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Abstract—Frequency control aims to maintain the nomi-
nal frequency of the power system through compensating the
generation-load mismatch. In addition to fast response genera-
tors, energy storage systems can be exploited to provide frequency
regulation service due to their fast ramping characteristic. In
this paper, we propose a solution to leverage energy storage
systems deployed in the distribution networks for secondary
frequency regulation service by considering the uncertainty in
system disturbances, the energy storage availability, and the AC
power flow model. In particular, we tackle the uncertainty in the
frequency deviations and alleviate the problem associated with
the limited energy storage capacity by using a risk minimization
technique. We formulate a linear program to determine the
frequency regulation signals to schedule the energy storage
systems by adopting the concept of conditional value-at-risk
(CVaR). It enables us to minimize the risk of deviation from the
nominal frequency after performing frequency regulation, while
satisfying the operation constraints of the distribution network.
Simulations are performed on an IEEE 37-bus test feeder with
three energy storage systems that participate in the frequency
regulation service. Results show that by using the proposed
approach, the charging/discharging of the energy storage systems
can be scheduled to regulate the frequency, and the risk of energy
storage systems not being able to contribute to future regulation
service can be reduced.

I. INTRODUCTION

With the fast proliferation of intermittent renewable energy
sources and fluctuations in load demand, power systems need
to withstand an increasing number of disturbances that may
affect the system frequency. This requires a series of control
actions over a continuum of time using different strategies [1].
When the system frequency deviates from its nominal value
(e.g., 50 Hz), the primary frequency control takes place within
the first few seconds to stabilize the interconnections. The
secondary frequency control is then used to restore the system
frequency to its nominal value. The system operator uses
automatic generation control (AGC) to compute the area error
control (ACE) signals for frequency regulation. The ACE
signals indicate the amount of active power that should be
injected into or absorbed from the power grid in order to
restore the system frequency to its nominal value. The evolving
regulatory frameworks such as the recent orders issued by the
United States (U.S.) Federal Energy Regulatory Commission
(FERC) open the ancillary services market for new technolo-
gies such as energy storage systems [2]–[4]. Specifically, the
fast ramping characteristic of energy storage systems makes
them an attractive alternative to provide rapid and accurate

frequency regulation in response to the ACE signals issued by
the system operator.

There are several challenges for the system operator to lever-
age energy storage systems for secondary frequency regulation
service. First, the system operator has uncertainty about the
system disturbances, and thus the frequency changes in real-
time operation. The intended service operation cycle should be
divided into short frequency control intervals for the system
operator to compensate frequency deviations in time if needed.
Second, in each frequency control time slot, computing the
ACE signal for regulation service is nontrivial as it depends
on the power flow changes in the distribution networks, which
are affected by the charging demand fluctuations in the energy
storage systems to provide regulation service. Third, the power
flow constraints in the distribution network can limit the
scheduling flexibility of energy storage systems for frequency
regulation. The system operator needs to satisfy the operation
constraints imposed by the distribution network for providing
secondary frequency regulation service. Fourth, an energy
storage system may not be able to participate in the regulation
service due to the limited battery capacity. Specifically, the
scheduling decision of an energy storage system in each
control time slot affects the amount of its stored energy, and
thus the amount of its contributions in the frequency regulation
during the upcoming time slots.

There have been some efforts to address the aforementioned
challenges. Chen et al. analyzed the frequency regulation
response by using energy storage systems with different
penetration rates given various system disturbance levels [5].
Zhang et al. compared the performance of using energy storage
systems to compensate frequency deviations in a single-area
system with conventional generators [6]. Zhang et al. proposed
a framework to analyze the optimal planning and control strat-
egy of using energy storage systems for frequency regulation
service at the minimum operation cost [7]. Yao et al. adopted
a robust optimization framework to schedule energy storage
systems for frequency regulation service to maximize the
financial profits under the performance-based compensation
scheme [8]. He et al. proposed a real-time cooperation scheme
to coordinate wind turbines and energy storage systems for
frequency regulation [9]. Tan et al. designed an adaptive
feedback control scheme for energy storage systems to co-
ordinate with wind turbines for providing reliable frequency
ancillary service [10]. In general, the participation of the
energy storage systems in frequency regulation is an optimal
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control problem, where the regulation signals that are comput-
ed based on generation-load mismatch are used for scheduling
decisions. However, optimizing across frequency regulation
and limited energy storage capacity requires a proper design
of the regulation signals, where the energy storage availability
given the uncertainty in system frequency deviations should
be addressed. Furthermore, the constraints imposed by the
distribution network should also be considered.

In this paper, we aim to exploit energy storage systems in
the distribution network for secondary frequency control to
minimize the risk of deviation from the nominal value after
performing frequency regulation. The main contributions of
this paper are summarized as follows:

• We determine the ACE signals to schedule the energy
storage systems to provide frequency regulation service
by considering the uncertainty in the system disturbances,
the availability of the energy storage systems, and the op-
eration constraints imposed by the distribution network.

• We introduce a risk assessment technique to tackle the
limited capacity of the energy storage systems. In par-
ticular, we adopt the concept of conditional value-at-risk
(CVaR) to limit the risk of energy storage systems not
being able to contribute to regulation service, given the
uncertainty in the frequency deviations.

• We evaluate the performance of the proposed frequency
regulation approach using simulations on an IEEE 37-bus
test feeder with three energy storage systems to provide
frequency regulation. We compare the performance when
different energy storage capacities are considered. Results
show that our risk-averse model based on CVaR success-
fully reduced the impact of limited energy storage on
restoring the frequency to its nominal value for regulation
service.

The rest of the paper is organized as follows. Our system
model, including the distribution network model and energy
storage system’s constraints, is introduced in Section II. The
scheduling problem of energy storage systems incorporated
with CVaR is discussed in Section III. Simulation results
and performance evaluations of the proposed framework are
presented in Section IV. Section V concludes the paper.

II. SYSTEM MODEL

Consider a distribution network with a set of buses N and
a set of branches L ⊆ N ×N . It consists of some generators,
loads, and energy storage systems. Let N s ⊆ N denote the
set of buses with energy storage system. The distribution
network is connected to the transmission network through
a substation bus. We model the transmission network by an
equivalent virtual generator that can inject/absorb active and
reactive power into/from the distribution network [11]. This
generator models the power flow between the distribution and
transmission networks. The system operator is responsible for
monitoring the real-time system operation including the power
grid’s frequency and power flow. We divide the operation
cycle into set T = {1, . . . , T} of T time slots. Each time
slot corresponds to a short frequency control interval (e.g.,

15 minutes), during which the system operator performs
frequency regulation.

At the beginning of time slot t ∈ T , the system operator
observes the system frequency deviation and activates the
primary frequency control. The participating generators will
respond within few seconds (e.g., 10 seconds). Although the
primary frequency control can maintain the frequency within
a certain range, it may not be able to restore the system
frequency to its nominal value. Let ∆ω(t) denote the system
frequency deviation from the nominal value after performing
the primary frequency regulation in time slot t. In the next step,
the system operator uses the energy storage systems for the
secondary frequency control to restore the system frequency.
Let ∆ωreg(t) denote the change in the system frequency in
time slot t after performing the secondary frequency regula-
tion. If ∆ωreg(t) = −∆ω(t), the system frequency is restored
to its nominal value. The system operator computes the ACE
signal for each bus with energy storage system to obtain the
amount of active power that the corresponding energy storage
system should absorb from or inject into the power grid. In
the following subsection, we discuss how the system operator
can determine the ACE signals.

A. Computing the ACE Signal

To achieve the frequency change ∆ωreg(t) in time slot t ∈
T , the system operator determines the ACE signal for each
bus. If the energy storage systems participate in the frequency
regulation service, the power flow in the distribution lines will
change. In particular, the injected active power at bus n ∈
N in time slot t ∈ T will change from its scheduled value
pinj
n (t) to pinj

n (t) after performing the frequency regulation. Let
∆pinj

n (t) = p inj
n (t) − pinj

n (t) denote the change in the injected
active power at bus n ∈ N in time slot t ∈ T after performing
the secondary frequency regulation.

In time slot t ∈ T , the ACE signal corresponding to the
energy storage system at bus n ∈ N s is equal to the change
in the charging demand from the scheduled value ps

n(t) to
ps
n(t). We have [12, p. 489]

βn∆ω
reg(t) + ∆pinj

n (t) = p s
n(t)− ps

n(t), n ∈ N s, (1)

where βn is the frequency bias factor of bus n ∈ N . It depends
on the characteristics of the generator and load connected
to bus n. In particular, for the secondary frequency control,
the generator at bus n ∈ N can be modeled by its speed-
droop characteristic ϕn, which reflects the speed regulation
due to governor actions [12, p. 477]. The load at bus n ∈ N
can be modeled by its damping coefficient ψn, which is the
ratio between the change in the load and the change in the
frequency [12, p. 473]. The frequency bias factor of bus n

can be obtained as βn =
1

ϕn
+ ψn.

Equation (1) implies that when the ACE signal for a bus
with energy storage system is positive (negative), the energy
storage system decreases (increases) its charging power and
provides regulation up (down) service.

The ACE signal is zero if there is no energy storage system



at bus n in time slot t ∈ T . We have

βn∆ω
reg(t) + ∆pinj

n (t) = 0, n ∈ N \ N s. (2)

Computing the ACE signals and the frequency change
∆ωreg(t) in (1) and (2) is a nontrivial task as it depends on the
distribution network power flow. In the following subsection,
we provide a linearized AC power flow model to determine
the change in the injected active power into the buses during
the frequency regulation service.

B. Distribution Network Model

In a distribution network, the ratio between the resistance
and inductance of the lines can be large. Hence, the sys-
tem operator uses AC power flow model in the distribution
network. The AC power flow equations are non-convex and
difficult to be solved in a timely fashion. Similar to [13],
we use a linear model to approximate the AC power flow
in the distribution network. Let pinj(t) = (pinj

n (t), n ∈ N ) and
qinj(t) = (qinj

n (t), n ∈ N ) denote the vectors of injected active
power pinj

n (t) and reactive power qinj
n (t) into bus n ∈ N in

time slot t ∈ T , respectively. Let v(t) = (|vn(t)|, n ∈ N )
and θ(t) = (θn(t), n ∈ N ) denote the vectors of voltage
magnitude |vn(t)| and phase angle θn(t) of bus n ∈ N in time
slot t ∈ T , respectively. Given the the real and reactive parts of
the entry (nm) in bus admittance matrix Y , denoted by Gnm

and Bnm, respectively, as well as the shunt susceptance and
conductance at bus n, denoted by bnn and gnn, respectively,
the linearized AC power flow model in time slot t ∈ T is
obtained as follows[

pinj(t)
qinj(t)

]
=

[
−B′ G′

−G −B

] [
θ(t)
v(t)

]
, (3)

where the nth diagonal element of matrices B and B′ is Bnn

and Bnn−bnn, respectively. The non-diagonal element in row
n and column m of B and B′ is Bnm. Similarly, the nth
diagonal element of matrices G and G′ is Gnn and Gnn −
gnn, respectively, and the non-diagonal element in row n and
column m of G and G′ is Gnm.

In time slot t ∈ T , the linearized active and reactive
power flow through line (n,m) ∈ L with resistance Rnm and
reactance Xnm can be obtained as follows.

pnm(t) =
Rnm (|vn(t)| − |vm(t)|) +Xnm(θn(t)− θm(t))

R2
nm +X2

nm

,

(4)

qnm(t) =
Xnm (|vn(t)| − |vm(t)|)−Rnm(θn(t)− θm(t))

R2
nm +X2

nm

.

(5)
The apparent power flow snm(t) =

√
p2nm(t) + q2nm(t) is

upper bounded by smax
nm . This constraint can be linearized by

a piecewise approximation of the circular boundary using a
regular polygon with central angle α. For (n,m) ∈ L, we have

pnm(t) cos(hα) + qnm(t) sin(hα) ≤ smax
nm , (6)

where h =
{
0, 1, . . . ,

2π

α

}
. The voltage magnitude at bus n ∈

N in time slot t ∈ T is bounded by the limits vmin
n and vmax

n .

We have
vmin
n ≤ |vn(t)| ≤ vmax

n . (7)

Constraints (3)–(7) can be used by the system operator to
determine the feasible power flow within the distribution net-
work during the secondary frequency regulation in time slot t.
There are some operation constraints for an energy storage
system, which are described in the following subsection.

C. Energy Storage System’s Operation Constraints

In time slot t ∈ T , the power rating of the energy storage
system at bus n ∈ N s has limits ps,min

n < 0 and ps,max
n > 0.

ps,min
n ≤ ps

n(t) ≤ ps,max
n , n ∈ N s. (8)

Besides, the change in the charging power of an energy storage
system is subject to the ramp up and down rating limits
∆ps,min

n < 0 and ∆ps,max
n > 0 due to the limits in its

mechanical inertia. For t ∈ T \ {1}, we have

∆ps,min
n ≤ ps

n(t)− ps
n(t− 1) ≤ ∆ps,max

n , n ∈ N s, (9)

and ∆ps,min
n ≤ ps

n(1) ≤ ∆ps,max
n , n ∈ N s. If there is no

energy storage system connected to bus n ∈ N \ N s, then
ps,min
n = ps,max

n = 0. Let Einit
n ≥ 0 denote the initial energy

level of the energy storage system at bus n ∈ N s at the
beginning of the operating cycle T . The stored energy in the
battery until time slot t ∈ T is nonnegative and upper bounded
by the limit Emax

n . We have

0 ≤ Einit
n −

∑t
k=1 p

s
n(k) ≤ Emax

n , n ∈ N s. (10)

Constraints (8)–(10) guarantee that the energy storage systems
operate within their physical range to provide regulation.

III. PROBLEM FORMULATION AND SOLUTION APPROACH

In this section, we present how the system operator deter-
mines the charging/discharging of the energy storage systems
to provide secondary frequency regulation service. Constraints
(9) and (10) imply that the operation of an energy storage
system in current time slot t ∈ T affects its energy level
during the upcoming time slots T (t+1) = {t+1, . . . , T} ⊂ T .
Hence for the frequency regulation in current time slot t, the
system operator needs to take into account the changes in
the charging/discharging power of the energy storage systems
over current time slot t and upcoming time slots k ∈ T (t+1).
If the system operator is aware of the profile of the system
frequency deviations ∆ω(t) = (∆ω(t), . . . ,∆ω(T )), then it
can solve the following optimization problem to determine
the charging/discharging profile ps

n(t) = (ps
n(t), . . . , p

s
n(T ))

of the energy storage system at bus n ∈ N s.

minimize
ps
n(t), n∈N s,
∆ωreg(τ), τ∈{t,...,T}

T∑
τ=t

|∆ωreg(τ) + ∆ω(τ)| (11)

subject to constraints (1)−(10) for time slots {t, . . . , T},

where | · | is the absolute value. Note that the system operator
may not be able to restore the system frequency to its nominal
value (i.e., ∆ωreg(τ) ̸= −∆ω(τ) for the time slots τ ∈



{t, . . . , T}) due to the constraints imposed by the distribution
network and the energy storage systems. Therefore, in problem
(11), the system operator aims to minimize the difference be-
tween the regulated frequency and the system frequency devia-
tions. In problem (11), it is assumed that the system operator is
aware of the profile of the system frequency deviations ∆ω(t).
However, in practice, the system operator observes only the
actual system frequency deviation in current time slot t and
has uncertainty about the frequency changes in upcoming time
slots k ∈ T (t+1). The system operator can use the historical
data record of the system frequency fluctuations to obtain a
presumed frequency deviation profile ∆ω̂(t + 1) for the un-
derlying system. Nevertheless, the presumed system frequency
deviation profile ∆ω̂(t+1) = (∆ω̂(t+ 1), . . . , ∆ω̂(T )) may
be different from the realized frequency deviation profile
∆ω(t + 1) = (∆ω(t+ 1), . . . , ∆ω(T )) in upcoming slots
k ∈ T (t+1). Hence, the system operator needs to implement a
proper mechanism to determine the close-to-actual frequency
deviation profile ∆ω̂(t+ 1) using the historical data record.

We introduce the risk measure CVaR to determine the
presumed profile ∆ω̂(t + 1). The system operator can use
CVaR to limit the likelihood of large difference between
the presumed frequency deviation profile ∆ω̂(t + 1) and the
realized frequency deviation profile ∆ω(t+ 1). Note that for
upcoming time slots k ∈ T (t + 1), the presumed deviation
value ∆ω̂(k) may be different from the actual frequency
deviation of the system ∆ω(k). Let f(∆ω̂(t+1),∆ω(t+1))
denote a real-valued function that captures the difference
between the profile of presumed frequency changes ∆ω̂(t+1)
and the profile of realized frequency changes ∆ω(t+ 1). For
t ∈ T \ {T}, we have

f(∆ω̂(t+ 1),∆ω(t+ 1)) =
T∑

k=t+1

|∆ω̂(k)−∆ω(k)| . (12)

Given the confidence level δ ∈ (0, 1) and vector ∆ω̂(t + 1)
in time slot t ∈ T , we define the value-at-risk (VaR) as

VaRδ(∆ω̂(t+ 1)) = min{η |Pr{f(·) ≥ η} < 1− δ}, (13)

where η is the minimum threshold, for which the probability
that f(∆ω̂(t+ 1),∆ω(t+ 1)) ≥ η is less than 1− δ. For the
confidence level δ ∈ (0, 1) and vector ∆ω̂(t+ 1) in time slot
t ∈ T , the CVaR can be defined as follows

CVaRδ(∆ω̂(t+ 1)) , E{f(∆ω̂(t+ 1),∆ω(t+ 1)) |
f(∆ω̂(t+ 1),∆ω(t+ 1)) ≥ VaRδ(∆ω̂(t+ 1))}, (14)

where E {·} is the expectation over the random variable
∆ω(t+1). CVaR is a convex function and can be minimized
using sampling techniques especially when the probability
distribution of the uncertain variables is not available [14].
Note that CVaR is the expectation over the scenarios, where
f(∆ω̂(t+1),∆ω(t+1)) is greater than VaR. Thus, CVaR is
always greater than or equal to VaR, and minimizing CVaR
results in a low VaR as well.

We use the set of J , {1, . . . , J} samples ∆ωj(t+ 1) of

the random variable ∆ω(t+1) from the historical record. We
obtain Pr{∆ωj(t + 1)}, the probability of the scenario with
sample ∆ωj(t + 1). The CVaR for confidence level δ and
vector ∆ω̂(t+ 1) can be obtained as [14]

CVaRδ(∆ω̂(t+ 1)) = min
η∈R

Γδ (∆ω̂(t+ 1), η) , (15)

where

Γδ (∆ω̂(t+ 1), η) =

η +
∑
j∈J

Pr{∆ωj(t+ 1)}
(1− δ)

[
f(∆ω̂(t+ 1),∆ωj(t+ 1))− η

]+
.

(16)

The system operator introduces function Γδ (∆ω̂(t+ 1), η)
with a weight coefficient κ ≥ 0 to the objective function of
problem (11) to minimize the risk of difference between the
presumed frequency deviation profile ∆ω̂(t+1) and the real-
ized frequency deviation profile ∆ω(t+1). The optimization
problem for the system operator at each control time slot t
can be formulated as follows.

minimize
ps
n(t), n∈N ,

∆ωreg(t), ∆ωreg(k), k∈T (t+1), + κΓδ (∆ω̂(t+ 1), η)
∆ω̂(t+1), η

|∆ωreg(t) + ∆ω(t)|+
T∑

k=t+1

|∆ωreg(k) + ∆ω̂(k)|

(17)
subject to constraints (1)−(10) for time slots {t, . . . , T}.

To transform problem (17) into a linear program, we introduce
nonnegative auxiliary variables γ(t) and γ(k), k ∈ {t +
1, . . . , T} for the term |∆ωreg(t) + ∆ω(t)| and |∆ωreg(k) +
∆ω̂(k)|, respectively. We introduce nonnegative auxiliary vari-
ables λj(k), j ∈ J , k ∈ {t + 1, . . . , T} for the term∣∣∆ω̂(k)−∆ωj(k)

∣∣ in f(∆ω̂(t + 1),∆ωj(t + 1)). We al-
so introduce auxiliary variable µj(t), j ∈ J to upper
bound each term

[
f(∆ω̂(t+ 1),∆ωj(t+ 1))− η

]+. We de-
fine vectors γ(t) = (γ(t), . . . , γ(T )), λj(t + 1) = (λj(t +
1), . . . , λj(T ), j ∈ J ), and µ(t + 1) = (µj(t + 1), j ∈ J ).
Problem (17) can be rewritten as

minimize
ps
n(t), n∈N ,

∆ω̂(t+1), η,
∆ωreg(t), ∆ωreg(k), k∈T (t+1),

γ(t), λj(t+1), µ(t)

T∑
τ=t
γ(τ)+κ

(
η +

∑
j∈J

Pr{∆ωj(t+ 1)}
(1− δ)

µj(t+ 1)
)

(18)
subject to constraints (1)−(10) for time slots {t, . . . , T},

− γ(t) ≤ ∆ωreg(t) + ∆ω(t) ≤ γ(t),

− γ(k) ≤ ∆ωreg(k) + ∆ω̂(k) ≤ γ(k), k ∈ T (t+ 1),

− λj(k) ≤ ∆ω̂(k)−∆ωj(k) ≤ λj(k), k ∈ T (t+ 1),
T∑

k=t+1

λj(k)− η ≤ µj(t+ 1).

Problem (18) is a linear program and can be solved efficiently
to determine the optimal scheduling profile ps,opt

n (t) of the
energy storage system at bus n in each control time slot t.



IV. PERFORMANCE EVALUATION

We evaluate the performance of the proposed frequency
regulation approach on an IEEE 37-bus distribution test feed-
er [15] with three energy storage systems. The test feeder is
shown in Fig. 1. The equivalent virtual generator to model the
transmission network is connected to the substation bus 37.
For convenience, voltage magnitudes are in per-unit (pu) with
a 4.8 kV base. The base power of the system is 100 kVA. The
slack bus is the substaion bus, i.e., its voltage magnitude is 1
pu and its phase angle is zero. The energy storage systems
are located at buses 13, 23, and 31. We assume that no
generator or frequency sensitive load is connected to buses
within the distribution network, and thus we set the frequency
bias factor to βn = 0, n = 1, . . . , 36. The frequency bias
factor βn of the substation bus n = 37, where the virtual
generator is connected, is set to 0.3483 pu/Hz [16, p. 24].
Since high frequency deviations occur during peak load hours,
we consider a six-hour operation period and divide it into
24 frequency control time slots, where one control time slot
is 15 minutes. To obtain the load profile over the operation
cycle, we use the database for Ontario [17] over time interval
[4 pm, 9 pm] on May 2, 2017. We scale the load demand to
make the average demand at each bus over the operation cycle
equal to its corresponding spot load specified in [15]. We use
the measurement data in [18] to obtain J = 50 samples of
frequency deviation. The confidence level δ is set to be 0.95.
Unless stated otherwise, the weight coefficient κ is set to be 1.

We first present the frequency regulation performance when
energy storage systems of different sizes are used. If the
system operator has perfect knowledge about the frequency
changes, then it determines the charging/discharging of the
energy storage systems at the beginning of the operation cycle
and schedules them to restore the frequency to its nominal
value accordingly. If the system operator has uncertainty about
the frequency changes, then it solves problem (18) at each time
slot to regulate the frequency. Fig. 2(a) shows the results when
the energy storage systems are small size with Emax

13 = 10
kWh, and Emax

23 = Emax
31 = 5 kWh. It can be observed that

the system operator either with perfect knowledge or with
uncertainty about the frequency changes cannot regulate the
frequency in most of the time slots, due to the stringent
operation constraints of the energy storage systems.

Fig. 2(b) shows the results when the energy storage systems
are medium size with Emax

13 = 50 kWh, and Emax
23 = Emax

31 =
30 kWh. The system operator with perfect knowledge about
the frequency changes can regulate the frequency in most of
the time slots. In time slot 11, the frequency is not regulated
because the energy storage systems discharge to be able to
perform regulation during time slots 12 and 13 when charging
is needed. With uncertainty about the frequency changes, the
system operator can also regulate the frequency almost similar
to the scenario with perfect knowledge except during time slots
10 to 13, when the frequency has experienced high deviations.

Fig. 2(c) shows the results when the energy storage systems
are large size with Emax

13 = 150 kWh, and Emax
23 = Emax

31 =

123

4

5

6 7

8

9

10

11

12

13

1415

16

17

1819

20

21

22

23

24

25

2627

28 29

30

31

32

33

34
35

36

37

Fig. 1. IEEE 37-bus distribution test feeder used in the simulation, with
the equivalent virtual generator connected to the substation bus 37, and three
energy storage systems at buses 13, 23, and 31, respectively.

100 kWh. It can be observed that the frequency regulation
performance is similar to the scenario with perfect knowledge
except in a few time slots such as 8 and 18. Thus, we conclude
that when the size of the energy storage systems decreases, the
system operator may fail to restore the frequency during time
slots with high frequency changes due to the operation limits
of the energy storage systems and the uncertainty issues.

To further study the impact of the energy storage capacity on
the frequency regulation performance, we compare the average
regulated frequency deviation from the nominal value after
performing the regulation with three energy storage systems
of different sizes during the operation cycle, as shown in
Fig. 3. The capacity and the initial charging energy level of
the small, medium and large energy storage are set to be the
same as the energy storage used in Fig. 2. We can observe
that the regulated frequency deviation increases as the energy
storage capacity decreases. As illustrated, when the size of
the energy storage deceases by half, the regulated frequency
deviations increases by 50%. When the size of the energy
storage deceases by 90%, the regulated frequency deviations
increases by 350%.

Finally, we study the impact of the weight coefficient κ
on the frequency regulation performance. Fig. 4 shows the
CVaR versus the regulated system frequency deviation from
the nominal value, given the frequency deviations observed
in Fig. 2. It can be observed that when κ increases from 0
to 10, the value of CVaR decreases from 1.39 Hz to 0.29
Hz. This indicates that the system operator becomes more
conservative about the expected future frequency changes in
the system when making current scheduling decisions for the
energy storage systems to provide frequency regulation. As
illustrated, being more conservative with a larger value of κ
makes the system operator to reduce the expectations about the
future frequency changes, and the deviation of the regulated
system frequency from the nominal value thus increases.

V. CONCLUSION

In this paper, we formulated a linear program to schedule
the energy storage systems in the distribution network to
provide frequency regulation. We designed the ACE signals
for secondary frequency regulation service, while taking into
account the energy storage availability, the AC power flow
in the distribution network as well as the uncertainties in
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Fig. 2. Frequency regulation by using (a) three small energy storage systems
with their initial energy level Einit

13 = 5 kWh, Einit
23 = 2.5 kWh, and Einit

31 =
5 kWh, (b) three medium energy storage systems with their initial energy
level Einit

13 = 25 kWh, Einit
23 = 15 kWh, and Einit

31 = 30 kWh, (c) three
large energy storage systems with their initial energy level Einit

13 = 100 kWh,
Einit

23 = 75 kWh, and Einit
31 = 100 kWh.
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Fig. 3. The regulated frequency deviation after performing the regulation by
using three energy storage systems with different sizes.

the frequency changes. Our problem formulation captured the
risk of energy storage systems not being able to participate
in the regulation service based on CVaR. By using linear
approximation of the AC power flow model and sample
average approximation of CVaR, our problem could be solved
efficiently. Simulation results showed that our risk-averse mod-
el for the system operator can successfully schedule the energy
storage systems to restore the current frequency deviation,
while taking into account the risk of the energy storage system
not being able to participate in the frequency regulation in the
upcoming time slots.
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