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Abstract—This paper presents a sequential likelihood
ratio test (SLRT) detector for spectrum sensing scenarios
in cognitive radios (CRs). Similar to other CR detectors,
we exploit the structure of the sample covariance matrix
of the received signal to achieve detection with minimal
information regarding the signal. Unlike the majority of
covariance-based CR detectors, the SLRT is a sequential
detector that allows for smaller detection delays, which is
a prized asset in CR systems. Using methods borrowed
from the theory of continuous-time diffusion processes, we
derive the statistical properties of the SLRT detector and
compare it with an eigenvalue-based sequential detector
which has been presented in previous work for CR systems.
The comparison also includes detection scenarios with non-
Gaussian noise to illustrate the robustness of the proposed
detector in these situations.

Index Terms—Sequential Log-Likelihood Ratio, Spec-
trum Sensing, Cognitive Radios, Bayesian detection

I. INTRODUCTION

Spectrum sensing for cognitive radios (CRs) has been

extensively studied for the past decade and several detec-

tors have emerged as a result, see e.g. [1], [2], [3]. En-

ergy detection, cyclic-feature detection and covariance-

based detection are the most commonly cited types of

spectrum sensing strategies for CRs with many research

articles dedicated to their performance in typical CR

detection scenarios: blind detection, low signal-to-noise

ratio (SNR), noise variance uncertainties, non-Gaussian

noise, etc. (see e.g. [4], [5], [6], [7], [8], [9]). Emphasis
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is usually put on the reliability of the detector and

several strategies have been proposed to improve it,

using for instance collaborative sensing schemes [10], [3]

and nonparametric detectors [11], [12], [13]. However,

detection delays are just as important as reliability in CR

detectors in order to avoid causing harmful interferences

to primary users and must fall within the specifications of

the established standards [14], [15]. While the majority

of the aforementioned detectors have been derived as

batch detectors, sequential detectors offer significant ad-

vantages with respect to detection delays and constitute

the main subject of this paper.

Batch processing algorithms assume that a given

number of samples are available at the detector. These

are used to reach a decision regarding the presence

or absence of a communication signal (hypotheses H1

and H0, respectively) and are discarded afterwards. The

detector always assumes that only one hypothesis is

valid over the entire observation window (i.e. all samples

belong to H0 or H1) and often tries to optimize detec-

tion performance for such scenarios, using for instance

the Neyman-Pearson criterion. As pointed out in [16],

such detectors are not optimal if one considers that the

signal can appear or disappear at any random time (i.e.

change-point detection scenarios). On the other hand,

sequential detectors can minimize detection delays for

such scenarios and outperform batch detectors [17]. The

tracking property of a sequential detector also helps to

reliably detect signals in changing environments plagued

with noise and signal parameters uncertainties [18], a

common assumption for CR detection scenarios. More-

over, CR systems need to continuously monitor their

environment in order to detect opportunities for their own

transmissions as well as to avoid interferences with other

transmitters making sequential detectors a logical choice

when they can be implemented1.

The theory for sequential detection can be traced

1As mentioned in [17], a drawback of sequential detectors comes
from the mathematical tractability of their statistical distribution.
Several assumptions about the received signal are needed to derive
a useful analytical expression for the detector statistic.



back to the 1960’s, and several sequential detectors have

already been developed for CR systems. For instance, a

Bayesian detector exploiting the structure of the covari-

ance matrix to differentiate uncorrelated Gaussian noise

from man-made signals has been presented in [18]. The

system periodically updates prior distributions associated

with the covariance matrix models used. More recently,

subspace tracking techniques [19] have been used in

[20] to derive a sequential largest-eigenvalue detector

that also circumvents the need to explicitly compute

covariance matrix estimates or their eigenvalues. The

authors provide analytical results regarding the statistical

distribution of the detector under additive white Gaussian

noise (AWGN) conditions. This detector is a promising

candidate for covariance-based sequential CR detectors

and will be used as the reference for our own sequential

likelihood ratio test (SLRT) detector.

In the context of SLRT detectors applied to CRs, Lai

et al. consider in [21] change-point detection methods

that aim to detect a transition in the underlying statisti-

cal distribution (specifically its energy) of the received

samples as quickly as possible. They focus on the

cumulative sum (CUSUM) algorithm, related to Wald’s

sequential probability ratio test (SPRT) [22], known to

minimize the worst mean detection delay when all the

parameters of the statistical distributions before and after

the change are known. Additionally, they consider a

rank-based likelihood ratio test as a robust detector when

parameters such as the noise variance and signal power

are unknown. The detector is however devised for single-

antenna systems and suffers from a high implementation

complexity. Another detector based on the CUSUM test

has been derived in [23].

Traditional generalized-likelihood ratio (GLR)

CUSUM algorithms [24] can be used when unknown

parameters are present which can be estimated

incrementally. These algorithms reuse past samples with

the current estimates of the unknown parameters to

minimize detection delays. This optimality requires to

sacrifice the recursive nature of the CUSUM algorithm

and also requires a large memory to store past samples.

The detector considered in [25] combines the properties

of a GLR test, namely sequential parameter estimation,

with a parallel CUSUM algorithm, in order to overcome

parameter uncertainties while keeping the iterative

property of the CUSUM algorithm. Unlike most SLRT

detectors, the unknown parameters are defined over

a discrete space and the detector alternates between

steps during which the parameter space is redefined

and estimation steps during which candidates from the

parameter space are discarded. This requires to run

multiple (i.e. one for each parameter times the size of

the parameter candidates set) CUSUM tests in parallel.

In [26], the authors derive an SLRT detector based

on an auto-regressive moving-average (ARMA) signal

model, applied to CR systems. While the SLRT detector

proposed in our paper is based on a similar procedure,

the underlying signal assumptions are different.

Regarding the general theory of sequential statistical

tests, Lai [24] and Kailath et al. [27, p. 2252] both

present extensive reviews of SLRT and other sequential

detection schemes as well as the statistical tools needed

to study them.

In this paper, we propose an SLRT similar to the one

developed in [26], but do not assume an ARMA model

for the received signal, nor that the noise variance is

known. Furthermore, the detector exploits the structure

of the sample covariance matrix of the received signal

in order to achieve detection, as opposed to the signal

energy level as used in [26] (and [21]). We also provide

analytical results that offer more insights into the choice

of detector parameters and its performance. Unlike [18],

we do not need strong Gaussian assumptions regarding

the distribution of the received signal. The proposed

detector is a sequential variant of the batch detector

proposed in [11] and retains its constant false-alarm rate

(CFAR) property with respect to the noise variance. In

comparison to [25], the SLRT detector studied in our

paper possesses a simpler mode of operation. The pro-

posed detector updates its parameter estimation at every

step and does not require multiple CUSUM algorithms

operating in parallel or the need to periodically redefine

the parameter space. In summary, we propose a compu-

tationally simple and robust SLRT detector exploiting

the correlation of the received signal and derive the

necessary tools to parametrize the detector and study its

performance in a typical CR spectrum sensing scenario.

Numerical results show the accuracy of the statistical

model derived to study the detector while a comparison

with the sequential covariance-based detector of [20] re-

veals the competitiveness of the proposed SLRT detector

and highlights its robustness to impulsive noise2.

The remainder of this paper is organized as follows.

In Section II we introduce the received signal model and

some notations used in this paper. Section III presents the

proposed detector statistic, whose properties are studied

in detail in Section IV. Numerical results allowing a

comparison with the theoretical results of Section IV are

presented in Section V, along with a comparison of the

2We do not compare the proposed SLRT detector to [26] since the
latter is not robust to noise variance uncertainties and would therefore
be subjected to the SNR wall phenomenon [28].
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proposed detector with the sequential detector developed

in [20]. Section VI concludes the paper.

II. SYSTEM MODEL

In this section, we present our detection scenario and

introduce some notations that will be used throughout

this paper.

A. Detection strategy

Let us first introduce the operating principle of an

SLRT detector. Using a random variable, whose sam-

ples are received sequentially and whose distribution

changes with hypothesis H0 (signal absent) or H1 (sig-

nal present), we compute the likelihood ratio, or log-

likelihood ratio (LLR) statistic for this random vari-

able, which is itself a random variable. Inherent to

the properties of the LLR, the mean value decreases

(increases) over time when hypothesis H0 (H1) is valid.

As a result, the LLR statistic “drifts” over time, with a

positive or negative drift depending on which hypothesis

is true. One can therefore set lower and upper detection

thresholds and infer which hypothesis is true based on

the behavior of the LLR statistic. Once a decision is

made, the statistic is reset to a point in between the

detection thresholds and the cycle starts anew.

One then has to decide which random variable (i.e.

metric) is suitable as a starting point for the SLRT

detector. In blind detection scenarios, where the receiver

possesses little information about the signal to be de-

tected (typical for CR systems), second-order statistical

properties of the received signal are by far the most used

metrics to differentiate signal from noise (e.g. energy

detector, covariance-based detectors, cyclic-feature de-

tectors). While some statistics pertaining to covariance-

based detection are often based on the likelihood ratio

test (LRT) optimality criterion [29], [9], others are ad

hoc statistics based on the assumption that the noise is

either spatially uncorrelated or temporally white [30],

[11]. While ad hoc statistics do not possess any op-

timality property, they may possess the advantage of

simpler signal model, making the detector more robust to

uncertainties or deviations from the model. The proposed

SLRT detector uses the ad hoc statistic developed in [11],

which only requires the noise to be spatially uncorre-

lated, as the time-variant random variable for which the

LLR is derived.

B. Received signal

Since we are trying to develop a detector suitable

for CR systems, we will focus on low SNR scenarios.

Additionally, we will consider a multiantenna system

suitable for a detection schemes based on the spatial

covariance matrix of the received signal, similar to [20].

We note that the proposed detector would also be suitable

for a single-antenna system working on the temporal

covariance of the received signal.

We consider a multiantenna (q ∈ {1, . . . , 10} anten-

nas) system receiving a baseband discrete-time multi-

variate signal x(n) (of size 1 × q ∀n) and attempt to

discriminate between the following hypotheses:
{

H0 : x(n) = v(n)

H1 : x(n) = s(n) + v(n)
(1)

where s(n) is the communication signal to be detected

and v(n) represents an i.i.d. process of noise and in-

terference (not necessarily Gaussian). All signals are

assumed to be zero mean and if needed, we may subtract

the sample mean from the received sample vectors. We

regroup the received sample vectors in non-overlapping

windows of N samples and denote by Xk the (N × q)
matrix composed of the sample vectors received within

the observation window k (k = 0, 1, . . .). We will

sometime use the terms kth iteration or value at time k
to refer to parameters or variables whose discrete-time

index is k. We assume that the input signals are wide-

sense stationary (WSS) over each observation window.

As previously stated, we plan on exploiting the struc-

ture of the covariance matrix of the received signal (Σx)

to differentiate the signal from the noise. In this paper

we will use the spatial covariance matrix of the signal,

but the theory will apply to any covariance matrix3

(temporal, spatial or a mix of both), as long as it remains

diagonal under H0. Moreover, we do not suppose that the

receiver is calibrated, allowing for different noise vari-

ance at the antennas (Σv is diagonal but not necessarily

a scaled identity matrix). Upon collection of N sample

vectors, the sample covariance matrix can be computed

as

Σ̂k =
1

N
XH

k Xk, (2)

where (.)H denotes the Hermitian operator.

In the same fashion as the procedure developed by

Tugnait [11] for his covariance-based detector, we are

going to normalize the entries of Σ̂k in order to remove

dependencies on the noise variance. We first form the

matrix Γ = diag(Σ̂x), composed of the main diagonal

entries of Σ̂k , and use it to create the matrix

Σ̃k =
√
NΓ

−1/2
Σ̂k(Γ

−1/2)H , (3)

3If the covariance matrix has a Toeplitz structure the detector would
work with the normalized auto-correlation vector of the received signal.
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whose off-diagonal entries have a unit variance. We then

regroup the lower-diagonal entries of Σ̃k in the vector

rk = [Σ̃k(2, 1), Σ̃k(3, 1), . . . , Σ̃k(q, q − 1)]. The vector

rk is of size (p× 1), where p = q(q − 1)/2. Owing to

the central-limit theorem (CLT) for large enough values

of N , the vector rk is approximately distributed as

H0 : rk ∼ Np(0,Ip)

H1 : rk ∼ Np(µr
,Ip), (4)

where Ip is an identity matrix of size p and µ
r

is the

mean value vector of r [11]. Note that under hypothesis

H1, the elements of the vector rk are in fact correlated.

However, as pointed out in [11], the correlation vanishes

when the SNR, defined as the ratio of the signal power

σ2
s over the noise power σ2

n, tends toward zero. We

are mostly concerned with low SNR spectrum sensing

scenarios and will therefore neglect this correlation.

Looking at equation (4), it is apparent that we can use

statistical inference on the mean value of rk to detect the

presence of the signal. Additionally, we notice that the

distribution of rk does not depend on the noise variance,

which will allow our detector to be CFAR with respect

to this nuisance parameter (a very desirable property for

CR detectors).

Since we will often need to refer to mean value

or variance of variables, while specifying the variable

considered, the hypothesis and the time index, we will

adopt the notation i(.)Xk
, where i ∈ {0, 1} is the

hypothesis (H0 or H1), X is the variable considered and

k ∈ N0 is the time index. When there is no assumption

regarding the hypothesis or when the context makes it

clear which hypothesis is considered, we will omit the

left subscript.

III. SEQUENTIAL LIKELIHOOD RATIO TEST (SLRT)

We will now develop the SLRT statistic based on rk
and then discuss pertinent properties of the LLR update

of its statistic.

A. SLRT statistic

We denote by ζrk
(H0) and ζrk

(H1) the marginal

likelihoods of the vector rk under hypothesis H0 and

H1, respectively. Under hypothesis H0, we know that

rk ∼ Np(0,Ip), therefore ζrk
(H0) = φp(0,Ip), where

φp(., .) denotes the p-variate normal density function.

On the other hand, ζrk
(H1) depends on the unknown

parameter µ
r

and to address this issue, we now turn

to a Bayesian framework, such as the one used in [18].

We will assign a prior distribution to the parameter µ
r

and, upon reception of a vector rk, compute its posterior

distribution. The posterior distribution will then become

the prior distribution for the next iteration.

Since the distribution of rk is approximately Gaussian

with a known variance, we can assign a conjugate

prior distribution [31] to the mean parameter: µ
r

∼
Np(µk, σ

2
kIp), where the variables µk and σ2

k are called

the hyperparameters. Upon reception of the vector rk+1,

the hyperparameters are updated as ([31, p. 318])

µk+1 =
µk

1 + σ2
k

+
σ2
k

1 + σ2
k

rk+1

σ2
k+1 =

σ2
k

σ2
k + 1

. (5)

Using such a conjugate prior allows us to easily compute

ζrk
(H1) as

ζrk
(H1) = φp(µk−1, (1 + σ2

k−1)Ip). (6)

Let us define the binary random variable uk ∈ {0, 1}
indicating the presence (uk = 1) or absence (uk = 0) of

a communication signal at time k. Given prior probabili-

ties on uk, the posterior probability Pr(uk = 1) , 1Puk

is given by

1Puk
=

ζrk
(H1) 1Puk−1

ζrk
(H1) 1Puk−1

+ ζrk
(H0) 0Puk−1

. (7)

Rearranging the terms of equation (7), we obtain

2 ln(1
Puk+1

0Puk+1

) = Lk + 2 ln(1
Puk

0Puk

), (8)

where ln(.) is the natural logarithm and Lk is the LLR

of rk explicitly given by

Lk = ‖rk‖2 −
‖rk − µk−1‖2

1 + σ2
k−1

− p ln(1 + σ2
k−1). (9)

Defining the new variable Zk , 2 ln( 1Pu
k

0
Pu

k

), we finally

obtain the SLRT statistic

Zk+1 = Zk + Lk. (10)

The proposed SLRT detector based on (10) works as

follows. Starting from an initial value Z0, the variable

Zk is continuously updated. Under hypothesis H0, the

mean value of the log-likelihood ratio µLk
is negative

and Zk tends toward −∞. Whenever it reaches a lower

threshold A, we infer that hypothesis H0 is valid and

the value Zk is reset to a value a (a ≥ A and typically

Z0 = a). Under hypothesis H1, µLk
≥ 0 and the drift

of the variable Zk is positive. When it reaches an upper

threshold B, we infer that a signal has been detected and

its value is set to b (b ≤ B). This is illustrated in Figure

1, which shows the evolution of the statistic Zk over

time. It depicts the statistic in the H0 stationary regime,
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Fig. 1. Illustration of the SLRT statistic Zk over time.

the H0 → H1 transition and the H1 stationary regime.

In the limit a → A, and b → B the boundaries

A and B become reflecting screens as termed in [32].

This limit is particularly important since it satisfies some

optimality criterion for the detector. However, it also

corresponds to a case of “degenerate analysis” [32] since

several uncertainties of the type 0
0 appear in equations

describing the statistical properties of Zk. Therefore,

we will develop the generic model, which includes

parameters a and b, and take the limit a = A and b = B
when needed.

Later on, we will need a definition of the signal

“strength”, that appropriately reflects the influence of

the signal on the statistic Zk. We will use the following

metric:

SNRL =
‖µ

r
‖2

0σ
2
r

=

p
∑

i=1

µ2
r
(i), (11)

where µ
r
(i) is the ith component of the vector µ

r
.

B. LLR

Before we move on to the statistical properties of the

variable Zk, we first discuss the properties of the LLR

in (9).

Starting from deterministic initial values µ0 and σ2
0 ,

the hyperparameters (5) will converge over time (i.e.

increasing k) toward µ
r

and 0, respectively. If we

suppose that the received signal is at first only composed

of noise samples (hypothesis H0), it implies that:

• The likelihoods under hypotheses H0 and H1 be-

come identical: limk→∞ ζrk
(H1) = ζrk

(H0), forc-

ing µLk
toward 0.

• The SLRT detector will take an increasingly longer

time (eventually infinite) to react to a change in the

distribution of rk (for instance if a signal suddenly

appears) since the influence of new samples rk on

the value of µk becomes vanishingly small as σ2
k

tends toward 0 (see (5)).

These issues come from the infinite memory of the

system through the hyperparameters (5) and can be

avoided using a “back-to-the-prior” strategy [33], [18]

on the hyperparameter σ2
k after each iteration (5) via

σ2
k+1 =: (1− κ)σ2

k+1 + κσ2
0 , (12)

where κ ∈ (0, 1). This strategy only needs to be

applied when we believe that hypothesis H0 is true.

Under hypothesis H1, ζrk
(H1) > ζrk

(H0) and therefore

µLk
> 0 (i.e. there is no “stagnation” of the LLR near

0).

The choice of κ and σ2
0 influences the mean value

and variance of the LLR. In order to choose appropriate

values for these two parameters, let us now focus on the

asymptotic regime under H0 (when a large number of

samples belonging to H0 have been received) and the

transition H0 → H1.

In the asymptotic H0 regime, σ2
k tends toward σ2

∞

which satisfies the equation

σ2
∞ = (1− κ)

σ2
∞

1 + σ2
∞

+ κσ2
0 , (13)

whose solution is given by

σ2
∞ =

1

2
(κ(σ2

0 − 1) +
√

κ2(1− σ2
0)

2 + 4κσ2
0). (14)

Additionally, the hyperparameter µk tends toward a

random variable µ∞ ∼ Np(0,
σ2
∞

2+σ2
∞

Ip).

If σ2
∞ is different from zero, the statistic Zk has a

negative drift under H0, forcing it to periodically reach

the lower threshold A. This is beneficial to avoid false-

alarms by driving Zk away from the upper threshold.

Moreover, the variance of the estimator µk is different

from zero, allowing the detector to react to a change of

hypothesis. On the other hand, when a signal appears,

it can only be detected if µLk
> 0. This indicates that

if the limit σ2
∞ is too large (for a given value of the

SNRL), the LLR will maintain a negative drift under

H1 and the SLRT will not be able to detect the signal4.

Hence, we need to find the upper bound on σ2
∞.

Starting from the asymptotic H0 regime and receiving

samples belonging to the hypothesis H1, the upper bound

4This is an approximation since the probability that Zk reaches the
upper threshold is not equal to zero. However, detection events become
comparable to false-alarms (long delays and short duration) indicating
that the detector effectively fails to reliably detect the signal.
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on σ2
∞ is the value for which the drift is asymptotically

equal to zero (1µL∞
= 0). Using equation (9) with the

asymptotic values of the variables gives us

1µL∞
=

p
∑

i=1

(1 +µ2
r
(i))− 2p

(2 + 0σ
2
∞)

− p ln(1 + 0σ
2
∞).

(15)

Notice that the hyperparameter σ2
k takes on its H0 limit

0σ
2
∞, despite the fact that H1 is the valid hypothesis,

since we consider that the detector never manages to

detect the signal.

The upper bound σ̄2
∞ is the root of the equation

0 = p(1− 2

2 + σ̄2
∞

− ln(1 + σ̄2
∞)) + SNRL

≃ p(1− 2

2 + σ̄2
∞

− σ̄2
∞) + SNRL. (16)

where the first-order Taylor series approximation ln(1+
σ̄2
∞) ≃ σ̄2

∞ is valid provided that σ̄2
∞ ≪ 1. While

equation (16) can be solved, we can reduce it further

to a linear equation at the cost of one additional approx-

imation (
1+σ2

∞

2+σ2
∞

≃ 1
2 ) which results in

SNRL − p

2
σ̄2
∞+ ≃ 0, (17)

whose root is simply σ̄2
∞ ≃ 2SNRL

p .

Equations (14) and (17) can be used to choose the

parameters κ and σ2
0 as a function of the SNRL (i.e.

assumed minimum value of the SNRL for the signal to

be detected) via the variable σ2
∞.

Since the limits σ2
∞ → 0 and σ2

∞ → σ̄2
∞ result in a

detection time that tends toward infinity, it is reasonable

to expect that there exists a value of σ2
∞ ∈ (0, σ̄2

∞) that

minimizes the detection delay. This will be discussed

further in Section IV-D.

In order to clarify the procedure used by the SLRT

detector, Algorithm 1 summarizes the steps involved in

the algorithm and the main equations involved.

IV. STATISTICAL PROPERTIES OF THE SLRT

This section focuses on the statistical properties of

the SLRT statistic Zk. Specifically, we will introduce a

statistical model for Zk based on diffusion processes,

which will then allow us to set the detector thresholds

A and B, and find analytical expressions for the SLRT

detection delays as a function of the signal parameters.

In batch detection scenarios, the detector accumulates

a fixed amount of samples before computing its statistic.

Statistical properties of the detector can therefore be

determined as a function of the number of samples

received during the observation window. For instance,

the probability of false-alarm (Pfa) is typically defined

Algorithm 1 SLRT

Require: SNRL, A, B, p, N

σ̄2
∞ ⇐ SNRL ⊲ (17)

σ2
∞ ⇐ νσ̄2

∞ ν ∈ [0, 1]

σ2
0 , κ ⇐ σ2

∞ ⊲ (14)

A, B

Z0 ⇐ A, H0 ⇐ true, k ⇐ 0

loop

rk ⇐ Xk ⊲ (2), (3)

Lk ⇐ rk ⊲ (9)

Zk+1 ⇐ Zk + Lk

{µk+1, σ
2
k+1} ⇐ {µk, σ

2
k} ⊲ (5)

if Zk+1 ≤ A then

Zk+1 ⇐ A

H0 ⇐ true

σ2
k+1 ⇐ (1 − κ)σ2

k+1 + κσ2
0 ⊲ (12)

else if Zk+1 ≥ B then

Zk+1 ⇐ B

H1 ⇐ true

end if

k ⇐ k + 1

end loop

as a the probability that the detector statistic exceeds a

threshold when computed over a batch of samples, under

hypothesis H0.

On the other hand, sequential detectors continuously

update their statistic instead of working with a batch of

samples and a signal may appear or disappear at any

time. A sequential detector can attain any probability of

detection for a fixed probability of false-alarm by using

as many samples as needed. As a result, change-point

detection scenarios, where the statistical distribution of

the received samples changes at some random time (e.g.

H0 → H1 or vice versa), use different criteria to assess

the performance of the detector [17]. Let us call λfa

the process which records over time the delay between

false-alarms (i.e. the delay until Zk reaches boundary B
again under hypothesis H0). It is of interest to compute

the mean delay between false-alarms E[λfa]. Similarly,

we define λd as the process which records detection

delays over time (i.e. delay before the detector registers

a change in the signal underlying distribution after a

change-point occurred). The main performance criterion

of the SLRT detector will be the mean detection delay

(E[λd]). Obviously, it is of interest to minimize E[λd]
while maximizing E[λfa].
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In order to compute E[λfa], one needs to know the

statistical characteristics of Zk in the stationary (asymp-

totic) H0 regime. On the other hand, E[λd] depends

on the transient distribution of Zk after a change-point

occurred. To find these distributions using equation (10)

and the distribution of the LLR proves intractable due

to the non-linear behavior of Zk once it reaches the

thresholds A or B. To circumvent these difficulties, we

will approximate the SLRT statistic by a continuous-time

diffusion process.

A. Diffusion process model

A diffusion model is a continuous-time stochastic

process which has the Markov property. A discrete-time

random walk such as Zk can be approximated by a dif-

fusion process Zt [34] according to Donsker’s theorem

[35], [36], allowing the use of all the statistical tools

available to characterize theses processes. Unfortunately,

this approximation requires the successive increments of

the stochastic process to be i.i.d.. Under the stationary

H0 regime, the log-likelihood ratios increments Lk are

identically distributed but not independent, as can be

seen from equations (5) and (9). The correlation coef-

ficient ρL(τ) =
E[LkLk−τ ]

σ2
L∞

for LLR that are τ samples

apart is a function of σ2
0 and in the limit (σ2

0 → 0) tends

toward zero. For typical values of σ2
0 ∈ [10−4, 10−3],

the correlation coefficient is small (ρL(τ) ∼ 10−4)

and we will neglect it. We later show the impact of

this correlation on the accuracy of the analytical model

derived for Zk.

Additionally, the continuous-time approximation does

not take into account the overshoot ∆t that occurs

when the process reaches a boundary. However, Lorden’s

inequality [37, p. 160] E[∆t] ≤ E[L2
∞

]
µL∞

gives us a bound

on the overshoot mean value.

The diffusion process model that we will use to

characterize the statistic Zk in the stationary H0 regime

is defined by the differential equation

dZt = µZdt+ σ2
ZdBt, (18)

where Bt is a Wiener process (Brownian motion). The

parameters µZ and σ2
Z are respectively the drift and dif-

fusion coefficients of the process Zt (the subscript t in-

dicates that we are now working with a continuous-time

process). Note that since we approximate the random

walk (10) by a diffusion process, we have µZ = µLk

and σ2
Z = σ2

Lk
.

Additionally, we define the parameter ϕ = 2µZ

σ2
Z

, which

will be used extensively while developing the statistical

properties of the process Zt. In the stationary H0 regime

we have

ϕ =
1− 1/ω(1 +

σ2
∞

2+σ2
∞

)− ln(ω)

1− 2/ω + 1/ω2(1 +
σ2
∞

2+σ2
∞

)2
, (19)

where we introduced the parameter ω = 1 + σ2
∞ to

simplify notations. Provided that σ2
∞ ≪ 1, ϕ is closely

approximated by − 1
2 in the H0 regime, but we will

develop the theory using the general ϕ parameter.

In his paper [16], Shiryaev considers a multistage

cyclic-return Wald system using a very similar diffusion

model, but for which the parameter ϕ = 1, leading

to some simplifications. We refer the reader to the

excellent book by Karlin and Taylor [34] as well as

the aforementioned work of Shiryaev for most of the

theory that we will now apply to identify the statistical

properties of Zt.

B. Mean false-alarm delay

In order to find the mean delay between false-alarms,

we need to compute the probability that the process

reaches the boundary B under H0, as well as the average

time that it takes to reach either boundaries (A or B)

from a starting point x.

We define as τ1 the first time the process reaches a

boundary A or B from a starting point x at t = 0. Let

α(x) = Pr(Zτ1 = B|Z0 = x,H0) be the probability that

the process first exits via boundary B under hypothesis

H0. It can be shown that the probability α(x) is a

solution of the Backward Kolmogorov equation [34]

1

2
σ2
Zα

′′

(x) + µZα
′

(x) = 0, (20)

with boundary conditions α(B) = 1 and α(A) = 0. The

solution is given by

α(x) =
eϕ(A+B−x) − eϕB

eϕA − eϕB
. (21)

Similarly, we define

β(x) = Pr(Zτ1 = A|Z0 = x,H0) =
eϕA − eϕ(A+B−x)

eϕA − eϕB
.

(22)

We denote by M0(x) = E[τ1|Z0 = x,H0] the average

time taken by the process to reach either boundary A or

B given a starting point A ≤ x ≤ B. It is a solution of

the following differential equation [34, p. 193]

1

2
σ2
ZM

′′

0 (x) + µZM
′

0(x) = −1, (23)

given by

M0(x) =
1

µZ
[(B −A)α(x) + (A− x)] (24)
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The mean false-alarm delay E[λfa] , T0(a) (i.e. the

average time for the process to reach boundary B given

that the process starts at a under H0) is then given by

the law of total probabilities:

T0(a) = α(a)M0(a) + (1− α(a))[M0(a) + T0(a)]

=
M0(a)

α(a)
. (25)

In the limit a → A and b → B, the mean false-alarm

delay becomes equal to

T0(A) =
1

µZ

[

(B −A) +
1

ϕ
(eϕ(A−B) − 1)

]

. (26)

From a practical point of view, it is more interesting

to obtain A and B for a desired T0(A). Assuming

without loss of generality that A = −B and using the

approximation ϕ ≃ −1/2, this requires us to solve the

exponential-linear equation

T0(A) =
1

µZ

[
2B − 2(eB − 1)

]
. (27)

Using the method derived in [38], we first rewrite (27)

in the form ax = b(x+ c):

eB = B + (1 − T0(A)µZ

2
), (28)

whose solution is given by

B = −Wi(−e−c)− c, (29)

where Wi(x) is the ith branch of the Lambert W-

function. The branch to be used depends on the value

of c.

C. Stationary distribution

We will now derive the stationary distribution ΨZ(x)
of the process Zt under H0, which will be needed to

compute the SLRT mean detection delay E[λd]. The

method closely follows the theory presented in [34] to

compute the distribution of instantaneous return pro-

cesses.

In order to obtain the distribution, we will need the

Green function G(x0, ξ) associated with the process. It

corresponds to the average time the process spends in an

infinitesimal interval {ξ, ξ + dξ} (ξ ∈ {A,B}), before

exiting via either A or B. x0 denotes the starting point

at t = 0. The Green function for the process Zt is given

by

G(x, ξ) =







2ϕ(eϕ(A+B−x) − eϕB)(eϕ(ξ−B) − 1)

(eϕA − eϕB)σ2
Z

2ϕ(eϕA − eϕ(A+B−x))(1− eϕ(ξ−A))

(eϕA − eϕB)σ2
Z

=

{

G+(x, ξ) A ≤ x ≤ ξ ≤ B

G−(x, ξ) A ≤ ξ ≤ x ≤ B
(30)

The process Zt is a form of instantaneous return

process whereby the process restarts at a point a or b
whenever it reaches the boundary A or B (this defines a

cycle). Therefore, in its stationary regime, the process is

composed of multiple i.i.d. cycles of random duration.

It has been proven [34, p. 261] that the stationary

distribution of an instantaneous return process that starts

at a point x0 takes on the form

Ψ(x0, x) =
G(x0, x)

∫ B

A G(x0, ξ)dξ
. (31)

In our case, the starting points are either a or b
depending on which boundary is reached on the previous

cycle and therefore there is a probability associated with

them. If we call Π(a) the probability that the process

restarts at a, we have the following equation:

Π(a) = Π(a)β(a) + (1−Π(a))β(b)

=
β(b)

1 + β(b)− β(a)
. (32)

In the same fashion,

Π(b) =
α(a)

1 + α(a)− α(b)
. (33)

Using equations (31), (32) and (33), we derive the

stationary distribution

ΨZ(x) =
Π(a)G(a, x) + Π(b)G(b, x)

∫ B

A Π(a)G(a, ξ) + Π(b)G(b, ξ)dξ

=
β(b)G(a, x) + α(a)G(b, x)

∫ B

A β(b)G(a, ξ) + α(a)G(b, ξ)dξ
. (34)

In the limit a → A and b → B, the distribution

becomes

ΨZ(x) =
ϕeϕx

eϕB − eϕA
. (35)

Its mean value is equal to

µΨ =
1

eϕB − eϕA

[
eϕB(B − 1/ϕ)− eϕA(A− 1/ϕ)

]
.

(36)
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D. Mean detection delay

In his work [32], Shiryaev considers an instantaneous

return (to zero) diffusion process with fixed (and known)

drift parameters under hypotheses H0 and H1. This al-

lows him to derive the mean detection delay E[λd] , RZ

RZ =

∫ B

A

T1(x)ΨZ(x)dx, (37)

where T1(x) is the mean delay to reach boundary

B, starting from x, under hypothesis H1. Moreover,

Shiryaev provides a proof that, for large mean false-

alarm delay T0(0), the minimum detection delay occurs

when A = 0 (i.e. the lower boundary coincides with the

starting point) and this detection delay is proportional to

ln(T0(0)). He also conjectures that the condition A = 0
is likely true for all values of T0(0) (not just large ones)

and these results are further analyzed in [39]. Intuitively,

restarting the process on the boundary itself is appealing.

When a change of distribution occurs, the trajectory of

the process becomes longer if the process is allowed

to venture below its starting point, leading to a longer

detection delay. This is also similar to the CUSUM

detection rule, which only considers increments of the

process in the direction of the upper boundary. We have

not been able to provide a mathematical proof showing

that the detection delay reaches a minimum under the

limit a, b → A,B but numerical results indicate that

Shiryaev’s conjecture holds true.

We will now derive an approximation for RZ . The

process Zt is slightly different than the one considered

by Shiryaev, since its drift and diffusion (variance)

during the transition H0 → H1 are time-dependent. This

prevents us from deriving the function T1(x) using the

same approach as for equation (25). Instead we will use a

general form of Wald’s identity, stating that the expected

value of a sum of M random variables (M being also a

random variable) is equal to:

E[

M∑

k=1

Xk] = E[

M∑

k=1

µXk
] (38)

If M is the stopping time corresponding to the process

reaching the boundary B starting from a point x, then

we can write

T1(x) = argmin
M

{|
M∑

k=1

µLk
− (B − x)|}. (39)

Note that due to the existing correlation between succes-

sive Lk, equation (39) is only an approximation5.

Using equations (9), (11) and considering that at k = 0
the process is in its stationary H0 regime, we obtain the

expression for µLk
in the transient H0 → H1 regime as

µLk
= SNRL

(
ω2k−1 − 1

ω2k−1

)

+ p

(
σ2
∞

2 + σ2
∞

− ln(ω)

)

,

(40)

where ω has been defined after equation (19). Using

equation (17) as an approximation for σ̄2
∞ and choosing

σ2
∞ = νσ̄2

∞, ν ∈ [0, 1], we can simplify equation (40)

to

µLk
≃ SNRL

(

(1− ν)− 1

ω2k−1

)

. (41)

The cumulative sum of µLk
is given by

χk ≃ SNRL

[

k(1− ν)−
(

1

ω2k−1

)(
ω2k − 1

ω2 − 1

)]

,

(42)

which is a convex function that exhibits a linear asymp-

totic (k → ∞) behavior. Using (39), we can see that

T1(x) corresponds to the index k that minimizes

T1(x) = argmin
k

{|χk − (B − x)|}. (43)

In order to alleviate the need to solve (43) for all

x ∈ [A,B], we will use a first-order Taylor series

approximation for T1(x). Replacing T1(x) in (37) by

its Taylor series around an arbitrary point x0, we obtain

the series

RZ =

∞∑

i=1

1

i!

diT1(x)

dxi

∣
∣
∣
∣
x0

∫ B

A

(x − x0)
iΨZ(x)dx, (44)

Taking the first-order series around x0 = µΨ, we obtain

RZ = T1(µΨ) +O(σ2
Ψ), (45)

indicating that the mean detection delay is approximately

given by

RZ = argmin
k

{|χk − (B − µΨ)|}. (46)

Developing the terms of (46) using (42) and rearranging

the terms in the same fashion as (27) (see also [38]), we

5It is worth mentioning that an analytical approximation for the
probability that a process with time-dependent drift and diffusion
remains below a given threshold over an interval [0, T ] is given in
[40]. This approximation can be used to derive T1(x), but numerical
results suggest that the approximation is not as good as (39).
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obtain

(ω−2)
︸ ︷︷ ︸

a

RZ ≃ ω2 − 1

ω
(ν − 1)

︸ ︷︷ ︸

b

×






RZ +

B − µΨ

SNRL(1− ν)
+

ω

(ω2 − 1)(ν − 1)
︸ ︷︷ ︸

c







(47)

whose solution is

RZ ≃ −1

ln(a)
Wi

(− ln(a)

bac

)

− c. (48)

The parameter ν influences RZ . As we previously

mentioned, since the values 0 and 1 approximately

correspond to vertical asymptotes for the function RZ(ν)
(i.e. the mean delay tends toward infinity), it is logical to

suspect that there is a value νopt that minimizes RZ(ν).
Unfortunately, finding it analytically would require to

find the root of the derivative of (48), which also

includes terms such as (29). This is mathematically very

complicated (possibly intractable) and therefore of little

practical value. We will therefore only show numerical

results pertaining to νopt.

E. Influence of the sample size N on the mean detection

delay

The sample size N used to compute sequential esti-

mations of the covariance matrix (3) has so far been left

as an arbitrary value. We will now investigate its effect

on RZ .

It is obvious that under H1, a larger N increases the

value of µ
r
. This in turn increases the drift of Zt toward

the upper boundary B and one would expect that the

SLRT will then require fewer samples rk (i.e. fewer

steps) to detect the presence of a signal. However, a

larger N also increases the delay that occurs between

successive samples rk and it is not obvious if the overall

effect is a reduction in the detection delay.

In the following we will again consider that σ2
∞ ≪ 1

and therefore ϕ = −1/2, ∀N .

Let us consider two sample sizes N and Ñ and

call their ratio ( ÑN = γ). To provide a fair compar-

ison of the mean detection delay, we first need to

make sure the overall mean false-alarm delay remains

constant (NT0(A) = Ñ T̃0(A)). Therefore, T̃0(A) =
1/γT0(A). Moreover, ˜SNRL =

∑p
i=1 µ̃

2
r̃
(i) =

∑p
i=1(

√
γµ

r
(i))2 = γSNRL. Using equations (17),

(40) and once again choosing σ2
∞ = νσ̄2

∞, we see that

0µ̃L∞
= ν ˜SNRL = γ 0µL∞

. This leads to the identity

T̃0(A) 0µ̃L∞
= T0(A) 0µL∞

. (49)

Using equation (26) we deduce that the boundaries A
and B remain constant (i.e. Ã = A). Rewriting the term

B − µΨ in equation (46) using (36), we obtain

B − µΨ =
1

ϕ
− 2A

(
2− e2ϕA

1− e2ϕA

)

, (50)

which is independent of N .

From equation (50) we get the following identity:

χ̃t̃ = B − µΨ = χt, (51)

where the discrete-time parameter k has been replaced

by its continuous-time counterpart t to avoid round-off

errors. Expanding (51) using (42), we see that equality

between the left and right sides of the equation implies

ω̃t̃ = ωt. Thereby,

t̃ ln(1 + γσ2
∞) = t ln(1 + σ2

∞). (52)

Removing the logarithm using a first-order Taylor ap-

proximation, we finally get t̃ = 1/γt. As a result, the

total mean detection delay using Ñ can be written as

Ñ t̃ = Ñ
1

γ
t = Nt, (53)

indicating that the mean detection delay of the SLRT

is approximately independent of N . This result is in-

tuitively appealing since it implies that the detector re-

quires the same amount of information (i.e. total number

of received samples) to detect a signal. Moreover, it

allows us to choose a small N , which will ensure a

minimum detection delay when the actual SNR is higher

than expected. It is however important to remember that

a key assumption for this theoretical result resides in the

use of the CLT to consider that rk follows a Gaussian

distribution, preventing N from being arbitrary small. A

smaller N also implies that the SLRT needs to refresh

its statistic more often, which may impose additional

hardware constraints. As a general rule, the lower the

SNR, the larger N can be without detrimental effects on

the detection delay.

V. NUMERICAL RESULTS

In this section we will compare the SLRT detector

to the sequential eigenvalue-based detector [20] and

through the use of Monte Carlo (MC) simulations assess

the quality of the theoretical results derived so far

(theoretical results are labeled “Th” in the figures). The

thresholds A and B are mirrored with respect to the

origin (A = −B) and are set to achieve a specified
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TABLE I
T0(A) RELATIVE ERROR BETWEEN THEORETICAL VALUES AND

MONTE CARLO ESTIMATIONS.

T0(A) 5× 103 104 2× 104 3× 104

T0(A) MC 5933 11315 22109 33537
error (%) 18.6 13.1 10.5 11.6
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Fig. 2. False-alarm delay statistical distribution and T0(A). N = 50,
p = 10, κ = 10−3, σ2

0
= 2.4× 10−4, ν = 20%.

mean false-alarm delay T0(A) (measured with respect

to the time index k). We further set a = A and

b = B to minimize detection delays. Unless otherwise

specified, detection or false-alarm delays are expressed

using the “time” index k instead of a physical time value

(e.g. seconds) since our results are independent of the

sampling frequency used by the detector.

Figure 2 shows the probability density function (PDF)

of the delay between successive false-alarms. Parameters

κ and σ2
0 have been set using equations (14) and (17)

to achieve optimal detection at a target SNRL of −15
dB. Thresholds have been set to achieve T0(A) = 104,

however the mean delay is approximately 12% larger

due to the correlation between successive LLRk. The

actual delay is always larger than the theoretical one

since the correlation coefficient is negative. Interestingly,

the relative error does not remain constant and instead

decreases as T0(A) increases, as can be seen in Table I.

While the minimum error is not known, it seems that

one should expect an average of 10% deviations from the

theoretical results for values of T0(A) above 104 which,

while not ideal, seems acceptable to set the detector

thresholds.

Next, we compare in Figure 3 the stationary distribu-

tion of ΨZ computed using (34) with that obtained via

−15 −10 −5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

x

Ψ
Z
(x

)

 

 

Ψ
Z
 MC

Ψ
Z
 Th

A Ba = b = 0

Fig. 3. Stationary distribution of Zk under H0 for the case a = b = 0
(multicycle Wald detector).N = 50, p = 10, σ2

0
= 10−4, κ = 10−3.

Monte Carlo simulations. The theoretical result captures

the overall shape of the distribution relatively well, but

the impact of the correlation is noticeable from the

difference between the curves. Fortunately, for the SLRT

detector studied in this paper, we are mostly interested

in the mean value of the distribution, used to compute

the mean detection delay, rather than the exact shape of

the distribution.

To study the accuracy of the expression for the mean

detection delay in (48) we consider a multivariate signal

whose covariance matrix is of rank one, embedded in

AWGN. We note that while the detector performance

depends on the specific signal model applied, the quality

of the theoretical results considered here is not affected.

The theoretical and simulated results are plotted in

Figure 4. We observe that our solution for RZ offers a

close approximation in the typical SNR range considered

for this study.

Figure 5 shows the theoretical mean detection delay

(48) as a function of the parameter ν, used to minimize

the detection delay of the SLRT as a function of the

SNRL. The minimum delay appears around ν = 20%
and seems to deviate from this value by only a few

percents for a wide range of SNR and mean false-

alarm delays. Additionally, small deviations from the

optimal value do not drastically affect RZ , prompting

us to use 20% as the default value. It also indicates that

small deviations of the SNR do not drastically affect

the performance of the SLRT parametrized for a specific

SNR.

In Figure 6 we compare the SLRT detector to the

sequential eigenvalue-based detector presented in [20].
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Fig. 4. Mean detection delay RZ as a function of SNRL. T0(A) =
104, N = 50, p = 10, κ = 10−3 , ν = 20%.
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Fig. 5. Mean detection delay RZ as a function of ν. T0(A) = 104 ,
p = 10, κ = 10−3, SNRL = −10dB.

This detector is based on the fast-data projection method

(FDPM) and is therefore referred to as such in the

following. We again consider a multivariate signal, with

a rank-one covariance matrix, embedded in AWGN.

This covariance matrix structure corresponds to the ideal

scenario for which the scaled-largest eigenvalue (SLE)

detector (the batch equivalent of the FDPM detector

studied here) has been developed, as a generalized like-

lihood ratio test (GLRT). As we will see, even though

the signal model tends to favor the FDPM detector, the

SLRT detector still outperforms it.

Both detectors are set to achieve a mean false-alarm

delay of 104 using equation (29) for the SLRT. We then
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Fig. 6. Mean detection delays for the SLRT and FDPM detectors.
T0(A) = 104, ν = 20%, N = 50, p = 10, κ = 10−3.

compare the mean detection delays (H0 → H1 and

H1 → H0), computed as the first-time passage over

the detection thresholds after a change in the underlying

signal distribution. The SLRT is consistently faster at

detecting the presence of a signal, starting from the

stationary H0 regime. Looking at the detection delays

corresponding to the disappearance of the communica-

tion signal (H1 → H0), one may think that the FDPM

detector outperforms the SLRT detector since the detec-

tion delay is very small (close to 0 at −20dB), but this

actually reflects the SNR limit of the FDPM detector. As

the SNR decreases, the mean value of the FDPM statistic

under H1 tends toward its H0 value. To reliably detect

the signal, the variance of the FDPM statistic needs

to be reduced accordingly (by increasing N ) otherwise

the detector cannot distinguish between hypotheses H0

and H1 anymore. This is illustrated on Figure 7 which

shows the probability of misdetection Pmd (probability

that the statistic remains under the detection threshold)

of the SLRT and FDPM detectors under H1. At low

SNR, the FDPM statistic remains below the detection

threshold most of the time (e.g. Pmd ∼ 95% at −20dB).

Furthermore, the FDPM H1 → H0 detection delay

increases with the SNR since the statistic is not limited

by an upper threshold: the mean value of the FDPM

statistic increases with the SNR and the detector needs

more iterations after the signal disappears to bring the

statistic below the detection threshold. Overall, the SLRT

clearly outperforms the FDPM detector for the investi-

gated detection scenarios.

Another advantage of the SLRT detector over the

FDPM detector is its robustness to the noise distribution.
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The AWGN assumption is a key requirement to use

the formulas developed in [20] to set the detection

threshold of the FDPM detector. Instead, let us use a

contaminated Gaussian (CG) distribution fv = (1 −
pCG)Nq(0,Iq) + pCGNq(0, R Iq), which corresponds

to a two-component Gaussian mixture distribution where

the impulsive (i.e. heavy-tail) part of the noise possesses

a variance R times higher than the background noise and

a small probability of occurrence pCG.

In the following example, we consider a moderately

impulsive noise (R = 10, pCG = 0.05) and consider

the effect on the detectors mean false-alarm delay dis-

tribution. The impact on the FDPM detector, displayed

in Figure 8, is obvious. Under AWGN conditions, both

detectors are set to achieve T0(A) = 104. If we then

change the noise distribution, the FDPM detector shows

a mean false-alarm delay E[λfa] that is much lower than

the specified value. On the other hand, the SLRT detector

remains unaffected (both curves are superimposed).

Finally, to illustrate the advantages of sequential de-

tectors over batch detectors, we compare the SLRT

detector to its batch variant developed by Tugnait [11].

We receive a digital video broadcasting terrestrial mode

(DVB-T) signal, whose orthogonal frequency division

multiplexing (OFDM) frame structure is specified by

the European Telecommunications Standards Institute

(ETSI) [41]. The signal passes through a multipath

Rayleigh fading channel defined by the International

Telecommunications Union (ITU) ITU-R, channel B

pedestrian model [42] (Appendix 7.D). The batch de-

tector (labeled “Tugnait” in the figures) is parametrized

to achieve a probability of detection (Pd) of 95% and
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Fig. 8. λfa cumulative distribution function (CDF) under AWGN and

CG noise conditions for the SLRT and FDPM detectors. T0(A) = 104,
N = 50, p = 10, κ = 10−3, σ2

0
= 10−4, pCG = 5%, R = 10.

a probability of false-alarm (Pfa) of 1% at an SNR

of -10 dB. The SLRT detector mean false-alarm delay

T0(A) is set to match the batch detector Pfa in the sense

that the SLRT detector spends on average 1% of the

time in a false-alarm mode. The SLRT detector is also

configured to achieve optimal detection at an SNR of

-10 dB. Keeping these parameters constant, we analyze

the detectors detection performance when the SNR varies

from -15 dB to -5 dB. Of interest are the detection delays

and probabilities of misdetection, illustrated in Figures 9

and 10, respectively.

The parameters NSLRT and NTugnait correspond to the

sample window sizes used by the sequential and batch

detectors respectively. NTugnait is chosen to achieve the

desired 95% probability of detection at an SNR of

−10 dB, while NSLRT is chosen based on the considera-

tions discussed in Section IV-E. As we can see, the mean

detection delay of the SLRT detector is consistently

lower than that of the batch detector, even at the target

SNR of −10 dB where the SLRT detector is twice as

fast to detect the signal. The interquartile range allows

to visualize the dispersion of the detection delays at

each SNR. Not surprisingly the range decreases as the

SNR increases but, for the batch detector, it reaches a

limit due to the “dead time” of the detector. This “dead

time” reflects the inability for a batch detector to react

to the appearance of a signal before the start of a new

observation window. On the other hand, a sequential

detector works with considerably smaller observation

windows (NSLRT ≪ NTugnait) and can therefore bring

the interquartile range to much smaller values.
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Fig. 9. SLRT and Tugnait detectors mean detection delays as
a function of the SNR. NTugnait = 3 × 104. SLRT parameters:

NSLRT = 1024, p = 12, T0(A) = 5 × 102, ν = 20%, κ = 10−3 ,
σ2

0
= 0.96.
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Fig. 10. SLRT and Tugnait detectors probability of misdetection
as a function of the SNR. NTugnait = 3 × 104. SLRT parameters:

NSLRT = 1024, p = 12, T0(A) = 5 × 102, ν = 20%, κ = 10−3 ,
σ2

0
= 0.96.

Complementary to Figure 9, Figure 10 shows the

probability of misdetection for both detectors. We con-

sider that the detectors fail to detect the signal if they

cannot detect it before a maximum delay set to 10
observation windows of sample size NTugnait. As we can

see, the SLRT detector clearly outperforms the batch

detector when the actual SNR is lower than expected.

For instance, at an SNR of −15 dB, the probability

of misdetection for the batch detector rises to 37%, as

opposed to 8% for the SLRT detector. This indicates

that the SLRT detector is much more robust to SNR

uncertainties, both in terms of detection delays and

probability of misdetection, than its batch counterpart.

VI. CONCLUSION

In this paper we have proposed a new SLRT detector

exploiting the correlation of a multivariate communica-

tion signal and considered its use for CR spectrum sens-

ing scenarios. We derived analytical results regarding the

statistical properties of the test, needed to parametrize

the detector and evaluate its performance, and compared

the detector to a sequential eigenvalue-based detector

and a batch detector designed to operate under the same

conditions. The comparison revealed the competitiveness

of the SLRT as well as its robustness to impulsive noise.

REFERENCES

[1] E. Axell, G. Leus, E. Larsson, and H. Poor, “Spectrum Sensing
for Cognitive Radio: State-of-the-Art and Recent Advances,”
IEEE Signal Processing Mag., vol. 29, pp. 101–116, May 2012.

[2] J. Lunden, V. Koivunen, and H. V. Poor, “Spectrum Exploration
and Exploitation for Cognitive Radio: Recent Advances,” IEEE
Signal Processing Mag., vol. 32, pp. 123–140, May 2015.

[3] Z. Quan, S. Cui, H. V. Poor, and A. H. Sayed, “Collaborative
wideband sensing for cognitive radios,” IEEE Trans. Signal

Processing, vol. 25, pp. 60–73, Nov. 2008.
[4] J. Lunden, S. Kassam, and V. Koivunen, “Robust Nonparametric

Cyclic Correlation-Based Spectrum Sensing for Cognitive Ra-
dio,” IEEE Trans. Signal Processing, vol. 58, pp. 38 –52, Jan.
2010.

[5] F. Bhatti, G. Rowe, K. Sowerby, and C. da Silva, “Blind Signal
Detection Using a Linear Antenna Array: An Experimental
Approach,” IEEE Trans. Veh. Technol., vol. 63, pp. 1135–1145,
Mar. 2014.

[6] F. Penna and S. Staczak, “Decentralized Eigenvalue Algorithms
for Distributed Signal Detection in Wireless Networks,” IEEE

Trans. Signal Processing, vol. 63, pp. 427–440, Jan. 2015.
[7] K. Hassan, R. Gautier, I. Dayoub, M. Berbineau, and E. Radoi,

“Multiple-Antenna-Based Blind Spectrum Sensing in the Pres-
ence of Impulsive Noise,” IEEE Trans. Veh. Technol., vol. 63,
pp. 2248–2257, June 2014.

[8] F. Moghimi, A. Nasri, and R. Schober, “Adaptive Lp Norm
Spectrum Sensing for Cognitive Radio Networks,” IEEE Trans.

Commun., vol. 59, pp. 1934–1945, July 2011.
[9] E. Axell and E. Larsson, “A unified framework for GLRT-based

spectrum sensing of signals with covariance matrices with known
eigenvalue multiplicities,” in 2011 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP),
pp. 2956–2959, May 2011.

[10] J. Lunden, V. Koivunen, A. Huttunen, and H. Poor, “Collaborative
Cyclostationary Spectrum Sensing for Cognitive Radio Systems,”
IEEE Trans. Signal Processing, vol. 57, pp. 4182 –4195, Nov.
2009.

[11] J. Tugnait, “On autocorrelation-based multiantenna spectrum
sensing for cognitive radios in unknown noise,” in IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 2944–2947, May 2011.
[12] J. Font-Segura, J. Riba, J. Villares, and G. Vazquez, “Quadratic

sphericity test for blind detection over time-varying frequency-
selective fading channels,” in IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 4708–
4712, May 2013.

14



[13] Y. Zeng, Y.-C. Liang, and R. Zhang, “Blindly Combined Energy
Detection for Spectrum Sensing in Cognitive Radio,” IEEE Signal
Processing Lett., vol. 15, pp. 649–652, 2008.

[14] FCC, “Notice of Proposed Rule Making and Order (FCC 03-322):
Facilitating Opportunities for Flexible, Efficient, and Reliable
Spectrum Use Employing Cognitive Radio Technologies,” ET
Docket No. 03-108, Federal Communications Commission, Dec.
2003.

[15] ECC REPORT 159, “Technical and Operational Requirements
for the Possible Operation of Cognitive Radio Systems in the
White Spaces of the Frequency Band 470-790 MHz,” Tech. Rep.
159, CEPT, Cardiff, Wales, Jan. 2011. [online, March 2016]
http://www.erodocdb.dk.

[16] A. N. Shiryaev, “Quickest Detection Problems: Fifty Years
Later,” Sequential Analysis, vol. 29, no. 4, pp. 345–385, 2010.

[17] V. H. Poor, An Introduction to Signal Detection and Estimation.
Springer, 1994.

[18] J. Manco-Vásquez, M. Lázaro-Gredilla, D. Ramı́rez, J. Vı́a, and
I. Santamarı́a, “A Bayesian approach for adaptive multiantenna
sensing in cognitive radio networks,” Elsevier Signal Processing,
vol. 96, Part B, p. 228240, Mar. 2014.

[19] X. Doukopoulos and G. Moustakides, “Fast and Stable Subspace
Tracking,” IEEE Trans. Signal Processing, vol. 56, pp. 1452–
1465, Apr. 2008.

[20] C. G. Tsinos and K. Berberidis, “Decentralized Adaptive
Eigenvalue-Based Spectrum Sensing for Multiantenna Cogni-
tive Radio Systems,” IEEE Trans. Wireless Commun., vol. 14,
pp. 1703–1715, Mar. 2015.

[21] L. Lai, Y. Fan, and H. Poor, “Quickest Detection in Cognitive
Radio: A Sequential Change Detection Framework,” in IEEE

GLOBECOM 2008, pp. 1–5, Nov. 2008.

[22] A. Wald and J. Wolfowitz, “Optimum Character of the Sequential
Probability Ratio Test,” The Annals of Mathematical Statistics,
vol. 19, no. 3, pp. 326–339, 1948.

[23] F. Lin, R. C. Qiu, and J. P. Browning, “Spectrum Sensing
With Small-Sized Data Sets in Cognitive Radio: Algorithms and
Analysis,” IEEE Trans. Veh. Technol., vol. 64, pp. 77–87, Jan.
2015.

[24] T. L. Lai, “Sequential analysis: Some classical problems and new
challenges,” Statistica Sinica, vol. 11, pp. 303–408, Apr. 2001.

[25] H. Li, C. Li, and H. Dai, “Quickest spectrum sensing in cognitive
radio,” in CISS 2008. 42nd Annual Conference on Information

Sciences and Systems., pp. 203–208, Mar. 2008.

[26] W.-H. Chung, “Sequential Likelihood Ratio Test under Incom-
plete Signal Model for Spectrum Sensing,” IEEE Trans. Wireless

Commun., vol. 12, pp. 494–503, Feb. 2013.

[27] T. Kailath and H. Poor, “Detection of stochastic processes,” IRE

Trans. Inform. Theory, vol. 44, pp. 2230–2231, Oct. 1998.

[28] R. Tandra and A. Sahai, “SNR Walls for Signal Detection,” IEEE

J. Select. Topics. Signal Processing, vol. 2, pp. 4 –17, Feb. 2008.

[29] R. Lopez-Valcarce, G. Vazquez-Vilar, and J. Sala, “Multiantenna
spectrum sensing for Cognitive Radio: overcoming noise uncer-
tainty,” in 2nd International Workshop on Cognitive Information
Processing (CIP), pp. 310–315, June 2010.

[30] Y. Zeng and Y.-C. Liang, “Spectrum-Sensing Algorithms for
Cognitive Radio Based on Statistical Covariances,” IEEE Trans.

Veh. Technol., vol. 58, pp. 1804–1815, May 2009.

[31] S. Kay, Fundamentals of Statistical Signal Processing: Vol I

Estimation Theory. Prentice-Hall PTR, 1998.

[32] A. N. Shiryaev, “On the Detection of Disorder in a Manufacturing
Process. I.,” Theory of Probability & Its Applications, vol. 8,
no. 3, pp. 247–265, 1963.

[33] S. Van Vaerenbergh, M. Lazaro-Gredilla, and I. Santamaria,
“Kernel Recursive Least-Squares Tracker for Time-Varying Re-
gression,” IEEE Trans. Neural Networks, vol. 23, pp. 1313–1326,
Aug. 2012.

[34] S. Karlin and H. Taylor, A Second Course in Stochastic Pro-
cesses. Academic Press, 1981.

[35] P. W. Glynn, “Stochastic Models, Chapter 4: Diffusion approx-
imations,” Handbooks in operations research and management
science, vol. 2, pp. 145–198, 1990.

[36] A. Klenke, Probability theory: a comprehensive course. Springer,
2008.

[37] S. Asmussen, Applied probability and queues. Applications of
mathematics, Springer, 2003.

[38] D. Kalman, “A Generalized Logarithm for Exponential-Linear
Equations,” The College Mathematics Journal, vol. 32, Jan. 2001.

[39] T. T. Chien, An adaptive technique for a redundant-sensor navi-

gation system. PhD thesis, Massachusetts Institute of Technology.
Dept. of Aeronautics and Astronautics, July 1972.

[40] T. Guillaume, “On the Probability of Hitting a Constant or a
Time-Dependent Boundary for a Geometric Brownian Motion
with Time-Dependent Coefficients,” Hikari, Applied Mathemati-

cal Sciences, vol. 8, no. 20, pp. 989 – 1009, 2014.
[41] ETSI, “ETSI EN 300 744 V1.6.2, Digital Video Broadcasting

(DVB); Framing structure, channel coding and modulation for
digital terrestrial television,” tech. rep., European Telecommuni-
cations Standards Institute (ETSI), Oct. 2015. [online, oct 2015]
http://www.etsi.org.

[42] A. Molisch, Wireless Communications. J. Wiley & Sons, 2005.

Julien Renard (J’10) received the M.Sc.
(Eng.) degree with High Distinction in elec-
trical engineering from the Applied Science
Faculty of the Universite Libre de Bruxelles
(ULB), Brussels, Belgium, in 2009.

He is currently pursuing a D.Sc (eng.) de-
gree, organized as a joint degree between the
ULB and the University of British Columbia,
Vancouver, Canada.

Lutz Lampe (M02SM08) received the Dipl.-
Ing. and Dr.-Ing. degrees in electrical en-
gineering from the University of Erlangen,
Erlangen, Germany, in 1998 and 2002, re-
spectively. Since 2003, he has been with the
Department of Electrical and Computer Engi-
neering, The University of British Columbia,
Vancouver, BC, Canada, where he is a Full
Professor. His research interests are broadly
in theory and application of wireless, optical
wireless, and power line communications. Dr.

Lampe was the General (Co-)Chair for 2005 ISPLC and 2009 IEEE
ICUWB and the General Co-Chair for the 2013 IEEE SmartGrid-
Comm. He is currently an Associate Editor of the IEEE WIRELESS
COMMUNICATIONS LETTERS and the IEEE COMMUNICATIONS
SURVEYS AND TUTORIALS and has served as an Associate Editor
and a Guest Editor of several IEEE transactions and journals. He was
a (co-)recipient of a number of best paper awards, including awards at
the 2006 IEEE International Conference on Ultra-Wideband, the 2010
IEEE International Communications Conference, and the 2011 IEEE
International Conference on Power Line Communications.

15



Francois Horlin received the electrical en-
gineering degree and the Ph.D. degree from
the Universit catholique de Louvain (UCL),
Louvain-la-Neuve, Belgium, in 1998 and
2002 respectively. During his studies, he spe-
cialized in the field of digital signal process-
ing for communications. He led the project
aiming at developing a fourth-generation
wireless communication system in collabora-
tion with Samsung Korea. Since 2014 Fran-
cois Horlin is full professor at the Universite

libre de Bruxelles (ULB), Brussels, Belgium. He is currently giving
three lectures in the field of digital telecommunications and is advisor
of 6 Ph.D. students (plus 13 already defended Ph.D. theses). He chairs
currently the IEEE signal processing chapter of the Benelux.

16


