aκPAM

)]
(32)

=
1

M
Pr
[(
M−i +aκPAM≤f [k]≤M+

i +aκPAM

)]
(33)

=
1

M

[
Φ

(
M+
i +aκPAM

σf

)
−Φ

(
M−i +aκPAM

σf

)]
. (34)

APPENDIX B
PROOF OF PROPOSITION 2

In an AWGN channel, the nearest-neighbor approximated
LLR, computed by EAD for the nth bit of the kth transmitted
symbol is given by (12). We can write the nearest neighbors
of the received symbol v′[k] for an M -ary PAM as

c̄0,n = a
κ∗0,n
PAM + 2uM , (35)

c̄1,n = a
κ∗1,n
PAM + 2vM , (36)

where a
κ∗0,n
PAM , a

κ∗1,n
PAM ∈ A with A being the original M -ary PAM

signal set and u, v ∈ Z such that |u− v| ≤ 1 for arbitrary bit-
mapping.

The nearest neighbors of v′[k] remain invariant after the
modulo operation and one additional layer of constellation
extension applied in PLD [28], if and only if there exists a
w ∈ Z such that

−M ≤ v′[k]− 2wM < M , (37)

− (M + 1) ≤ aκ
∗
0,n

PAM + 2(u− w)M ≤M + 1 , (38)

− (M + 1) ≤ aκ
∗
1,n

PAM + 2(v − w)M ≤M + 1 . (39)

If u = v, then w = u = v satisfies (37)-(39). If |u − v| = 1,
which means that c̄0,n and c̄1,n lie on different sides of the
modulo boundary before the modulo operation, (37)-(39) are
satisfied if and only if

|v′[k]− c̄i∗,n| ≤ 2 , (40)

where i∗ ∈ {0, 1} denotes the index for which c̄i∗,n is located
across the modulo boundary from v′[k]. It can be easily
verified that (40) and hence (37)-(39) are satisfied for any bit-
labeling of the PAM constellation when M = 2 or 4. However,
for M > 4, the conditions are not satisfied for some labelings.

Thus, for 2PAM and 4PAM modulations, PLD computes the
LLRs as

LLRPLD
k,n =

|v′[k]−c̄0,n|2−|v′[k]−c̄1,n|2

2σ2
. (41)

Therefore, under equal probability assumption when α1,n =
α0,n, comparing (12) and (41) yields

LLREAD
k,n = LLRPLD

k,n . (42)

APPENDIX C
PSD AND AVERAGE TRANSMIT POWER WITH PRECODING

From (1), the PSD of the FTN transmitted signal s is given
by [2], [41]

Φss(f) =
1

τT
|Ĥ(f)|2Φrr

(
ej2πfτT

)
, (43)

where Φrr is the discrete-time Fourier transform of the auto-
correlation of the sequence r.

We assume that the constellation symbol sequence a in
Fig. 2 and Fig. 3 and the intermediate process v in Fig. 2
can be approximated as a zero-mean wide-sense stationary
(WSS) process with auto-correlation sequences σ2

aδ and φvv
respectively, where δ is the Kronecker-delta function. Then,
from (3), the z-transforms of the auto-correlation of r for THP
and LPE can be written as

ΦTHP
rr (z)=Φvv(z)

1

Q(z)Q∗ (z−∗)
=
αΦvv(z)

G(z)
, (44)

ΦLPE
rr (z)=σ2

a

1

Q(z)Q∗ (z−∗)
=
ασ2

a

G(z)
, (45)

where Φvv is z-transform of φvv .
Evaluating (44) and (45) on the unit circle and using the

relation Ĝ(f) = |Ĥ(f)|2, the PSD in (43) becomes

ΦTHP
ss (f) = αΦvv(e

j2πfτT )
Ĝ(f)∑

k

Ĝ(f + k
τT )

(46)
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for FTN-THP and

ΦLPE
ss (f) = ασ2

a

Ĝ(f)∑
k

Ĝ(f + k
τT )

(47)

for FTN-LPE.
In order to compute the average power for the FTN-THP

and FTN-LPE systems, we consider an equivalent pulse-shape
ψ, such that

Ψ(f) = T ′
Ĝ(f)∑

k

Ĝ(f + k
T ′ )

, (48)

where Ψ is the Fourier transform of ψ and T ′ = τT . It can be
easily shown that ψ satisfies Nyquist’s zero-ISI criterion with
respect to the sampling rate T ′ because

1

T ′

∑
l

Ψ(f +
l

T ′
) = 1 . (49)

Now, to compute the average power of an FTN-THP system
from (46), we can write the autocorrelation of the transmitted
signal s, corresponding to a delay τ̃ , as

φTHP
ss (τ̃) =

α

T ′

∑
m

φmvvψ(τ̃ −mT ′) , (50)

where φTHP
ss is the inverse Fourier-transform of the PSD ΦTHP

ss

and φmvv is the autocorrelation of v corresponding to a delay
m. Therefore, the average power of an FTN-THP system can
be written as

PTHP
Avg =

∞∫
∞

ΦTHP
ss (f)df (51)

= φTHP
ss (0) (52)

=
ασ2

v

τT
, (53)

where the step (52) to (53) follows from (50), using the fact
that ψ is a T ′(= τT )-orthogonal Nyquist-pulse as shown in
(49) and φ0vv=E(|v|2)=σ2

v , with E(·) denoting the expectation
operator.

To compute the average power of the FTN-LPE system, we
note from the T ′-orthogonality of ψ in (49) that

ψ(0) =

∞∫
−∞

Ψ(f)df = 1 . (54)

Therefore, the average power of the FTN-LPE system follows
from (47) and using (54) as

PLPE
Avg =

∞∫
∞

ΦLPE
ss (f)df (55)

=
ασ2

a

T ′

∞∫
−∞

Ψ(f)df (56)

=
ασ2

a

τT
. (57)
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