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Abstract—The problem of content delivery in caching networks
is investigated for scenarios where multiple users request identical
files. An adaptive method is proposed for the delivery of redun-
dant demands in caching networks. Based on the redundancy
pattern in the current demand vector, the proposed method
decides between the transmission of uncoded messages or the
coded messages of [1] for delivery. Moreover, a lower bound
on the delivery rate of redundant requests is derived. The
performance of the adaptive method is investigated through
numerical examples and Monte Carlo simulations. It is shown
that the adaptive method considerably reduces the performance
gap to the lower bound for specific ranges of network parameters.

Index Terms—Adaptive delivery algorithm, average delivery
rate, coded caching, correlated requests, redundant demands.

I. INTRODUCTION

LOCAL caching is a promising technique to meet the

unprecedented traffic demands in the next generation

communication networks [1]–[6]. Caching networks operate in

two phases, commonly referred to as placement and delivery

phases. In the placement phase, caches fill their memories

with parts of the popular files during the off-peak hours. The

delivery phase, however, is performed when the network is

congested. In this phase, each cache provides its users with the

parts of the requested files that it has available. The remaining

parts are conventionally delivered to the users through unicast

transmissions performed by a central server on a broadcast

channel. In a more recent approach, known as coded caching

[2], the central server uses coded-multicasting to deliver the

requested content, to further reduce the network congestion.

In [2], the authors derived an information-theoretic formu-

lation for the caching problem and proposed a centralized

scheme for coded caching. In a later work [1], a decentral-

ized coded caching method was proposed which became the

building block of several caching schemes developed for more

complicated scenarios [6]–[9]. [1], [2] used the peak delivery

rate as the figure of merit of the network. The peak rate occurs

when all the users request distinct files, given that the number

of files is greater than the number of caches.

Average delivery rate is another significant network per-

formance metric, and depends on the statistics of the user

requests. [5]–[8] proposed caching schemes to decrease the

average delivery rate in scenarios with non-uniform file pop-

ularities. The statistics of user requests also affect the design

of caching networks by increasing the chance of multiple

users requesting identical files. In such a scenario, the delivery

method can be modified to benefit from the redundancies in

the user demands, and further reduce the delivery rate.

Redundant demands are likely when either the files have

significantly different popularity levels or the user requests
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are positively correlated. For the case of non-uniform file

popularities, the schemes in [6]–[8] do not take the effect of

redundant requests into account. This is because the delivery

in all these schemes is based on the delivery of [1], which is

designed for the demand vectors with distinct requests. In ad-

dition to non-uniform popularity levels, correlated requests are

also likely in many practical scenarios. A considerable amount

of multimedia requests are made through social networks like

Facebook and Instagram, where users with common friends

and interests are likely to request the same content.

In this paper, we investigate the delivery of redundant

demands in caching networks. We use the placement schemes

of [1], [2] to ensure that the peak delivery rate does not exceed

the delivery rates of [1], [2], and the link capacity is satisfied.

Further, these placement schemes are natural candidates when

the file popularities are uniform or little prior knowledge about

the popularities is available during the placement phase.

For the delivery phase, we propose an adaptive scheme

based on message selection. Upon receiving a demand vector

from the users and based on the redundancy pattern of the

requests made, the server decides whether to use uncoded

messages or the coded messages of [1] to deliver each part

of the requested files. This distinguishes our work from [1],

[2], as our proposed delivery takes the specifics of the current

demand vector into account to decide on the form of the

server messages. However, [1], [2] use a fixed structure to

compose the server messages for all demand vectors. We

show the superiority of our adaptive method through numerical

examples and Monte Carlo simulations. We also derive a lower

bound on the delivery rate of redundant requests. In some

cases, the adaptive method shrinks the gap between the average

rate of the non-adaptive scheme and the lower bound by 50%.

The remainder of this paper is organized as follows. In

Section II, we present the network model. The adaptive

delivery scheme is derived in Section III. Section IV presents

numerical examples and simulation results.

II. NETWORK MODEL

Assume a network with a central server and K caches.

The server is able to communicate with the caches through a

broadcast link. We denote the set of all caches in the network

by K. A library of N ≥K files is given, where each file is

F bits long. All files are available at the central server. Each

cache has a memory capacity of M×F bits. We define q, M
N .

Placement Phase: Placement takes place only once and

remains unchanged during the delivery phase. After the place-

ment, the distribution of bits in the caches can be described

as follows. For a given file n and a given subset of caches

S ⊂ K, denote by V n
S the subset of bits of file n that are

exclusively stored at the caches in S. The resulting subsets

of bits partition the set of all the bits of every file into 2K
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partitions. Let s, |S|. Define xs,|V n
S |/F as the portion of

the bits of file n that are exclusively stored at each subset

S of caches with cardinality s. Here, we have assumed that

|V n
S | only depends on s. In particular, it neither depends on

n nor on the particular choice of caches in S, as long as the

cardinality of S is s. This holds as we assume uniform file

popularities during the placement.

The placement phase can be performed through either the

centralized scheme of [2] or the decentralized scheme of [1].

For the centralized placement, we have

xcen
s =

{

1/
(

K
s

)

s = t

0 s 6= t
(1)

where t = KM/N [2]. For the decentralized placement and

for large F , with high probability we have [1]

xdecen
s ≈ qs−1(1 − q)K−s+1, s = 0, ...,K. (2)

Delivery Phase: In the delivery phase, the network serves

one user of every cache at a time. Denote the requests of the

users of caches 1, ...,K , with d1, ..., dK , respectively. We refer

to the vector [d1, ..., dK ] as the demand vector. We represent

the number of distinct files in the demand vector by L, where

1 ≤ L ≤ K . The demand vector is called redundant if L < K .

Also, denote by ki, the number of requests for the i-th most

requested file in the current demand vector. Thus ki ≥ kj for

i > j and i, j ∈ {1, ..., L}. We call (k1, ..., kL) the redundancy

pattern of the demand vector. For a demand vector [d1, ..., dK ],
we define the delivery rate R(M, [d1, ..., dK ]) as the total

equivalent number of files transmitted by the server, such that

all the caches successfully recover the files they requested.

The delivery phase is performed through the delivery algo-

rithm [1, Algorithm 1]. We consider the rate of this algorithm

as the state-of-the-art benchmark for the adaptive method we

propose in Section III. Notice that the delivery method for the

centralized caching in [2] is a special case of [1, Algorithm 1].

Discussion: Note that if file n is requested by multiple

users, including user k, [1, Algorithm 1] embeds V n
S\{k} into

several messages. If s > 1, user k has the side information

to decode only one of those messages. As a result, the server

needs to send all the messages with s > 1. This is not the case

for the messages with s = 1, i.e., S = {k}. In these cases,

⊕k∈SV
dk

S\{k} = V dk

∅ . Such uncoded messages deliver the bits

that are not stored at any cache in the system. All the users

that request file n can decode V n
∅ , so it needs to be sent only

once. As a result, the traffic due to the uncoded messages is

Lx0 instead of Kx0. Thus, the total delivery rate will be

Lx0 +
K−1
∑

s=1

(

K

s+ 1

)

xs. (3)

For L=K , substitution of (1) and (2) in (3) gives the peak

rates in [2, eq. 2] and [1, Theorem 1] for the corresponding

caching schemes. Yet, (3) suggests that for redundant demand

vectors, the actual rate of [1, Algorithm 1] can be smaller than

the peak rates. This is the basis of our analysis in Section III.

III. ADAPTIVE CACHING SCHEME

We now design an adaptive delivery method that unlike [1],

[2], exploits the redundancies in the user requests in order to

reduce the delivery rate. We further derive a lower bound on

the delivery rate of redundant demand vectors.

A. Adaptive Delivery Method

For the adaptive method, we introduce an extra step to the

delivery phase, which takes place after receiving each request

vector and before the transmission of the server messages to

the users. In this step, the server decides whether to send each

part of the requested files through the corresponding coded

message in [1, Algorithm 1] or through an uncoded message.

The use of uncoded messages instead of coded messages to

deliver file n is equivalent to transferring bits from V n
S : s > 0

to V n
∅ . By such a transfer, the cache only ignores parts of its

content and it does not change the actual placement of files.

Let V̂ n
S represent the subset of the bits of file n exclusively

cached at S after the transfer is done, and ynS , |V̂ n
S |/F .

In our delivery method, the server first optimizes ynS . Then,

it arbitrarily picks ynSF bits of V n
S to form V̂ n

S , and adds the

rest of the bits to V̂ n
∅ . Finally, it uses [1, Algorithm 1] for

delivery based on the resulting subsets V̂ n
S instead of V n

S .

We now find the optimal lengths of the updated subsets V̂ n
S

to minimize the sum of the lengths of messages ⊕k∈S V̂
dk

S\{k}
over all S ⊂ K. Let D denote the set of the distinct files
requested in the current demand vector. Note that |D| =
L ≤ K , and both D and L evolve with time. Then, the rate
minimization problem is given by

minimize
y
d
k

S

∑

S:S⊂K

max
k∈S

ydk
S\{k}

subject to
∑

S:S⊂K

ydk
S = 1, ∀ dk ∈ D

0 ≤ y
dk
S ≤ x|S|, ∀ dk ∈ D, ∀S ⊂ K : |S| > 0

0 ≤ y
dk
∅ ≤ 1, ∀ dk ∈ D.

(4)

In (4), x|S| = |V n
S |/F are known from the placement phase and

are given by (1) and (2) for the centralized and decentralized

placements, respectively. maxk∈S ydk

S\{k} is the length of the

message ⊕k∈S V̂
dk

S\{k}. Thus, the objective function is the rate

of [1, Algorithm 1] operating based on the adjusted subsets

V̂ n
S . The equality constraints are the partition constraints. The

parameter range constraints permit the server to use uncoded

messages instead of coded messages, but not vice versa.

Algorithm 1 Original Adaptive Delivery Algorithm

Require: {V n
S }n ,S // From the placement phase

1: Procedure AdaptiveDelivery(d1, ..., dK)

2: D ← unique(d1, ..., dK) // Set of distinct files requested

3: {y∗dk

S }dk∈D,S⊂K ← Solution of Problem (4)

4: for dk ∈ D do

5: V̂ dk

∅ ← ∅ // Initialization of V̂
dk
∅

6: for S ⊂ K do

7: V̂ dk

S ← {first y∗ dk

S F bits of V dk

S }
8: V̂ dk

∅ ← V̂ dk

∅ ∪ { last (1− y∗ dk

S )F bits of V dk

S }
9: end for

10: end for

11: Use [1, Algorithm 1] with {V̂ n
S }n,S instead of {V n

S }n,S

Problem (4) can be posed as a linear programming problem
by the standard technique of defining ancillary variables zS =
maxk∈S ydk

S\{k}, and adding the extra constraints

zS ≥ ydk
S\{k}, zS ≤ −ydk

S\{k}, k ∈ S (5)

for all S ∈ K : |S| > 0 [10, Sec. 4.3]. The resulting linear

programming problem can be solved numerically for y∗dk

S .

Algorithm 1 shows the proposed adaptive delivery scheme.
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B. Simplified Adaptive Delivery

A simplified version of the message selection step can be
formulated by only taking the number of distinct requests L
into account, and ignoring the redundancy pattern of the de-
mand vector. Then, because of the symmetry, we set ynS = ys
for all n and all S : |S| = s. This leads to

minimize
ys

Ly0 +

K−1
∑

s=1

(

K

s+ 1

)

ys

subject to

K
∑

s=0

(

K

s

)

ys = 1

0 ≤ ys ≤ xs, s = 1, ..., K

0 ≤ y0 ≤ 1

(6)

as the simplified message selection problem.
Proposition 1: Let ŝ = ⌊K−L

L+1
⌋. Optimal parameters for the

simplified message selection problem of (6) are given by

y∗
s =







∑

i=1,...,ŝ

(

K

i

)

xi, s = 0

0, s = 1, ..., ŝ

xs, s = ŝ+ 1, ..., K

. (7)

Proof: If we transfer bits from the subsets V n
S : |S| = s to V n

∅ ,

the resulting change in the rate will be L
(

K
s

)

xs−
(

K
s+1

)

xs. We

transfer the bits only if this difference is negative. This is the

case when s ≤ ŝ. This results in the parameters of (7).

Algorithm 2 shows the simplified adaptive delivery scheme.

Algorithm 2 Simplified Adaptive Delivery Algorithm

Require: {V n
S }n,S // From the placement phase

1: Procedure SimplifiedAdaptiveDelivery(d1, ..., dK )

2: L = size(unique(d1, ..., dK)) // Number of distinct requests

3: ŝ← ⌊K−L
L+1
⌋

4: for dk ∈ D do

5: V̂ dk

∅ ← ∪S:s≤ŝV
dk

S // Corresponds to the first rule of (7)

6: for S ⊂ K : |S| > 0 do

7: if |S| ≤ ŝ then

8: V̂ dk

∅ ← ∅ // Corresponds to the second rule of (7)

9: else

10: V̂ dk

S ← V dk

S // Corresponds to the third rule of (7)

11: end if

12: end for

13: end for

14: Use [1, Algorithm 1] with {V̂ n
S }n,S instead of {V n

S }n,S

To recap, the proposed adaptive delivery algorithms adjust

their use of coded and uncoded messages based on the

redundancies in the demand vector. This is in contrast to the

delivery of [1], [2], where the server always uses the same

structure for construction of the coded messages, regardless

of the redundancy pattern in the demand vector.

C. Lower Bound

Let R∗
L(M) denote the minimum rate that is achievable

for every possible demand vector with L distinct requests.

Proposition 2 gives a lower bound on R∗
L(M).

Proposition 2 (Cutset Bound): Assume that K caches re-
quest L ≤ K distinct files. Then, R∗

L(M) must satisfy

R∗
L(M) ≥ max

s∈{1,...,L}

(

s−
s

⌊N/s⌋
M

)

. (8)

Proof: We modify the cutset bound argument of [2, Sec. VI]

to bound R∗
L(M). Let S be a subset of caches with |S| = s,

such that there are no two caches in S with identical user
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Fig. 1. Rates of different delivery schemes for K = 12.

requests. Assume that these caches request files 1, ... , s from

the library. Let X1 denote the server’s input to the shared link

which determines files 1, .., s. Similarly, assume that the same

users request files (i− 1)s+1, ..., is, and the server input Xi

determines the files requested. Let i = 1, ..., ⌊N/s⌋. Consider

the cut separating X1, ..., X⌊N/s⌋ and the caches in S from

the corresponding users. The total information available to the

users in the cut should be more than or equal to the total

information requested. Thus, ⌊N/s⌋R∗
L(M)+sM ≥ s⌊N/s⌋.

Since s accepts any value between 1 and L, (8) results.

IV. NUMERICAL EXAMPLES AND SIMULATION RESULTS

We now compare the performance of the proposed adaptive

methods and the non-adaptive method of [1, Algorithm 1]

through numerical examples. Notice that by the rate of non-

adaptive method, we refer to the rate of [1] or [2] depending

on whether the decentralized or centralized placement is used,

respectively. This rate is calculated by (3).

Fig. 1 shows the delivery rates of the non-adaptive and

adaptive schemes, as well as the lower bound (8) for a network

of K=12 caches. The same decentralized placement is used

for all cases with the parameters in (2). We consider several re-

dundancy patterns for the demand vector with different values

of L. In Fig. 1, we observe a considerable improvement in the

delivery rate for M/N ≤ 0.25, when the adaptive methods are

used. This improvement in the rate is more considerable when

L is smaller. For instance, the performance gap to the lower

bound decreases by almost 50% when L = 3. Notice that for a

symmetric redundancy patterns like (3, 3, 3, 3), both adaptive

methods lead to the same delivery rate. As the pattern gets

more asymmetric, the gap between the rates of the original

and simplified adaptive methods increases. Also, observe that

for some cases, the rate of the non-adaptive method increases

with the storage capacity for small M/N . This shows the

inefficiency of [1, Algorithm 1] to deliver redundant requests.

For the second numerical example, we use the centralized

placement and plot the delivery rates resulted from the differ-

ent methods versus L. Fig. 2 shows the results. Notice that

the rate of original adaptive method depends not only on L,

but also on the redundancy pattern. Hence, in this example,

for every value of L, the delivery rate of the original adaptive

method is averaged over all the redundancy patterns with L
distinct requests, assuming that the requests are independent
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and file popularities are uniform. Observe that the superiority

of the adaptive method over the non-adaptive method of [2] is

more significant for small L. In particular, we observe a sharp

decrease in the adaptive delivery rate when L gets smaller than

K/2. This suggests that the adaptive methods are considerably

more effective for highly redundant requests.

We now investigate the average rates of the different deliv-

ery methods through a stochastic modelling of the dynamics

of a caching network with correlated user requests. Consider

a graph representation of the network where vertices represent

the caches. An (undirected) edge between two vertices shows

that the requests of the corresponding caches are correlated. To

model the correlations, let N (k) denote the set of the last files

requested by the neighbour caches of cache k. We assume that

cache k requests a file, either based on its neighbours’ previous

requests with probability r, or independently with probability

1−r. In the former case, k chooses a file fromN (k) uniformly

at random. However, when choosing independently, k picks a

file n from the library based on the popularity distribution of

files pn. Hence, the chance of requesting file n by cache k is

p̂n,k =

{

r/|N (k)| + (1− r)pn, n ∈ N (k)

(1− r)pn, otherwise
. (9)

For our simulations, we use Gibbs sampling [11, Sec. 24.2]

to generate 104 sample vectors from the induced joint dis-

tribution of user demands. We set K = 8 and N = 103,

(r, θ) (0.7, 0) (0.9, 0) (0.9, 0.75)
Maximum ρ̂ij 0.19 0.34 0.34
Average ρ̂ij 0.16 0.32 0.31
Average L 4.80 3.41 3.18

TABLE I. User requests’ statistics in simulations of Fig. 3.

and assume a complete graph for the network. Further, we

mainly use uniform distribution for the popularity of files.

We also consider a scenario where the placement phase is

performed based on a uniform popularity distribution, while

the actual file popularities in the delivery phase follow a

non-uniform Zipf distribution with parameter θ. Note that

a Zipf distribution with θ = 0 is identical to the uniform

distribution, and increasing θ makes the distribution more non-

uniform. We use θ and r to control the popularity distribution

and the dependency level of the users’ requests, respectively.

To characterize the resulting correlation levels among the

caches’ requests in our simulations, we empirically calculate

the correlation coefficients −1 ≤ ρ̂ij ≤ 1 [12, Section 4.1]

between the requests of the different caches i and j. A larger

ρ̂ij implies a higher chance that caches i and j request the

same content, which leads to more redundancy in the demand

vector. Table I presents the average and the maximum ρ̂ij over

all the different i and j pairs (i 6= j), in our simulations.

Fig. 3 shows the resulting average delivery rates. It also

shows a lower bound on the average rate calculated by

averaging the lower bounds of (8) for the sample demand

vectors. We observe that as requests become more correlated

(larger r) and the file popularities get more non-uniform (larger

θ), the adaptive method makes a larger improvement in the

rate. Also, observe that the adaptive schemes are effective in

decreasing the average delivery rate for M/N < 0.25. The

improvement in the performance gap to the lower bound can

be as large as 50% for specific choices of parameters.
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