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Abstract—This work considers secure downlink transmission
in indoor multiple-input, single-output (MISO) visible-light com-
munication (VLC) links. In particular, we study the design of
transmit beamformers that maximize the achievable secrecy rate
subject to amplitude constraints imposed by the limited dynamic
range of the light-emitting diodes (LEDs). Such constraints
render the design problem nonconvex and difficult to solve. We
show, however, that this nonconvex problem can be transformed
into a solvable quasiconvex line search problem. We also con-
sider the more realistic case of imperfect channel information
regarding the receiver’s and eavesdropper’s links. We tackle
the worst-case secrecy rate maximization problem, again subject
to amplitude constraints. In our treatment, uncertainty in the
receiver’s channel is due to limited feedback, and is modelled by
spherical sets. On the other hand, there is no feedback from the
eavesdropper, and the transmitter shall utilize the line-of-sight
(LoS) channel gain equation to map the eavesdropper’s nominal
location and orientation into an estimate of the channel gain.
Thus, we derive uncertainty sets based on inaccurate information
regarding the eavesdropper’s location and orientation, as well
as the emission pattern of the LEDs. We also consider channel
mismatches caused by the uncertain non-line-of-sight (NLoS)
components. We provide numerical examples to demonstrate
the performance gain of the optimal beamformer compared to
suboptimal schemes, and the robust beamformer compared to its
non-robust counterparts. We also evaluate the worst-case secrecy
rate performance of the robust beamformer in a typical VLC
scenario along with the aforementioned uncertainty sources.

Index Terms—physical-layer security, visible-light communi-
cations, amplitude constraints, robust beamforming, worst-case
secrecy rate.

I. INTRODUCTION

INFORMATION-THEORETIC security was pioneered by
Wyner back in the mid-1970s with his seminal work [1]

that introduced the wiretap channel model and the notion of
secrecy capacity as a performance metric for reliable and
secure communications. Almost three decades after, inter-
est in physical-layer security has been revived by the need
for additional secrecy measures that do not jeopardize low
complexity at the receiver. In physical-layer security systems,
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the transmitter exploits dissimilarities among the channels of
different receivers and adopts signaling and/or coding schemes
that ensure reliable reception by the intended receivers and, at
the same time, hinder unintended or unauthorized receivers
from inferring the transmitted messages [2]–[5]. Nevertheless,
the secrecy performance of physical-layer security systems
can severely deteriorate by inaccurate channel information,
especially if the unintended receiver is a malicious user or
passive eavesdropper attempting to hide its presence from the
transmitter. Performance sensitivity, however, can be alleviated
by adopting transmission schemes that explicitly take channel
uncertainty into account. Such schemes are typically referred
to as robust transmission schemes.

Visible-light communication (VLC) is a wireless transmis-
sion technology that exploits illumination devices, mostly
high-brightness light-emitting diodes (LEDs), for short-range
data connectivity [6]. In VLC systems, information is relayed
by the means of modulating the output intensity of the LEDs,
whereas at the receiver side, the data signal is recovered
using simple photodetectors. Typical lighting systems utilize
multiple LEDs to provide uniform illumination. Thus, VLC
systems can readily benefit from multiple-antenna techniques
to enhance the reliability and/or security of VLC networks.
Being a broadcast channel, data transmitted over VLC links are
inherently vulnerable to overhearing by unintended receivers
or eavesdroppers existing in the service area illuminated by
the transmit LEDs. Therefore, secure transmission in VLC
systems using physical-layer security techniques has been
proposed in [7].

In this paper, we consider the design of transmit beamform-
ers for secure downlink transmission in indoor multiple-input,
single-output (MISO) VLC links in the presence of a passive
eavesdropper attempting to overhear information conveyed
by light waves to the legitimate receiver. Assuming uniform
input distribution, our performance measure is the secrecy rate
expression derived in [7] for amplitude-constrained wiretap
channels. Under the premise of perfect channel information,
we first consider the design of optimal beamformers that
maximize the achievable secrecy rate subject to amplitude
constraints. Such constraints render the optimization problem
nonconvex and difficult to solve. Nevertheless, we show that
this nonconvex problem can be recast as a solvable quasicon-
vex line search problem. Next, we consider the more general
and more realistic case in which the transmitter has uncertain
information regarding the receiver’s and eavesdropper’s chan-
nels. We study the design of robust beamformers that maxi-
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mize the worst-case secrecy rate, again subject to amplitude
constraints. The resulting max-min problem is more complex
than its non-robust counterpart but still can be transformed
into a quasiconvex line search problem. The tractability of
this problem, however, depends on the geometries of the uncer-
tainty sets. For the receiver’s channel, we consider uncertainty
arising from quantization errors imposed by the finite rate of
the feedback channel. Such uncertainty is well modelled with
N -dimensional spherical sets centered at the nominal estimate
available to the transmitter, where N is the number of transmit
elements. For the eavesdropper’s channel, however, we do not
assume any feedback because the eavesdropper is a passive or
non-cooperative receiver. Instead, we take advantage of the
fact that the line-of-sight (LoS) path is typically dominant
in VLC channels. Moreover, the LoS channel gain can be
accurately approximated by a deterministic function of the
receiver’s location and orientation, along with the emission
pattern of the LEDs. In typical VLC scenarios, it is sensible
to assume that the transmitter has some knowledge of the
receiver’s location and orientation. Thus, a reasonable estimate
of the eavesdropper’s channel can be obtained from such in-
formation. Accordingly, we derive uncertainty sets that reflect
the transmitter’s imprecise knowledge of the eavesdropper’s
location and orientation, as well as the emission pattern of the
LEDs. We also consider possible channel mismatches caused
by non-line-of-sight (NLoS) components. Such components
are due to diffuse reflections from nearby surfaces, and are
not taken into account by the LoS channel gain equation. All
the derived uncertainty sets are well structured in the sense that
they result in solvable worst-case secrecy rate maximization
problems.

The secrecy performance of the Gaussian MISO wiretap
channel with perfect channel information, subject to a total
average power constraint, was studied in [8]–[11]. Lower
bounds on the secrecy capacity were obtained in [8] and [9]. In
addition, it was shown in [9] that beamforming is the optimal
transmission strategy if the channel inputs are Gaussian. These
results were generalized in [10] and [11] where it was shown
that Gaussian signaling, along with beamforming, is in fact
optimal, and closed-form secrecy capacity expressions were
derived. The design of robust transmission schemes with
imperfect channel information, based on worst-case secrecy
rate maximization, was considered in [12]–[17]. In [12],
the authors observed similarities between the cognitive radio
and wiretap channel models, and considered the design of
robust beamformers in conjunction with spherical uncertainty
sets for the eavesdropper’s channel. The authors in [13]
studied robust beamforming along with discrete uncertainty
sets corresponding to inaccurate information regarding the
eavesdropper’s location, under the assumption of LoS prop-
agation. Worst-case secrecy rate maximization for the MISO
channel wiretapped by multiple, multi-antenna eavesdroppers
was considered in [14] using spherical uncertainty sets for the
receiver’s and eavesdroppers’ channels. In [15], the authors
considered the use of artificial noise generated by a friendly
jammer and studied the design of robust data and jamming
covariance matrices, under both individual and global power
constraints. The work in [16] considered the design of robust

transmit covariance matrices for the multiple-input, multiple-
output (MIMO) wiretap channel, in the low signal-to-noise
ratio (SNR) regime, using a linearized secrecy rate expression,
i.e., the secrecy rate is approximated by a linear function
of the covariance matrix. A similar approach was utilized
in [17] where the data and jamming covariance matrices are
alternatively optimized after linearizing the nonconcave term
in the secrecy rate expression based on Taylor’s first-order
approximation.

Compared to the previously mentioned works, our work in
this paper has the following two key differences:

1) We design the beamformer w subject to a per-transmit-
element amplitude constraint, i.e., ‖w‖∞ ≤ 1. Ampli-
tude constraints explicitly arise in VLC systems because
of the limited dynamic range of the LEDs, and they
are usually difficult to handle. Furthermore, as a side
advantage, our approach to solve the optimization prob-
lem is in fact applicable to general lp-norm constraints,
i.e., ‖w‖p ≤ 1, for any p ≥ 1. On the other hand, the
works in [8]–[17] consider a total power constraint P
on the transmitted signal vector, i.e., ‖w‖2 ≤

√
P , or

more generally, W � 0,Trace(W) ≤ P , where W is
the transmit covariance matrix.

2) We do not assume channel feedback from the eaves-
dropper. Instead, we exploit the imprecise knowledge of
the eavesdropper’s location and orientation to obtain an
estimate of the eavesdropper’s channel gain. Specifically,
we derive uncertainty sets for the eavesdropper’s channel
based on the uncertain parameters in the LoS channel
gain equation. We also consider uncertainty caused by
the NLoS components. On the other hand, the works
in [12], [14]–[17] assume spherical uncertainty sets for
the eavesdropper’s channel, that is ‖hE − ĥE‖2 ≤ εhE ,
where ĥE is the transmitter’s erroneous estimate of hE,
and εhE is some known constant. This model is well
accepted to take into account channel uncertainty caused
by limited feedback from the receiver [18, Lemma 1].
In wiretap scenarios, however, the spherical uncertainty
model becomes inapplicable if the eavesdropper is a
passive receiver and not part of the communication
network.

In the remainder of this section, we declare the notation
used throughout the paper. The system and channel models are
described in Section II. In Section III, we consider the design
of optimal and robust beamformers under the assumptions
of perfect and imperfect channel information, respectively. In
Section IV, we derive uncertainty sets for the eavesdropper’s
channel based on the uncertain parameters in the LoS channel
gain equation. In Section V, we provide numerical examples
to compare the performance of the proposed beamformers
with conventional schemes. We also evaluate the worst-case
secrecy rate performance in a typical VLC scenario. Finally,
we provide our concluding remarks in Section VI.

Notation: The set of N -dimensional real-valued numbers
is denoted by RN , and the set of N -dimensional nonnegative
real-valued numbers is denoted by RN+ . Vectors are denoted
by boldface lowercase letters, and matrices are denoted by
boldface uppercase letters. We use IN and 1N to denote the
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Fig. 1. A broadcast MISO VLC system with one intended receiver and one
eavesdropper.

N -dimensional identity matrix and the all-one column vector
of length N , respectively. We also use Diag(x1, . . . , xN ) to
denote the diagonal matrix with diagonal elements x1, . . . , xN .
The absolute value is denoted by |·|, and the lp-norm, p ≥ 1, is
denoted by ‖ · ‖p. The case p =∞ designates the Chebyshev
or l∞-norm given by ‖x‖∞ = max{|x1|, . . . , |xN |}. Trans-
position is denoted by the superscript T, and the Kronecker
product is denoted by ⊗. We follow the convention in the
physical-layer security literature and refer to the transmitter,
legitimate receiver, and eavesdropper as Alice, Bob, and Eve,
respectively. We use the subscripts B and E to denote relevance
to Bob and Eve, respectively.

II. SYSTEM AND CHANNEL MODELS

A. Problem Scenario

We consider secure downlink transmission in an indoor
VLC link, in the presence of a passive eavesdropper, as
illustrated in Figure 1. The service area, or simply the room,
is illuminated by NFix lighting fixtures attached to the ceiling.
Each fixture encloses NLED high-brightness LEDs that can
be modulated independently of each other using separate
drivers. The total number of LEDs is N = NFix × NLED. In
order to fulfill their primary role as luminaries, each LED is
forward-biased by a fixed current IDC to emit optical power
Popt = ηIDC, where η (W/A) is the current-to-optical-power
conversion ratio. Information is relayed from the transmitter
(Alice) to the legitimate receiver (Bob) by modulating the
instantaneous optical output power of the LEDs. The eaves-
dropper (Eve) is a passive adversary attempting to intercept
the connection between Alice and Bob.

B. Data Transmission

We consider a pulse-amplitude modulation system in
which information symbols from a single-stream data source
are stochastically encoded into a zero-mean current signal
s(t), t = 1, 2, . . . , where t is the time index. The code-
words are drawn at random according to an independent
and identically distributed (i.i.d.) uniform distribution over
the interval [−1, 1]. Each codeword s(t) is scaled by a con-
stant µIDC, where µ ∈ [0, 1] is termed as the modulation
index. The modulation index is chosen such that the LED

maintains linear current-to-optical-power conversion over the
range [(1− µ)IDC, (1 + µ)IDC]. If nonlinearity is severe, dig-
ital predistortion of the modulation current may be necessary
to linearize the LED response around the DC bias point and
increase the permissible dynamic range 2µIDC [19]. Then, the
scaled codewords are multiplied by a fixed vector w ∈ RN ,
‖w‖∞ ≤ 1, referred to as the beamformer, resulting in the
modulation current vector

x(t) = µIDCws(t). (1)

Thus, after adding the DC bias, the vector of instantaneous
optical powers transmitted from the LEDs can be expressed
as

PTx(t) = η(IDC1N + x(t))

= Popt(1N + µws(t)). (2)

In this work, we assume narrow-band transmission, i.e.,
the system bandwidth (e.g., 10 MHz [20]) is considerably
smaller than the inverse of the maximum excess delay of
the channel (about 10-20 nsec in a medium-sized room).
Under this assumption, the frequency response of the VLC
channel is almost flat near DC [21]. Therefore, it is sufficient
to characterize the optical channel by its DC gain, which is
the ratio of the transmitted to received optical powers. With
multiple-LED transmission, the total received optical power,
PRx(t), is the sum of optical powers collected from individual
LEDs. Let hi ∈ R+, i = 1, . . . , N , denote the DC optical
channel gain from the ith LED to the photodetector, then
PRx(t) can be expressed as

PRx(t) = hTPTx(t)

= Popth
T1N + µPopth

Tws(t), (3)

where h = [h1 . . . hN ]T is the DC optical channel gain
vector. The first term on the right-hand side of (3) is the
DC component that specifies the illumination level (or illumi-
nance) perceived by the human eye at the receiver’s location,
whereas the second term is the data-signal component with
zero mean. The optical power is converted by the receiver’s
photodetector into a proportional photocurrent, RPRx(t), cor-
rupted by additive Gaussian noise, n(t), where R (A/W) is
the photodetector responsivity, and n(t) ∼ N (0, σ2).

Thus, after removing the DC components, the signals re-
ceived by Bob and Eve, respectively, are given by

yB(t) = PhT
Bws(t) + nB(t), (4a)

yE(t) = PhT
E ws(t) + nE(t), (4b)

where P , µPoptR, hB ∈ RN+ and hE ∈ RN+ are Bob’s
and Eve’s optical channel gain vectors, respectively, and
nB ∼ N (0, σ2

B) and nE ∼ N (0, σ2
E) are Gaussian noises.

For simplicity, and without loss of generality, we assume
that σ2

B = σ2
E = σ2. Equations (4a) and (4b) define a Gaus-

sian MISO wiretap channel, and the input is subject to the
amplitude constraint

‖w‖∞ ≤ 1, (5a)
|s(t)| ≤ 1 ∀t. (5b)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSP.2016.2603964

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO.YY, MONTH YEAR

u

f

θ

x

y

z

di

ith LED

ψi

ζi

Ψ 

Optical 

receiver

Fig. 2. Geometry of an LoS VLC link with arbitrary receiver orientation.

C. Optical Channel Gain

Figure 2 illustrates the geometry of an LoS VLC link. The
receiver is pointing towards an arbitrary direction defined by
the unit vector

u =
[
sin θ cosφ sin θ sinφ cos θ

]T
,

where θ ∈ [0, π] is the zenith (or polar) angle, and φ ∈ [0, 2π]
is the azimuth angle. We shall refer to u as the orientation
vector.

We assume that the LEDs have an azimuth-symmetric
generalized Lambertian emission pattern. We also assume that
the LoS path is dominant over multipath components caused
by diffuse reflections from nearby surfaces1. Under these
assumptions, the DC optical channel gain hi, i = 1, . . . , N,
can be accurately approximated by [21, Eq. (10)]

hi =
(m+ 1)A

2π‖di‖22
(cos ζi)

m
Ts gc cosψi IΨ(ψi) (6a)

=
(m+ 1)A

2π‖di‖m+3
2

dmz Ts gc d
T
i u IΨ

(
cos−1 dT

i u

‖di‖2

)
, (6b)

where m is the Lambertian order, A is the area of the
photodetector, di = [dx,i dy,i dz]

T is the displacement vector
between the photodetector and the ith LED (see Figure 2),
ζi is the angle of irradiance from the ith LED (measured with
respect to the LED axis), Ts is the gain of the optical filter,
gc is the gain of the optical concentrator within its field-of-
view (FoV), ψi is the angle of incidence from the ith LED
(measured with respect to the receiver axis), and IΨ(·) is an
indicator function defined as

IΨ(ψ) ,

{
1 |ψ| ≤ Ψ

0 |ψ| > Ψ
,

where Ψ ≤ π/2 is the semi-angle FoV of the concentrator.
Assuming an idealized non-imaging concentrator, gc can be
approximated by [21, Eq. (8)]

gc =
n2

r

sin2 Ψ
, (7)

where nr is the refractive index of the concentrator material.

1This assumption will be relaxed in Section IV-D where the NLoS compo-
nents are taken into account.

III. OPTIMAL AND ROBUST BEAMFORMER DESIGN

A. Performance Metric and Problem Formulation

A key performance metric of the wiretap channel is the
secrecy capacity defined as the maximum communication rate
at which Bob can reliably decode the transmitted message,
while Eve cannot infer information at any positive rate [2]–[4].
The secrecy capacity of the Gaussian wiretap channel, subject
to an average power constraint, is a well-studied problem, and
it was shown that the maximizing input distribution is Gaus-
sian, resulting in a closed-form secrecy capacity expression.
On the other hand, with amplitude constraints on the channel
input, the secrecy capacity is achieved by a discrete input
distribution having a finite number of mass points [22]. For
sufficiently-small amplitude constraints, the symmetric binary
distribution has been shown to be optimal [22, Section IV].
For the general case, however, it is difficult to explicitly solve
for the maximizing distribution, and thus the secrecy capacity
can be only found via numerical methods. Since closed-form
expressions are typically crucial for system design purposes,
one might resort to upper and lower bounds on the secrecy
capacity [7, Theorem 1].

Assuming uniform input distribution along with transmit
beamforming, an achievable secrecy rate in (bits/sec/Hz)
for the Gaussian MISO wiretap channel (4), subject to the
amplitude constraint in (5), is given by [7, Eq. (13)]

Rs =

[
1

2
log2

6P 2(hT
Bw)2 + 3πeσ2

πeP 2(hT
E w)2 + 3πeσ2

]+

, (8)

where [x]+ = max{x, 0}. A typical problem of interest is to
find the optimal beamformer w? that maximizes the achievable
secrecy rate, i.e.,

w? = argmax
‖w‖∞≤1

Rs. (9)

In fact, our main goal in this paper is to solve the design
problem in (9). To this end, we have to overcome two major
difficulties. Firstly, the problem in (9) is clearly nonconvex,
and the amplitude constraint on the beamformer w makes it
different from the well-known Rayleigh quotient maximization
problem. In the next subsection, we introduce Proposition 1 to
transform this nonconvex problem into a solvable quasiconvex
line search problem. Secondly, it is unrealistic in most practical
cases to assume that the channel gain vectors hB and hE are
precisely known to Alice. On one hand, information regarding
Bob’s channel might suffer from estimation errors, aside from
inevitable quantization errors imposed by the finite rate of
the feedback channel. On the other hand, there might be no
feedback from Eve regarding her channel if Eve is a passive
eavesdropper and shall remain silent to hide her presence. In
this case, Alice must resort to less reliable information sources,
such as Eve’s location and orientation, in order to obtain an
estimate of her channel gain. In all cases, solving (9) for
some uncertain estimates of hB and hE can be meaningless
as secrecy outage will occur if the actual realizations of
hB and hE significantly deviate from their nominal values.
Therefore, a more appropriate design approach is to devise
reasonable uncertainty sets, HB and HE, that enclose all
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possible realizations of hB and hE, respectively, in a given
scenario, and solve the robust counterpart [23] of (9) to
maximize the secrecy rate corresponding to the worst-case
realization of (hB,hE) ∈ HB ×HE. That is to solve

maximize
‖w‖∞≤1

Rs ∀(hB,hE) ∈ HB ×HE, (10a)

or, equivalently,

maximize
‖w‖∞≤1

min
hB∈HB
hE∈HE

Rs. (10b)

The robust design problem in (10) will be tackled in Sec-
tion III-C via Proposition 2, whereas in Section IV, we
discuss methods to model uncertainty in Eve’s channel, in
VLC scenarios, without feedback from Eve.

B. Optimal Beamforming with Perfect Channel Information

Our focus in this subsection is on solving the design
problem in (9) under the premise of perfect channel
information. Although the constraint on the beamformer
is specified by ‖w‖∞ ≤ 1, i.e., an amplitude or l∞-norm
constraint, we shall in fact solve the problem subject to a
general lp-norm constraint, i.e., for any p ≥ 1.

Proposition 1: (Certain hB and hE) Let ‖w‖p, p ≥ 1,
denote the lp-norm of w, then the maximization problem

maximize
‖w‖p≤1

6P 2(hT
Bw)2 + 3πeσ2

πeP 2(hT
E w)2 + 3πeσ2

(11)

is equivalent to the quasiconvex problem (or quasiconcave
maximization problem)

maximize
α∈[αmin,

√
6/πe]

6P 2(hT
Bwα)2 + 3πeσ2

πeα2P 2(hT
Bwα)2 + 3πeσ2

, (12)

where αmin, the lower bound on α, is obtained by

αmin = min
w,α

α (13a)

s.t. hT
Bw = 1, (13b)

|hT
E w| ≤ α, (13c)

and, for each α ∈ [αmin,
√

6/πe], wα is obtained by

wα = argmax
‖w‖p≤1

hT
Bw (14a)

s.t. |hT
E w| ≤ αhT

Bw. (14b)

Proof: Please refer to Appendix A. �
Remarks:
• Proposition 1 has a practical interpretation. It reveals that

the achievable secrecy rate is a quasiconcave function of
the parameter α, which is the ratio of the signal level at
Eve to the signal level at Bob2. This is provably true for
an arbitrary lp-norm constraint on w, i.e., for any p ≥ 1.

2Recall from (4) that, without loss of generality, we assume equal noise
variance at Bob and Eve.

• Setting α = 0 in (14) corresponds to the zero-forcing
(ZF) beamforming case, i.e., wα=0 is the best ZF beam-
former.

• If N ≥ 2, and hB and hE are linearly independent, then
αmin = 0 and ZF is feasible.

Proposition 1 involves two optimization problems. The outer
problem (12) is a quasiconvex line search problem whose
globally optimal solution can be found by performing a bi-
section search on α ∈ [αmin,

√
6/πe], on a logarithmic scale.

In the next subsection, we propose Algorithm 1 to solve (12),
as well as the corresponding problem in the more general
case of uncertain channel information. In each iteration of
the bisection search, the inner problem (14) should be solved
to obtain wα and calculate the objective function in (12).
Problem (14) is convex for any p ≥ 1, and can be efficiently
solved in a polynomial time.

Using (12), the achievable secrecy rate, as a function of α,
is given by

Rs(α) =

[
1

2
log2

6P 2(hT
Bwα)2 + 3πeσ2

πeα2P 2(hT
Bwα)2 + 3πeσ2

]+

. (15)

Let α? denote the global maximizer of (12), then the optimal
beamformer w? is the solution of (14) corresponding to
α = α?, i.e., w? ≡ wα? , and the maximum achievable secrecy
rate is equal to Rs(α

?).

C. Robust Beamforming with Imperfect Channel Information

In this subsection, we extend the approach we used in
Proposition 1 to take into account uncertainty in channel
information for both Bob and Eve.

Proposition 2: (Uncertain hB and hE) Given a convex
set HB and an arbitrary set HE, the max-min problem

maximize
‖w‖p≤1

min
hB∈HB
hE∈HE

6P 2(hT
Bw)2 + 3πeσ2

πeP 2(hT
E w)2 + 3πeσ2

, (16)

for any p ≥ 1, is equivalent to the quasiconvex problem

maximize
α∈[αmin,

√
6/πe]

6P 2t2α + 3πeσ2

πeα2P 2t2α + 3πeσ2
, (17)

where αmin is obtained by

αmin = min
w,α

α (18a)

s.t. hT
Bw ≥ 1 ∀hB ∈ HB, (18b)

|hT
E w| ≤ α ∀hE ∈ HE, (18c)

and, for each α ∈ [αmin,
√

6/πe], tα is obtained from

(wα, tα) = argmax
‖w‖p≤1,t

t (19a)

s.t. hT
Bw ≥ t ∀hB ∈ HB, (19b)

|hT
E w| ≤ αt ∀hE ∈ HE. (19c)

Proof: Please refer to Appendix B. �
Remarks:
• αmin > 0 implies that ZF is not feasible.
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• αmin ≥
√

6/πe implies that the max-min problem is
not feasible and the worst-case secrecy rate is zero (e.g.,
when HB ∩HE 6= ∅).

Similar to (12) in Proposition 1, the outer problem (17)
is quasiconvex and can be efficiently solved by performing
a bisection search on α. We propose the following iterative
algorithm to obtain a solution α? with accuracy εα (dB).

Algorithm 1 Bisection search to solve (17) in Proposition 2
1: Solve (18) to obtain αmin

2: if αmin < 10−10, then αmin := 10−10

3: Initialize α = 20 log10

√
6/πe and α = 20 log10 αmin

4: given the required accuracy εα (dB), set the positive constant
∆α such that 0 < 20 log10 ∆α < εα

5: while α− α ≥ εα do
6: α(dB) := (α+ α)/2

7: Solve (19) with α to obtain tα, where α = 10
α(dB)

20

8: Calculate the objective in (17), f(α) =
6P2t2α+3πeσ2

πeα2P2t2α+3πeσ2

9: Solve (19) with α+ ∆α to obtain tα+∆α

10: Calculate f(α+ ∆α) =
6P2t2α+∆α

+3πeσ2

πe(α+∆α)2P2t2α+∆α
+3πeσ2

11: if f(α+∆α)−f(α) > 0, then α := α(dB) else α := α(dB)

12: end while
13: return α? := α

Assuming εα = 0.2 dB, Algorithm 1 shall converge in at

most dlog2(20 log10

√
6/πe

10−10 ) − log2 εαe = 10 iterations [24,
Section 4.2.5]. Note, however, that the inner problem (19)
should be solved twice in each iteration. Thus, although
Proposition 2 is valid in principle for any convex set HB and
an arbitrary set HE, it is practically useful only when (19)
is tractable, i.e., can be efficiently solved. Problem (19) is a
robust convex program whose tractability depends solely on
the geometries of HB and HE [23], [25], [26]. In Section IV,
we use a spherical set HB to accommodate quantization errors
caused by limited feedback from Bob. For Eve’s channel, we
use discrete, interval, and ellipsoidal sets to model different
uncertainty sources that cause inaccurate estimates of hE in
VLC scenarios. Using a spherical set HB, and discrete, inter-
val, or ellipsoidal sets HE, and assuming that p ∈ {1, 2,∞}3,
the inner problem (19) can be expressed as a second-order
cone problem. The ε-accurate solution of such a problem can
be found using interior-point methods in O(

√
N log(1/ε))

iterations [28], for any ε > 0.
From (17), the worst-case secrecy rate, as a function of α,

is given by

Rwc
s (α) =

[
1

2
log2

6P 2t2α + 3πeσ2

πeα2P 2t2α + 3πeσ2

]+

. (20)

The best worst-case secrecy rate is equal to Rwc
s (α?) and is

achieved by the robust beamformer wα? .

IV. UNCERTAINTY SETS FOR THE EAVESDROPPER’S
CHANNEL IN VLC SCENARIOS

Our focus in this section is on deriving uncertainty sets
for Eve’s channel based on the uncertain parameters in the

3We need the assumption p ∈ {1, 2,∞} merely to state that the resulting
problem is a second-order cone for which complexity is known to be
O(
√
N log(1/ε)). However, the problem is still convex and equally solvable,

e.g., via the CVX toolbox [27], for any p ≥ 1.

LoS channel gain equation in (6). Our motivation towards
this approach is the lack of feedback from Eve regarding her
channel when Eve is a passive or non-cooperative receiver.
In particular, we take advantage of the fact that hE can be
predicted from Eve’s location and orientation using (6) if the
LoS path is dominant and the emission pattern of the LEDs is
known. Such information can be mapped into an estimate of
hE surrounded by a reasonable uncertainty set HE. Unfortu-
nately, the channel gain expression in (6) is quite complex, and
mapping such uncertain parameters altogether into a usefulHE
that makes (19) solvable is quite difficult. Thus, we begin
with studying uncertainty sets corresponding to one uncertain
parameter at a time. We also consider uncertainty caused by
the NLoS components in hE. Cases involving more than one
uncertainty source will also be briefly discussed.

Throughout the entire section, we assume an amplitude
constraint on w, i.e., ‖w‖∞ ≤ 1. Furthermore, we assume
spherical uncertainty for Bob’s channel, i.e., hB ∈ HB,

HB =
{
ĥB + ehB : ‖ehB‖2 ≤ εhB

}
, (21)

where the nominal vector ĥB is known to Alice via limited
feedback from Bob, and the bounded error term ehB is due
to quantization errors. Substituting (21) back into (19b), the
latter can be expressed as

ĥT
Bw − εhB‖w‖2 ≥ t. (22)

A. Uncertain Eavesdropper’s Location

In this subsection, we consider uncertainty caused by inac-
curate information regarding Eve’s location. We assume that
Eve is located inside a three-dimensional rectangular region
(or box) B with dimensions (2lx, 2ly, 2lz). We also assume,
without loss of generality, that B is centered at the origin, i.e.,

B =
{
Lv : v ∈ R3, ‖v‖∞ ≤ 1

}
, (23)

where L , Diag(lx, ly, lz). Furthermore, we choose the
origin (or the enter of B) as the nominal location of Eve.

Let δ = [δx δy δz]
T, δ ∈ B, denote the deviation of

the actual location of Eve from the origin. Then, the optical
channel gain hi, i = 1, . . . , N , anywhere inside B, as a
function of δ, is given by

hi(δ) =
(m+ 1)A

2π‖di − δ‖m+3
2

(dz − δz)m Ts gc (di − δ)Tu

× IΨE

(
cos−1 (di − δ)Tu

‖di − δ‖2

)
, (24)

and the set of all possible channel realizations inside B can
be written as

HBE = {h(δ) : δ ∈ B} . (25)

If we substitute with HE = HBE back into (19c), we will
end up with an intractable semi-infinite optimization problem.
Therefore, we shall discuss methods to approximateHBE , based
on the volume of B, in order to make (19) solvable.
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1) Small uncertainty region: For sufficiently-small B, e.g.,
max {2lx, 2ly, 2lz} ≤ 0.5 m, we can assume that the subset
of LEDs seen by Eve’s receiver at a particular location δ,

Iδ =

{
i : IΨE

(
cos−1 (di − δ)Tu

‖di − δ‖2

)
= 1, i ∈ {1, . . . , N}

}
,

is identical for all δ ∈ B. In other words, the output of the
indicator function in (24) is independent of δ for all the LEDs
and is solely determined by the nominal location of Eve. Under
this assumption, the channel gain (24) can be written as

hi(δ) = ci
(dz − δz)m(di − δ)Tu

‖di − δ‖m+3
2

, (26)

where

ci ,
(m+ 1)A

2π
Ts gc IΨE

(
cos−1 dT

i u

‖di‖2

)
. (27)

Furthermore, with sufficiently small B, h(δ) can be well ap-
proximated by its first-order approximation around the center
of B, that is

h(δ) ≈ h̄(δ) = h0 + J0δ, (28)

where h0 ≡ h(0), J ∈ RN×3 is the Jacobian matrix (or
matrix of partial derivatives), defined as

J ,


∂h1(δ)

∂δx

∂h1(δ)

∂δy

∂h1(δ)

∂δz
...

...
...

∂hN (δ)

∂δx

∂hN (δ)

∂δy

∂hN (δ)

∂δz

 , (29)

and J0 ≡ J(0). The entries of h0 and J0 are provided in
Appendix D. Using the linearized channel gain expression
in (28), the uncertainty set HBE can be approximated by

H̄BE =
{
h0 + J0Lv : v ∈ R3, ‖v‖∞ ≤ 1

}
. (30)

Substituting with H̄BE back into (19c), the problem in (19) can
be expressed as

maximize
‖w‖∞≤1,t

t (31a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (31b)

|hT
0w + vTLJT

0w| ≤ αt ∀v : ‖v‖∞ ≤ 1,
(31c)

or, equivalently,

maximize
‖w‖∞≤1,t

t (32a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (32b)

hT
0w + ‖LJT

0w‖1 ≤ αt, (32c)

hT
0w − ‖LJT

0w‖1 ≥ −αt, (32d)

which is a second-order cone problem. Similarly, the problem
in (18) can be expressed as

minimize
w,α

α (33a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ 1, (33b)

hT
0w + ‖LJT

0w‖1 ≤ α, (33c)

hT
0w − ‖LJT

0w‖1 ≥ −α. (33d)

2) Large uncertainty region: If the uncertainty region B
is relatively large, the first-order approximation in (28) may
become poor. Nevertheless, B can be first divided into K non-
overlapping boxes, Bk, k = 1, . . . ,K, such that

⋃K
k=1 Bk = B.

Then, the first-order approximation is performed inside each
box, around its center, and (31) is solved with the correspond-
ing K constraints.

Alternatively, the region B can be discretized using a
three-dimensional fine grid

...
B, and the problem in (19) is

approximated by

maximize
‖w‖∞≤1,t

t (34a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (34b)

|hT(δ)w| ≤ αt ∀δ ∈
...
B, (34c)

where the entries of h(δ) are obtained with (24). Although
discretization is a straightforward approach that results in
linear constraints, the number of constraints may grow up very
quickly with large uncertainty regions.

B. Uncertain Eavesdropper’s Orientation

In this subsection, we assume that Eve has the freedom to
adjust the direction of her receiver, (θE, φE), θE ∈ [θmin, θmax],
φE ∈ [φmin, φmax], to her advantage. In other words, the
exact direction of Eve’s receiver is unknown to Alice. The
uncertainty set U containing all possible realizations of Eve’s
orientation vector u can be written as

U =

u =

sin θ cosφ
sin θ sinφ

cos θ

 :
θ ∈ [θmin, θmax],
φ ∈ [φmin, φmax]

 , (35)

and the optical channel gain hi, i = 1, . . . , N , as a function
of u, is given by

hi(u) = ci
dmz

‖di‖m+3
2

dT
i u, (36)

where ci is as defined in (27). Let D ∈ RN×3 be defined as

D , dmz

[
c1d1

‖d1‖m+3
2

. . .
cNdN

‖dN‖m+3
2

]T

. (37)

Then, h(u) can be expressed as

h(u) = Du. (38)

Note from (27) and (37) that D depends on u via the indicator
function in the definition of ci, i = 1, . . . , N . Thus, in general,
h is not a linear function of u. The set of all possible channel
gains for Eve is given by

HUE = {Du : u ∈ U} . (39)

Substituting with HUE back into (19c), the problem in (19) can
be written as

maximize
‖w‖∞≤1,t

t (40a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (40b)

max
u∈U

|uTDTw| ≤ αt. (40c)

In order to efficiently solve (40), we shall differentiate between
two cases, as follows.
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1) Small angle variations: In this case, we assume that
Eve’s freedom to adjust her receiver’s orientation is limited
in the sense that the subset of LEDs inside Eve’s FoV at a
particular direction u,

Iu =

{
i : IΨE

(
cos−1 dT

i u

‖di‖2

)
= 1, i ∈ {1, . . . , N}

}
,

remains unchanged for all u ∈ U . Perhaps the most practical
case in which the above assumption may hold is when the
permissible variations of the zenith angle θE is relatively small
and close to zero, i.e., θE ∈ [0, θmax], where θmax is relatively
small (e.g., θmax ≤ 30◦). If Iu is fixed for all u ∈ U , then
D is independent of u, and h, as given in (38), is a linear
function of u. In this case, the left-hand side of the inequality
in (40c) can be upper-bounded as

max
u∈U

|uTDTw| ≤ max
‖u‖2≤1

uTDTw = ‖DTw‖2. (41)

Then, the problem in (40) is replaced by

maximize
‖w‖∞≤1,t

t (42a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (42b)

‖DTw‖2 ≤ αt, (42c)

which is a second-order cone problem.
2) Large angle variations: With arbitrary zenith and/or

azimuth angle variations for Eve’s receiver, D becomes de-
pendent on u, and linearity between h and u is no longer
maintained. In this case, it becomes difficult to obtain a
mathematically-convenient uncertainty setHUE over the contin-
uum of θE and φE. Thus, we resort to sampling h(u) over U ,
and the inner problem (19) is approximated by

maximize
‖w‖∞≤1,t

t (43a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (43b)

|hT(θ, φ)w| ≤ αt ∀(θ, φ) ∈
...
Θ×

...
Φ, (43c)

where the components of h(θ, φ) are obtained with (6b), and...
Θ and

...
Φ are fine grids on the intervals [θmin, θmax] and

[φmin, φmax], respectively.

C. Uncertain LEDs Half-Angle

The emission pattern of the LEDs is fully determined by
the Lambertian order

m = −1/log2(cos ζ3-dB), (44)

where ζ3-dB is the half-intensity angle, or simply the half-
angle, of the LEDs. This angle is typically specified by the
LED manufacturer as a nominal value in the datasheet. In
practice, however, the actual angle of each LED will deviate
from the nominal value. In this subsection, we study channel
uncertainty caused by this deviation. In particular, we assume
an interval uncertainty model in which ζ3-dB ∈ [ζ3-dB

min , ζ
3-dB
max],

and allow independent realizations of ζ3-dB for each LED.
Then, we map the interval [ζ3-dB

min , ζ
3-dB
max] into independent

interval uncertainties for each entry of hE.

We begin with rewriting the channel gain from (6a) as

hi(mi) = κi(mi + 1)(cos ζi)
mi , i = 1, . . . , N, (45a)

where

mi = −1/log2(cos ζ3-dB
i ), ζ3-dB

i ∈
[
ζ3-dB
min , ζ

3-dB
max

]
, (45b)

and

κi ,
A

2π‖di‖22
Ts gc cosψi IΨE(ψi). (45c)

Next, we define mmin and mmax, respectively, as

mmin , −1/log2(cos ζ3-dB
max), (46a)

mmax , −1/log2(cos ζ3-dB
min ). (46b)

Then, in order to map the interval [mmin,mmax] into
[hmin
i , hmax

i ], i = 1, . . . , N , we first show that hi is a
quasiconcave function of mi. Differentiating hi with respect
to mi, we obtain

h′i(mi) = κi(cos ζi)
mi(1 + (mi + 1) loge(cos ζi)). (47)

From (47), for κi 6= 0, i = 1, . . . , N , we note that{
h′i(mi) ≥ 0 for mi ≤ m?

i ,

h′i(mi) < 0 for mi > m?
i ,

where m?
i , −(1 + 1/ loge(cos ζi)), i.e., hi(mi) is quasi-

concave with global maximizer m?
i . Thus, the uncertainty set

Hζ3-dB

E corresponding to the interval [ζ3-dB
min , ζ

3-dB
max] can be written

as

Hζ3-dB

E =
{

[h1 . . . hN ]T : hi ∈ [hmin
i , hmax

i ], i = 1, . . . , N
}
,

(48a)

where, for i = 1, . . . , N,

hmin
i =
hi(mmin) for m?

i > mmax,

min{hi(mmin), hi(mmax)} for m?
i ∈ [mmin,mmax],

hi(mmax) for m?
i < mmin,

(48b)
hmax
i =
hi(mmax) for m?

i > mmax,

hi(m
?
i ) for m?

i ∈ [mmin,mmax],

hi(mmin) for m?
i < mmin.

(48c)

Define ĥ ∈ RN+ and Ĥ ∈ RN×N+ , respectively, as

ĥ ,
1

2
[hmax

1 + hmin
1 . . . hmax

N + hmin
N ]T, (49a)

Ĥ ,
1

2
Diag(hmax

1 − hmin
1 , . . . , hmax

N − hmin
N ). (49b)

Then, Hζ3-dB

E can be written as

Hζ3-dB

E =
{
ĥ + Ĥv : v ∈ RN , ‖v‖∞ ≤ 1

}
. (50)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSP.2016.2603964

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



MOSTAFA AND LAMPE: OPTIMAL AND ROBUST BEAMFORMING FOR SECURE TRANSMISSION IN MISO VLC LINKS 9

Similar to (30)–(32), substituting with Hζ3-dB

E into (19c), the
problem in (19) can be expressed as

maximize
‖w‖∞≤1,t

t (51a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (51b)

ĥTw + ‖Ĥw‖1 ≤ αt, (51c)

ĥTw − ‖Ĥw‖1 ≥ −αt. (51d)

D. Uncertain NLoS Components

In this subsection, we consider channel uncertainty arising
from the NLoS components caused by diffuse reflections from
nearby surfaces. Taking into account signal contributions from
both the LoS and NLoS paths, the DC optical channel gain
can be written as

hi = hLoS
i + hNLoS

i , i = 1, . . . , N, (52)

where hLoS
i is the LoS component obtained with (6), and

hNLoS
i is the unknown NLoS component. We shall consider

a simple multiplicative uncertainty model in which hNLoS
i is

an uncertain fraction, γi, of hLoS
i , that is

hNLoS
i = γih

LoS
i , 0 ≤ γi ≤ γmax, i = 1, . . . , N, (53)

where γmax , max
i

γi. The actual value of γmax depends
mostly on the problem geometry as well as the diffuse reflec-
tivity of nearby surfaces. In practice, γmax can be measured
or predicted using numerical simulations. Simulation results
reported in [6] show γmax of about 12% (see the discussion
after Figure 6 in [6]). Note that the multiplicative model in (53)
is applicable only when the LoS path between the ith LED and
the photodetector exists, i.e., hLoS

i 6= 0, and is dominant. In
other words, (53) does not take into account the case in which
the received signal consists entirely of NLoS components, e.g.,
when the LoS path is blocked or outside the receiver FoV.

From (52) and (53), the set of all possible channel gain
vectors can be written as

Hγmax

E ={
[h1 . . . hN ]T : hi ∈ [hLoS

i , (1 + γmax)hLoS
i ], i = 1, . . . , N

}
,

(54)

which is similar to Hζ3-dB

E in (48a), and thus we can proceed
with the same steps from the previous subsection.

E. Combined Uncertainties

So far we have derived separate sets corresponding to
uncertainties in location, orientation, half-angle, and NLoS
components. In practice, however, these uncertainties may
happen in combination with each other. Thus, more inclusive
sets that take into account the aggregate uncertainty are
required. Unfortunately, it is difficult, in general, to derive such
sets or provide a unified treatment for different combinations
of uncertainties because, as we mentioned earlier, the channel
gain expression in (6) is a complex function of the uncertainty
sources. Nevertheless, one intuitive approach to circumvent

such a difficulty is to sample the channel gain vector over the
variables with lower dimension or smaller uncertainty size.
Consider, for example, the case of uncertain location and LEDs
half-angle, that is

HB×ζ
3-dB

E = HBE ×H
ζ3-dB

E

=
{
h(δ, ζ3-dB) : δ ∈ B, ζ3-dB ∈ [ζ3-dB

min , ζ
3-dB
max]N

}
,

where ζ3-dB = [ζ3-dB
1 . . . ζ3-dB

N ]T. If N > 3, i.e., the
dimension of ζ3-dB is bigger than the dimension of δ, then
B can be discretized using a three-dimensional K-point grid,...
B = {δ1, . . . , δK}, and the problem in (51) is modified to

maximize
‖w‖∞≤1,t

t

s.t. ĥT
Bw − εhB‖w‖2 ≥ t,

ĥT
kw + ‖Ĥkw‖1 ≤ αt,

ĥT
kw − ‖Ĥkw‖1 ≥ −αt, k = 1, . . . ,K,

where ĥk and Ĥk are obtained as in (49) using the components
of hmin(δk) and hmax(δk), for k = 1, . . . ,K. The same idea
can be applied to other combinations of uncertainty sources.

Furthermore, there exist specific cases of combined uncer-
tainties in which discretization may not be necessary. Consider,
for example, the special, but practically relevant, case of small
location and angle uncertainties. With such a combination, the
linear channel gain models considered in Sections IV-A1 and
IV-B1 are both applicable, and an explicit formulation of the
optimization problem can be obtained as follows. First, we
rewrite the linearized channel gain expression from (28) as

h̄(δ,u) = h0 + J0δ

= Du + G0(I3 ⊗ u)δ

= Du + G0(δ ⊗ I3)u, (55)

where D is as defined in (37), and the entires of G0, G0 ∈
RN×9, can be inferred from (90b)–(90d) in Appendix D. Then,
the inner problem (19) can be expressed as

maximize
‖w‖∞≤1,t

t (56a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (56b)

max
δ∈B
‖u‖2≤1

|uTDTw + uT(δT ⊗ I3)GT
0w| ≤ αt.

(56c)

The constraint in (56c) can be replaced by a set of second-
order cone constraints, given by

‖DTw + (vT
(k) ⊗ I3)GT

0w‖2 ≤ αt, k = 1, . . . , 8, (57)

where v(k) ∈ R3, k = 1, . . . , 8, are the vertices (or corners)
of B.

V. NUMERICAL EXAMPLES

In this section, we provide numerical examples to verify the
performance gains of the beamformers proposed in Section III
compared to conventional beamforming schemes. We also
demonstrate the design of robust beamformers in a typical
VLC scenario and investigate the resulting worst-case secrecy
rate performance under different uncertainty levels.
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A. Performance Comparisons
All the results presented in this subsection are obtained

under the following assumptions. The number of transmit
elements is set to N = 4. The entries of hB and hE are
generated i.i.d. according to the uniform distribution over the
interval [0, 1], and the results are averaged over 1000 indepen-
dent trials. The optimal and robust beamformers are obtained
via Algorithm 1, where the outer maximization problem is
solved with accuracy εα = 0.2 dB and the inner problem is
solved using the CVX toolbox [27] along with the MOSEK
solver [29].

1) Optimal versus suboptimal beamformers under different
lp-norm constraints: In this example, we compare the secrecy
rate performance of the optimal beamformer with the gen-
eralized eigenvector (GEV) and ZF beamformers, under the
premise of perfect channel information.

Figure 3(a) depicts the secrecy rates (8) versus P/σ. The
secrecy rates are obtained with wα? , wGEV, and wα=0, corre-
sponding to the optimal, GEV, and ZF beamformers, respec-
tively, subject to the constraint ‖w‖p ≤ 1, for p = 1, 2,∞.
The optimal beamformer wα? is obtained with Proposition 1,
and the corresponding α? is shown in Figure 3(b). The beam-
former wGEV is the generalized eigenvector of the matrix pair
(6P 2hBh

T
B +3πeσ2IN , πeP

2hEh
T
E +3πeσ2IN ) corresponding

to its largest generalized eigenvalue, where wGEV is scaled
such that ‖wGEV‖p = 1, for p = 1, 2,∞. The ZF beamformer
wα=0 is obtained by solving (14) with α = 0.

As expected, we note from Figure 3(a) that the optimal
beamformer provides the best performance for all p = 1, 2,∞,
however at the cost of increased complexity. We also note
that the secrecy rates of the optimal and GEV beamformers
coincide when p = 2. This is because GEV beamforming
is optimal under the l2-norm constraint [10]. Furthermore,
we note that the ZF beamformer outperforms its GEV coun-
terpart under the l∞-norm constraint, and it approaches the
performance of the optimal beamformer as P/σ increases.
Figure 3(b) shows that α? is nonincreasing with respect to
P/σ for all p = 1, 2,∞. Thus, the ZF beamformer is in fact
asymptotically optimal at high P/σ for all p. Moreover, it
can be observed that α? decreases rapidly as p increases. This
reveals that the performance gap between the ZF and optimal
beamformers narrows quickly with increasing p at high P/σ.

Figure 4 shows the secrecy rate performance versus the
number of eavesdroppers K when 20 log10(P/σ) = 20 dB.
Each eavesdropper has a single receive element, and there
is no collaboration among the eavesdroppers, i.e., centralized
processing of the received signals is not permitted. The secrecy
rates are obtained with

Rs(w) =

[
1

2
log2

6P 2(hT
Bw)2 + 3πeσ2

πeP 2‖HT
E w‖2∞ + 3πeσ2

]+

, (58)

where HE , [hE1
. . . hEK ]. The GEV beamformer is the

generalized eigenvector of the matrix pair (6P 2hBh
T
B +

3πeσ2IN , πeP
2HEH

T
E + 3πeσ2IN ) corresponding to the

largest generalized eigenvalue. The optimal beamformer is
obtained with Proposition 1 after replacing the constraint
in (14b) with ‖HT

E w‖∞ ≤ αhT
Bw, and the ZF beamformer

is obtained by setting α = 0.
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Fig. 3. (a) Secrecy rates (8) obtained with the optimal, GEV, and ZF beam-
formers versus P/σ, subject to the constraint ‖w‖p ≤ 1, for p = 1, 2,∞.
(b) α? corresponding to the optimal beamformer wα? .
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Fig. 4. Secrecy rates (58) of the optimal, GEV, and ZF beamformers under
different lp-norm constraints, versus the number of eavesdroppers when
20 log10(P/σ) = 20 dB.

We note that the GEV beamformer is optimal when K = 1
and p = 2. We also note that, as K increases, the GEV
beamformer outperforms the ZF scheme even when p 6= 2.
Obviously, ZF becomes infeasible once K ≥ N .

2) Robust versus non-robust schemes: In this example, we
compare the worst-case secrecy rate performance of the robust
beamformer with non-robust schemes. We assume that the
uncertainty sets for Bob’s and Eve’s channels, respectively,
are given by

HB =
{
ĥB + ehB : ‖ehB‖2 ≤ εhB

}
, (59a)

HE =
{
ĥE + ehE : ‖ehE‖∞ ≤ εhE

}
. (59b)
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Fig. 5. Worst-case secrecy rates (60) of the robust, non-robust, GEV, and ZF
beamformers versus εhE with εhB = 0, 0.2, 0.4. All beamformers are subject
to the amplitude constraint ‖w‖∞ ≤ 1, and 20 log10(P/σ) = 20 dB.

The entries of the nominal vectors ĥB and ĥE are generated
at random, and the results are averaged over 1000 trials.

In Figure 5, we plot the worst-case secrecy rate

Rwc
s (w) =

1

2
log2

min
hB∈HB

6P 2(hT
Bw)2 + 3πeσ2

max
hE∈HE

πeP 2(hT
E w)2 + 3πeσ2

+

(60)

versus εhE , for εhB = 0, 0.2, 0.4, and 20 log10(P/σ) = 20 dB.
We compare the performance of the robust beamformer from
Proposition 2 with its non-robust counterpart from Proposi-
tion 1, as well as the GEV and ZF beamformers. All beam-
formers are subject to the amplitude constraint ‖w‖∞ ≤ 1.
Substituting from (59a) and (59b) into (19b) and (19c), re-
spectively, the inner problem (19) is expressed as

maximize
‖w‖∞≤1,t

t (61a)

s.t. ĥT
Bw − εhB‖w‖2 ≥ t, (61b)

ĥT
E w + εhE‖w‖1 ≤ αt, (61c)

ĥT
E w − εhE‖w‖1 ≥ −αt. (61d)

Then, the robust beamformer is obtained via Algorithm 1. On
the other hand, the non-robust, GEV, and ZF beamformers are
obtained using the nominal vectors ĥB and ĥE.

As expected, we note from Figure 5 that the robust beam-
former outperforms its non-robust counterparts, clearly at
the expense of increased computational complexity, and the
performance gain becomes more evident with increasing εhB

and εhE .

B. Worst-Case Secrecy Rate Performance in VLC Scenarios

In this subsection, we investigate the worst-case secrecy
rate performance in a typical VLC scenario using the robust
beamformer from Proposition 2 along with the uncertainty sets
derived in Section IV.

We consider a room of size 5 × 5 × 3 m3 illuminated
by 25 square-shaped lighting fixtures uniformly distributed
over 4×4 m2 of the ceiling area, as depicted in Figure 6. Each
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Fig. 6. Layout of the LEDs on the ceiling. There exist 25 lighting fixtures.
Each fixture is 10× 10 cm2 and encloses four LEDs located at the corners
of the fixture.

TABLE I
SIMULATION PARAMETERS.

Simulation setup
Room size 5× 5× 3 m3

Number of fixtures NFix 25
Fixture size 10× 10 cm2

Number of LEDs per fixture NLED 4
Total number of LEDs N 100

LED electrical and optical characteristics
Forward voltage 3.6 V
Forward current IDC 700 mA
Input electrical power 2.52 W
Optical power / current η 813.6 µW/mA
Output optical power (or radiant flux) Popt 569.52 mW
Luminous efficiency (warm-white color) 284 lm/W
Luminous flux 161.74 lm
Luminous efficacy 64.18 lm/W

Nominal half-intensity angle ζ3-dB 60◦

Peak (center) luminous intensity 51.48 cd
Modulation index µ 10%

Optical receiver characteristics
Gain of the optical filter Ts 1
Lens refractive index nr 1.5
Photodetector responsivity R 100 µA/mW/cm2

Photodetector area A 1 cm2

fixture occupies 10×10 cm2 and encloses four high-brightness
2.5-W LEDs located at the corners of the fixture. Each LED
radiates 570 mW optical power (or radiant flux). Emitted light
is “warm-white” (i.e., color temperature is between 2700 and
3000 K) with luminous efficiency 284 lm/W [30, Table 3.2].
The resulting luminous flux is 0.570 × 284 ≈ 162 lm per
LED. The nominal half-intensity angle (measured from the
center) is 60◦, and the peak (or center) luminous intensity is
51 cd. The resulting illuminance, averaged over a horizontal
4 × 4 m2 illumination grid at height 0.85 m above the floor
level, is 339 Lux. For convenience, all simulation parameters
are provided in Table I.

All the following results are generated with Bob and Eve
having photodetectors of area A = 1 cm2 and responsivity
R = 100 µA/mW/cm2. The modulation index µ is set
at 10%. The noise power is assumed to be equal everywhere
with 20 log10 σ = −114 dBm. This value is obtained with
[31, Eq. (6)] using the average received DC optical power
(averaged over the horizontal plane at height 0.85 m) with
FoV Ψ = 70◦ and receiver bandwidth of 10 MHz. All location
coordinates are specified in meters with respect to the room
center at the floor level.
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Fig. 7. Worst-case secrecy rate (20) versus α with uncertain Eve’s location.
θE = 0 and ΨE = 70◦.

In all scenarios, we assume that Bob is located at
(xB, yB, zB) = (1.7173, 0.7496, 0.85) with orientation
(θB, φB) = (15◦, 240◦) and FoV ΨB = 70◦. Furthermore,
we use the spherical set in (21) to model uncertainty in Bob’s
channel, where the entries of ĥB are obtained with (6), i.e.,
ĥB = h(xB, yB, zB, θB, φB,ΨB), and εhB = 0.1‖ĥB‖2. The
nominal estimate ĥB is fixed and assumed to be known to
Alice via feedback from Bob. Parameters relevant to Eve are
provided in the caption of each figure. In all cases, for the sake
of illustration, we plot the worst-case secrecy rate versus α
using (20), where 20 log10 α = −50,−49, . . . , 0 dB. We
also include the case of certain Eve’s channel for comparison
purposes. For each α, we use the CVX toolbox [27], in
conjunction with the MOSEK solver [29], to solve (19) using
the relevant uncertainty set HE from Section IV.

1) Uncertain eavesdropper’s location: Figure 7 shows the
worst-case secrecy rate performance with uncertain Eve’s loca-
tion. We include three groups of curves corresponding to three
uncertainty regions, B, of different volumes. All the regions
are rectangular and centered at (x, y, z) = (−1.25, 0, 0.85).
Four curves are generated for each B corresponding to the
combinations of two methods to approximate HBE and two
methods to modulate the LEDs. We refer to the case in
which the affine approximation (28) is used as “Linearized”,
and to the case in which B is discretized as “Discretized”.
For the “Linearized” case, B is divided into identical boxes,
each of volume 2lx × 2ly × 2lz = 0.5 × 0.5 × 0.25 m3,
then (28) is applied to each box and wα is obtained with (32).
For the “Discretized” case, HBE is approximated by sampling
the channel gain in the three-dimensional space using a
10 × 10 × 10 cm3 grid, and wα is obtained with (34).
Furthermore, we refer to the case in which each LED is
modulated independently as “LEDs”, and to the case in which
all LEDs in one fixture are modulated with the same current
signal as “Fixtures”.

As expected, we note from Figure 7 that Rwc
s decreases

as the uncertainty about Eve’s location increases. For the
case of certain Eve’s location, we can see that the ZF beam-
former is practically optimal. In addition, Figure 7 reveals
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Fig. 8. Worst-case secrecy rate (20) versus α with uncertain Eve’s orientation.
xE = −1.25, yE = 0, zE = 0.85, θE ∈ [0, θmax], and φE ∈ [0, 360◦].

that independent-LED modulation does not provide much
improvement, if any, compared to the more practical and less
expensive “Fixture” modulation scheme. This result is also
expected since LEDs in the same fixture are relatively close
to each other and have almost identical channel gains. Figure 7
also verifies the validity of the affine approximation in (28)
when lx, ly , and lz are chosen properly.

2) Uncertain eavesdropper’s orientation: In Figure 8, we
plot the worst-case secrecy rate performance with uncertain
Eve’s orientation. We also investigate the impact of Eve’s
FoV on the secrecy rate. The curve “Small θmax” is generated
with wα obtained from (42), whereas all other curves are ob-
tained with (43) after discretizing the intervals Θ = [0, θmax]
and Φ = [0, 360◦] using ∆θ = ∆φ = 4◦.

For the case θmax = 0, i.e., no uncertainty about Eve’s
orientation, we can see that ZF is essentially optimal. We also
note that the curve “Small θmax” almost coincides with the
curve corresponding to ΨE = 90◦ and θmax = 30◦. Thus, the
linear channel gain model that leads to the problem in (42) is
indeed valid for small angle variations and wide FoV. Figure 8
also reveals that reducing Eve’s FoV has a negative impact
on the secrecy rate performance, which can be explained as
follows. First, we see from (7) that reducing the FoV of the
concentrator increases its gain inside the FoV. Second, the
limited FoV of Eve’s receiver, in conjunction with her ability
to adjust orientation, increases her received signal space as
measured by the number of nonzero singular values of the
matrix H

...
U
E whose columns are the elements of the discretized

uncertainty set H
...
U
E . Obviously, increasing the signal space

available to Eve makes it more difficult for Alice to suppress
Eve’s signal, i.e., more of the degrees of freedom available to
Alice are exploited, and thus the secrecy rate is reduced.

3) Uncertain eavesdropper’s location and LEDs half-
angle: Figure 9 depicts the secrecy performance with
uncertain Eve’s location and LEDs half-angle. We con-
sider half-angle uncertainties up to ±20◦ around the
nominal value of 60◦, and the location uncertainty re-
gion {(xE, yE) : xE ∈ [−2.25,−0.25], yE ∈ [−2.5, 2.5]} is
discretized using ∆x = ∆y = 20 cm. As can be seen,
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Fig. 9. Worst-case secrecy rate (20) versus α with uncertain Eve’s location
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Fig. 10. Worst-case secrecy rate (20) versus α with uncertain Eve’s location
and NLoS components. xE ∈ [−2.25,−0.25], yE ∈ [−2.5, 2.5], zE = 0.85,
θE = 0, and ΨE = 70◦.

even relatively small half-angle deviations, e.g., ±5◦, can
significantly reduce the worst-case secrecy rate.

4) Uncertain eavesdropper’s location and NLoS compo-
nents: In Figure 10, we show the worst-case secrecy rate
performance with uncertain location and NLoS components.
Similar to the results in Figure 9, the location uncertainty
region is discretized using ∆x = ∆y = 20 cm. We investigate
the performance when the strength of the NLoS components
can go up to γmax = 60% of the LoS path. Note that γmax =
60%, or even 40%, is a too pessimistic or too conservative
assumption. In typical scenarios with only diffuse reflections,
i.e., no large windows or mirrors, γmax will probably be less
than 20% (see, e.g., Figure 4 in [32] or the discussion after
Figure 6 in [6]).

VI. CONCLUSIONS

In this paper, we studied the design of transmit beamformers
for secrecy rate maximization in MISO wiretap channels
subject to amplitude constraints. Such constraints are typically
difficult to handle and, because of that, they are often over-
looked in favor of the more convenient total power constrains.

We considered VLC systems as a prominent example in which
amplitude constraints naturally arise because of limitations on
the emitting devices. In fact, however, all digital transmit-
ters experience some sort of amplitude constraints because
of the digital-to-analog converters (DACs) incorporated to
generate the analog signal that is ultimately released on the
physical channel. Clearly, these DACs are limited in their
dynamic range, and thus are better modelled with amplitude
constraints. Therefore, apart from being an interesting and
mathematically-challenging problem, we believe that taking
amplitude constraints into account has practical significance,
not only for intensity-modulation systems, but in fact for all
digital transmitters.

We tackled the nonconvex secrecy rate maximization prob-
lem by transforming it into an equivalent quasiconvex line
search problem. Our approach is conceptually simple but prov-
ably optimal for general lp-norm constraints, and the equiva-
lent problem itself is practically meaningful. Furthermore, our
approach proved helpful in tackling the more complex robust
design problem with uncertain channel information.

We also used the VLC scenario as a practical example in
which reasonable estimates of the eavesdropper’s channel can
be obtained without feedback from the (passive) eavesdropper.
Numerical results show that the excess degrees of freedom
provided by the large number of LEDs in typical VLC
scenarios can be effectively utilized to compensate for the lack
of accurate information regarding the eavesdropper’s channel.

Finally, it is worthwhile to mention that our approach in
Propositions 1 and 2 takes advantage of the fact that the signal
term in the numerator of the secrecy rate expression (8) is a
squared linear function of the beamformer4. This ultimately
leads to convex inner optimization problems, i.e., the problems
in (14) and (19). If the legitimate receiver, however, has
multiple receiving elements, such problems will no longer be
convex, and the secrecy rate maximization problem is expected
to be more difficult to solve. Thus, a natural extension to this
work would be to consider linear precoding for the MIMO
wiretap channel, subject to amplitude constrains.

APPENDIX A
PROOF OF PROPOSITION 1

Our goal here is to prove that the problem in (11) is
equivalent to the line search problem in (12), and the objective
function in (12) is quasiconcave with respect to the search pa-
rameter α. The latter part, in particular, is not straightforward.

Using the auxiliary variable τ ≥ 3πeσ2, the problem in (11)
can be expressed as

maximize
‖w‖p≤1,τ

6P 2(hT
Bw)2 + 3πeσ2

τ
(62a)

s.t. πeP 2(hT
E w)2 + 3πeσ2 ≤ τ, (62b)

or, equivalently,

maximize
τ

f(τ)

τ
, (63)

4The corresponding term in the denominator is also a squared linear
function of the beamformer, but this is not critical because extension to the
case in which only Eve has multiple receiving elements is not difficult.
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where f(τ) is defined as

f(τ) , max
‖w‖p≤1

6P 2(hT
Bw)2 + 3πeσ2 (64a)

s.t. |hT
E w| ≤

√
τ − 3πeσ2

πeP 2
. (64b)

Note that the constraints in (62b) and (64b) are equivalent. In
the following, we show that the objective function in (63) is
quasiconcave with respect to τ by establishing concavity of
f(τ). First, we introduce a new variable ε ≥ 0, defined as

ε ,

√
τ − 3πeσ2

πeP 2
. (65)

We also define the perturbation function ϕ(ε) as

ϕ(ε) , max
‖w‖p≤1

hT
Bw (66a)

s.t. |hT
E w| ≤ ε. (66b)

It is clear that ϕ(ε) is nonnegative and nondecreasing for all
ε ≥ 0. Furthermore, the perturbed problem in (66) is convex,
and thus ϕ(ε) is concave [24, Section 5.6.1]. As a conse-
quence, ϕ(ε) is continuous and its right and left derivatives5,
ϕ′+(ε) and ϕ′−(ε), exist for all ε > 0. These derivatives are
nonincreasing in the sense that, for any ε2 > ε1 > 0, we have
[33, Theorem 1.6]

ϕ′−(ε1) ≥ ϕ′+(ε1) ≥ ϕ′−(ε2) ≥ ϕ′+(ε2) ≥ 0, (67)

where the last inequality holds since ϕ(ε) is nondecreasing.
Moreover, for any ε0 ≥ 0 and any ε ∈ {ε : ε > 0, ϕ′+(ε) =
ϕ′−(ε)}, i.e., any ε at which ϕ(ε) is differentiable, we have
[24, Section 3.1.3]

ϕ(ε0) ≤ ϕ(ε) + ϕ′(ε)(ε0 − ε). (68)

Substituting with ε0 = 0 back into (68), we obtain

ϕ(ε) ≥ ϕ(0) + εϕ′(ε) ≥ εϕ′(ε), (69)

where the last inequality follows from nonnegativity of ϕ(0).
We are now ready to prove that f(τ) = 6P 2(ϕ(ε))2 + 3πeσ2

is concave with respect to τ = πeP 2ε2 + 3πeσ2. The right
and left derivatives of f(τ) can be written in terms of ϕ′+(ε)
and ϕ′−(ε), respectively, as

f ′+(τ) =
6

πe

ϕ(ε)

ε
ϕ′+(ε), f ′−(τ) =

6

πe

ϕ(ε)

ε
ϕ′−(ε). (70)

From (67) and (70), it is clear that

f ′−(τ) ≥ f ′+(τ) for any τ > 3πeσ2. (71)

Furthermore, when ϕ(ε) is differentiable (and consequently
f(τ) is differentiable), we have

∂f ′(τ)

∂τ
=

3

πeε2

((
ϕ′(ε)− ϕ(ε)

ε

)
ϕ′(ε) + ϕ(ε)

∂ϕ′(ε)

∂ε

)
≤ 0, (72)

5We resort to one-sided derivatives, rather than the ordinary two-sided
derivative ϕ′(ε), because ϕ(ε) is not necessarily smooth or differentiable
over the whole interior of its domain. Particularly, there exist, in general,
some ε > 0 at which ϕ′+(ε) 6= ϕ′−(ε). These are the points where ϕ′+(ε)
and ϕ′−(ε) have jump discontinuities. Nevertheless, since ϕ(ε) is concave,
there are only countably many such jumps, i.e., the set {ε : ε > 0, ϕ′+(ε) 6=
ϕ′−(ε)} has zero Lebesgue measure [33, Section 1.8].

where the inequality holds since ϕ′(ε) ≤ ϕ(ε)/ε, ϕ′(ε) ≥ 0,
ϕ(ε) ≥ 0, and ∂ϕ′(ε)/∂ε ≤ 0 (the latter follows from (67) or
the second-order condition of concavity [24, Section 3.1.4]).
Combining (71) and (72) yields

f ′−(τ1) ≥ f ′+(τ1) ≥ f ′−(τ2) ≥ f ′+(τ2), (73)

for any τ2 > τ1 > 3πeσ2. Hence, f(τ) is concave [34,
Theorem 24.2]. Then, it is straightforward to establish that
f(τ)/τ is quasiconcave by noting that all the β-superlevel
sets

{
τ : τ ≥ 3πeσ2, f(τ)/τ ≥ β

}
, for all β ∈ R, are con-

vex, i.e., intervals, including, possibly, empty and unbounded
intervals [24, Section 3.4.1].

Next, we define the new variable α ≥ 0 as

α ,
ε

ϕ(ε)
=

√
τ − 3πeσ2

πeP 2(ϕ(ε))2
, ϕ(ε) 6= 0. (74)

Alternatively, for some given α ≥ 0, τ can be expressed in
terms of α as

τ = g(α) , πeα2P 2(hT
Bwα)2 + 3πeσ2, (75)

where wα is defined as

wα , argmax
‖w‖p≤1

hT
Bw (76a)

s.t. |hT
E w| ≤ αhT

Bw. (76b)

Problem (76) is clearly equivalent to the perturbed problem
in (66) when α and ε satisfy (74), or, equivalently, when
α and τ satisfy (75). Thus, hT

Bwα = ϕ(ε). Furthermore,
we note from (76) that hT

Bwα is nondecreasing with respect
to α (increasing α relaxes the constraint in (76b)). Thus,
g(α), as defined in (75), is a strictly increasing function of α.
Substituting with τ = g(α) back into (63) and changing the
optimization variable into α, the problem in (63) can be written
as

maximize
α

f(g(α))

g(α)
,

or, equivalently,

maximize
α

6P 2(hT
Bwα)2 + 3πeσ2

πeα2P 2(hT
Bwα)2 + 3πeσ2

, (77)

where wα is as defined in (76). Since f(τ)/τ is quasiconcave
with respect to τ , and τ = g(α) is strictly increasing with
respect to α, we conclude that f(g(α))/g(α) is quasiconcave
with respect to α, and hence the problem in (77) is quasicon-
vex, i.e., quasiconcave maximization problem.

Finally, the search interval for optimal α can be lower-
bounded by the smallest feasible α, given by

αmin = min
w,α

α (78a)

s.t. hT
Bw = 1, (78b)

|hT
E w| ≤ α, (78c)

and the upper bound αmax =
√

6/πe is simply obtained
by noting that f(g(α)) ≥ g(α), and thus Rs ≥ 0, only if
α ≤

√
6/πe, which completes the proof. �
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APPENDIX B
PROOF OF PROPOSITION 2

The proof is mostly along the same line as that in Ap-
pendix A. The max-min problem in (16) can be expressed as

maximize
τ

f(τ)

τ
, (79)

where f(τ) is defined as

f(τ) , max
‖w‖p≤1

min
hB∈HB

6P 2(hT
Bw)2 + 3πeσ2 (80a)

s.t. |hT
E w| ≤

√
τ − 3πeσ2

πeP 2
∀hE ∈ HE. (80b)

Next, we define the perturbation function ϕ(ε) as

ϕ(ε) , max
‖w‖p≤1,t

t (81a)

s.t. |hT
Bw| ≥ t ∀hB ∈ HB, (81b)

|hT
E w| ≤ ε ∀hE ∈ HE, (81c)

where ε is defined as in (65). Note from (80) and (81) that
f(τ) = 6P 2(ϕ(ε))2 + 3πeσ2. Note also that, unlike (66),
the perturbed problem in (81) is nonconvex because of the
constraint in (81b). This nonconvexity can be eliminated by
imposing the additional constraint

hT
Bw ≥ 0 ∀hB ∈ HB, (82)

or, equivalently, replacing (81b) with

hT
Bw ≥ t ∀hB ∈ HB. (83)

The additional constraint, however, may render the solution
suboptimal. Let ϕ(ε) be defined as

ϕ(ε) , max
‖w‖p≤1,t

t (84a)

s.t. hT
Bw ≥ t ∀hB ∈ HB, (84b)

|hT
E w| ≤ ε ∀hE ∈ HE. (84c)

Then, ϕ(ε) ≤ ϕ(ε), i.e., a nonzero gap may exist between the
two problems. In the sequel we show that this gap actually
disappears with an additional technical assumption on HB.

Lemma 1: If HB is convex, then ϕ(ε) = ϕ(ε), i.e., the
problems in (81) and (84) are equivalent.

Proof: The proof is provided in Appendix C.

Following the same approach from Appendix A, it can be
shown that f(τ) = 6P 2(ϕ(ε))2 + 3πeσ2 is concave with
respect to τ , and thus f(τ)/τ is quasiconcave. Next, we
introduce the variable α ≥ 0 via the substitution

τ = πeα2P 2t2α + 3πeσ2, (85)

where tα is obtained from

(wα, tα) = argmax
‖w‖p≤1,t

t (86a)

s.t. hT
Bw ≥ t ∀hB ∈ HB, (86b)

|hT
E w| ≤ αt ∀hE ∈ HE. (86c)

Note from (84) and (86) that tα = ϕ(ε) whenever α and τ
satisfy (85). Substituting (85) back into (79), the latter can be
rewritten as

maximize
α

6P 2t2α + 3πeσ2

πeα2P 2t2α + 3πeσ2
. (87)

Similar to (77) in Appendix A, we note from (85) and (86)
that τ is strictly increasing with respect to α. Thus, the
objective in (87) is quasiconcave with respect to α. Finally,
αmin can be obtained by modifying the problem in (78) to

minimize
w,α

α (88a)

s.t. hT
Bw ≥ 1 ∀hB ∈ HB, (88b)

|hT
E w| ≤ α ∀hE ∈ HE, (88c)

which completes the proof. �

APPENDIX C
PROOF OF LEMMA 1

Let the pair (w∗, t∗) be an optimal solution of the noncon-
vex perturbed problem in (81), where t∗ = ϕ(ε). If HB is
convex, then the linear function fw∗(hB) , hT

Bw
∗ maps HB

into an interval with three possible outcomes:
1) If hT

Bw
∗ ≥ 0 for all hB ∈ HB, then t∗ ≥ 0.

2) If hT
Bw
∗ ≤ 0 for all hB ∈ HB, then t∗ ≥ 0. This also

implies that −hT
Bw
∗ ≥ 0 for all hB ∈ HB. Note that if

(w∗, t∗) is a solution to (81), then (−w∗, t∗) is also a
solution.

3) If there exist h1,h2 ∈ HB such that hT
1 w
∗ > 0 >

hT
2 w
∗, then t∗ = 0.

From the above cases, we see that hT
Bw
∗ ≥ 0, or

hT
Bw
∗ ≤ 0, for all hB ∈ HB, is a necessary condition to obtain

nonzero t∗. Thus, we lose nothing by imposing the constraint
in (82), provided that HB is a convex set. �

APPENDIX D
COMPONENTS OF h0 AND J0 FROM (28)

From (26), for i = 1, . . . , N , ci 6= 0, we have

1

ci
hi(δ) =

(dz − δz)m(di − δ)Tu

‖di − δ‖m+3
2

, (89a)

1

ci

∂hi(δ)

∂δx
=
−(dz − δz)meT

1 u

‖di − δ‖m+3
2

+
(m+ 3)(dx,i − δx)(dz − δz)m(di − δ)Tu

‖di − δ‖m+5
2

,

(89b)
1

ci

∂hi(δ)

∂δy
=
−(dz − δz)meT

2 u

‖di − δ‖m+3
2

+
(m+ 3)(dy,i − δy)(dz − δz)m(di − δ)Tu

‖di − δ‖m+5
2

,

(89c)
1

ci

∂hi(δ)

∂δz
=
−m(dz − δz)m−1(di − δ)Tu− (dz − δz)meT

3 u

‖di − δ‖m+3
2

+
(m+ 3)(dz − δz)m+1(di − δ)Tu

‖di − δ‖m+5
2

, (89d)
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where ej , j = 1, 2, 3, is the jth column of I3. Substituting
with δ = 0 back into (89), we obtain

hi(0) = ci
dmz dT

i u

‖di‖m+3
2

, (90a)

∂hi(0)

∂δx
= ci

(
−dmz eT

1

‖di‖m+3
2

+
(m+ 3)dx,id

m
z dT

i

‖di‖m+5
2

)
u, (90b)

∂hi(0)

∂δy
= ci

(
−dmz eT

2

‖di‖m+3
2

+
(m+ 3)dy,id

m
z dT

i

‖di‖m+5
2

)
u, (90c)

∂hi(0)

∂δz
= ci

(
−mdm−1

z dT
i − dmz eT

3

‖di‖m+3
2

+
(m+ 3)dm+1

z dT
i

‖di‖m+5
2

)
u.

(90d)
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