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Abstract— Power line communications (PLC) is one of the com-
munication methods currently deployed and developed further to
support smart grid applications. While the fact the PLC signals
travel through power lines makes reliable communication more
challenging than for other wired media, it also provides one
distinct advantage: PLC signals can be used to learn about the
grid status. In this paper, we exploit this “through the grid”
property of PLC for the purpose of inferring the topology of the
power grid to which a PLC network is deployed. In particular,
we present a topology estimation algorithm that only requires
PLC signaling between the end points of a grid, such as between
meters and data concentrator in an advanced meter management
system. Our methodology is alike network tomography used to
infer internal properties of a communication network based on
end-to-end measurements, and we refer to it as tomography-
based topology inference.

Index Terms— Smart grid, power line communications, topol-
ogy inference, online diagnostics.

I. INTRODUCTION

Power line communications (PLC), which reuses power
lines for the purpose of data communications, has been used
by electric utility companies for about a century [1], [2].
Since the late 1990’s, PLC technology has experienced major
innovations. While the first wave of innovation targeted broad-
band PLC for multimedia communications, more recently
narrowband and broadband PLC for smart grid applications
has been the focus of research and development, e.g. [3]–[7].

The main purpose of PLC for smart grid is to enable
applications that require communications. In doing so, PLC
is challenged by the fact that the power grid was not de-
signed to support high-frequency signal propagation. Signal
attenuation and reflection at discontinuities are two of the
main effects experienced by PLC signals traveling through
the grid. However, while the binding of the PLC signal to the
power lines makes communication challenging, it also enables
another use of PLC, especially in the context of smart grid.
That is, observing the PLC signal after being sent through the
power grid allows us to learn about the grid, i.e., to perform
grid diagnostics. This property is unique to PLC, being the
only “through the grid” [5] communication technology.

The use of high-frequency signals traveling through power
lines for diagnostics is not a new idea. For example, fault local-
ization based on measuring traveling waves emitted from faults
at different ends of power lines or by sending a stimulating
signal which propagates along the line and reflects at the fault
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location are described in [8, Ch. 7] and [9], [10], respectively.
Another example is the prediction of line failures based on
the strength of the PLC signals in a smart metering system,
which has been suggested in [11].

In this paper, we consider a different diagnostics application
of PLC, which is grid topology inference, also referred to
as topology estimation [12]. We assume that a PLC network
consisting of a set of PLC modems is in place, for example
for the purpose of supporting an advanced meter management
(AMM) infrastructure. These modems communicate with each
other, and the time of flight of the communication signal
enables a distance estimation for the communication link, i.e.,
ranging. Then, based on the ranging between pairs of nodes in
the grid, we use a network tomography approach to infer the
underlying grid structure. Tomography is a methodology that
tries to reconstruct the internal properties of an object based on
observations from sensors surrounding it. It has been used in
communication networks for inferring e.g. link performance,
routing topologies, etc. based on end-to-end measurements,
cf. e.g. [13]. By formulating power-grid-topology inference
using distance measurements as a tree estimation problem, it
becomes analogous to those considered in the communication
network applications. Hence, we refer to the proposed method
as tomography-based topology inference.

Our work is related to topology estimation presented in
[12], [14]. These works use distance and topology estimation
to optimize the use of distributed energy sources in smart
micro grids. Different from our work, it is assumed that all
branch points in the grid are equipped with PLC modems.
Such an assumption would not hold true for, for example,
a low-voltage distribution grid with PLC modems deployed
at electricity meters and communicating with modems at one
(or multiple) transformer stations connecting the low-voltage
domain to the rest of the grid. Our approach is also mostly
targeting topology inference in low-voltage distribution grids.
One application is to enable electric utility companies to map
these parts of the grid. Not having such a mapping of the low-
voltage grid is a real problem for utilities and prevents them
from, for example, automatic identification of faulty cables
[15]. Another application is the support of PLC routing. The
use of location information for PLC routing was presented in
[16]. The proposed topology inference method would provide
the required location information, similar to location services
in geographic routing for wireless communication networks.
Another application area is the support of the smart grid
operation through online monitoring and diagnostics. This
includes optimization of smart micro grids as considered in
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[12], [14], and more generally online monitoring of grid
elements including loads and lines, similar to the application
examples considered in [9]–[11]. Furthermore, smart fault
location systems using intelligent electronic devices as dis-
cussed in [17] would also benefit from updated grid-topology
information.

To present the new topology inference method, in Section II
we introduce a graph representation of the power grid as
well as the principles of PLC signal propagation modeling
applied for obtaining numerical results. Then, in Section III,
we introduce the new tomography-based topology estimation
method. Numerical results demonstrating the performance of
our method are presented and discussed in Section IV. Final
remarks in Section V conclude this paper.

II. GRAPH REPRESENTATION OF AND SIGNAL
PROPAGATION THROUGH THE GRID

In this section, we first introduce the abstract description
of (a part of) the grid consisting of grid elements connected
through power lines. Then, we briefly review the applied
model for PLC signal propagation.

A. Graph Representation

The electricity grid we consider consists of electrical “de-
vices”, such as for example power generators, transformers,
energy storage units, or energy loads, which are connected
through power lines (overhead or underground). The devices
of interest are equipped with a PLC modem and the set of
modems forms a PLC network. The PLC network is likely put
in place to perform a smart-grid communication task, such as
automatic meter reading, supporting supervisory control and
data acquisition systems, transmitting pricing information, etc.
In this case, their use for topology estimation does not entail
any additional installation or equipment costs.

We can describe the electricity grid under investigation as a
bi-partite graph consisting of vertices (or nodes), representing
the devices, and edges, representing the power lines. Figure 1
shows such a graph representing a smart micro grid with 30
nodes from [12]. Another graph corresponding to an AMM
infrastructure considered in [18] is shown in Figure 2. The
authors of [12] assume that all nodes are PLC enabled.
However, for the AMM system in Figure 2, only the leaf
nodes (filled circles in Figure 2), representing the meters, are
PLC nodes, whereas the internal nodes (circles in Figure 2),
representing branch points or taps, are not equipped with PLC
modems. What both topologies have in common is a tree
structure. In fact, tree topologies are quite common for the
distribution domain of the grid, as well as for indoor scenarios,
cf. also e.g. [2, Figures 2.16, 2.47], [19]–[21]. We will assume
a tree structure in the following.

B. PLC Signal Propagation

The propagation of PLC signals through power lines can be
described using two approaches. The first is a phenomenolog-
ical approach. In this case, parameters of a model that cap-
tures the multipath propagation and distance- and frequency-
dependant attenuation are adjusted based on measurements of

Fig. 1. Sample graph for a grid topology representing a smart micro grid.
From Figure 1 in [12].

Fig. 2. Sample graph for a grid topology representing low-voltage distribution
grid. From Figure 8 in [18]. Internal nodes are represented by circles, while
leaf nodes (at which PLC modems are deployed) are represented by filled
circles.

channel transfer functions. Such a model has been adopted in
[12]. The second approach is deterministic. It is based on the
knowledge of the relevant electromagnetic properties of the
grid elements, i.e., lines and loads, as well as the line lengths,
and uses transmission line theory to determine the channel
transfer functions. The latter is more suitable for the situation
at hand, as it enables us to simultaneously compute the transfer
functions of all PLC links in a network. It is important
to note that these transfer functions are interdependent and
that this interdependence is neglected in a phenomenological
approach, which inherently considers individual links in iso-
lation. Secondly, the effect of loads on the signal propagation
is taken into consideration, which again is neglected in the
phenomenological approach. For these reasons, we adopt this
approach for the numerical results presented in Section IV.
For more details we refer to [2, Chapter 2].

III. TOPOLOGY INFERENCE

The main objective of topology estimation is to recover
the graph structure and thus the grid topology as shown in
Figures 1 and 2. This means that both the connection of nodes
as well as the length of edges are estimated. In this section, we
introduce our new tomography-based method, which, different
from [12], allows us to infer topologies where not every node
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Fig. 3. Illustration of tomography-based approach for a 4-node topology.

is equipped with a PLC modem. Our method relies on ranging
between PLC nodes. We refer to [12] for the details of this
ranging, and further extensions are discussed in the journal
version of this work [22].

A. Tomography-based Inference

As mentioned above, the neighborhood-based approach
from [12] cannot be applied to topologies and PLC networks
such as in Figure 2, where only leaf nodes are equipped with
PLC modems. A typical example would be an AMM system,
where PLC transceivers are installed at electricity meters. For
this scenario, we propose a new topology inference algorithm.

Our approach relies on ranging using PLC signals. Since
PLC modems are only deployed at leaf nodes, we cannot
assume that distances between all nodes are estimated, but
only between leaf nodes. The following example illustrates
how these end-to-end measurements can be used to infer the
topology. Consider a network with four nodes as shown in
Figure 3. Enumerating the nodes by i = 1, 2, 3, 4 and denoting
the (node i)-to-(node j) distance by dij , then we can identify
the internal node 4 using end-to-end ranging measurements
from

d12 = d14 + d24
d13 = d14 + d34
d23 = d24 + d34

(1)

For example, the solution for d14 is

d14 =
d12 + d13 − d23

2
. (2)

The end-to-end measurements completely determine the tree
topology. Note that the different cases of line topologies are
included via the solutions d14 = 0 or d24 = 0 or d34 = 0.

The above approach can be easily extended to the case of
N > 3 leaf nodes as follows. First, one node is declared a
root node. Let us assume that node 1 is this node. Then, pairs
of leaf nodes with a common parent node are determined. To
this end, the distances d1x between hypothetical parent nodes
x and the root node are computed as in (2) for all possible
pairs of leaf nodes. The node x∗ with the longest distance must
indeed be a parent node and thus, an internal node connecting
two leaf nodes has been identified. This node now replaces
the two leaf nodes, and the procedure is continued until no
leaf node is left.

Interestingly, the presented algorithmic method for topology
inference has long been used for inferring phylogenetic trees
in evolutionary biology. In this application case, distance
measures suitable to characterize similarities between extant
species are applied as end-to-end “measurements”, and then

the described inference is applied to obtain evolutionary
relationships. More specifically, the inference algorithm is
known as the neighbor-joining algorithm (NJA) developed in
[23]. More recently, the NJA has been applied to network
tomography in [24] by Ni and Tatikonda. They also present the
rooted version of the NJA, the rooted NJA (RNJA), which is
based on (2). A pseudo-code for the key steps of the RNJA as
described above and following [24] is shown as Algorithm 1
below.

Input: Distance measurements between all leaf nodes,
i = 1, . . . ,K.

Output: Topology and distances between all grid nodes
// Initialization
Root node s = 1, set of leaf nodes of inspected tree
D = {2, . . . ,K}, Enumerator for new nodes f = K
// Go through all leaf nodes
while |D| > 1 do

// Compute distance between root node and nearest
common parent node of i and j (see (2))
for i, j ∈ D do
qij =

1
2 (dsi + dsj − dij)

end for
// Nodes that maximize distance are neighbors
(i∗, j∗) = argmax

(i,j)

qij

// Add a new node f , the parent of i∗ and j∗

f ← f + 1
// Remove i∗ and j∗ from the list of leaf nodes
D ← D \ {i∗, j∗}
// Compute distances from s, i∗, j∗ to new node f
dsf = qi∗j∗ , dfi∗ = dsi∗ − qi∗j∗ , dfj∗ = dsj∗ − qi∗j∗
// Compute distance from leaf nodes to new node f
for k ∈ D do
dkf = 1

2 (dki∗ − dfi∗) +
1
2 (dkj∗ − dfj∗),

qkf = 1
2 (qki∗ + qfj∗)

end for
// New node becomes leaf node of inspected tree
D ← D ∪ {f}

end while
Algorithm 1: Rooted neighbor-joining algorithm (following
[24]).

The RNJA and thus the tomography-based topology esti-
mation approach are remarkably robust to distance estimation
errors. As long as the ranging error for any distance estimate
is below half the minimal edge length of the topology graph,
Algorithm 1 returns the correct topology, i.e., the correct tree
structure of the topology graph. Of course, ranging errors
affect the accuracy of the estimated edge lengths in the graph.

We note that Algorithm 1 is formulated for binary trees, i.e.,
a parent node splits into two children nodes. This encompasses
a large number of low-voltage grid topologies for which
PLC-based topology inference is applicable, including the
topologies shown in Figures 1 and 2. However, the RNJA and
thus our method can be extended to general trees with only a
slight modifications as shown in [24].
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Fig. 4. Illustration of scenarios when merging two partial topologies
(Topologies 1 and 2).

B. Localized Version

The presented topology estimation algorithm requires rang-
ing measurements. That is, a direct link (i.e., without a relay)
between modems within the PLC network must exist. Consid-
ering practical grid topologies to which PLC is applied, the
requirement of connectivity without relays may be too strong.
For example, distances between end nodes in the network in
Figure 2 exceed 3 km (see [18]), which is typically too long for
a (reliable) direct link, especially for a distribution grid with
many branches and when using broadband PLC. Therefore,
we consider a localized version of the topology estimation
algorithm. Here, localized means that ranging is done among
subsets of network nodes which are within the communication
range of each other. The full topology inference is still done
centrally. However, this is not a strong restriction, as ranging
results can be communicated as any other message (e.g., meter
data) through the PLC network possibly through multiple hops.

Let us consider two partial topologies, obtained from rang-
ing measurements among subsets of nodes applied to Algo-
rithm 1, which have two nodes in common. Figure 4(a) shows
these two nodes, labelled 1 and 2, in the first topology, and
along the path from node 1 to 2 a branch point, i.e., an internal
node A exists. Figures 4(b) and (c) illustrate possible situations
for nodes 1 and 2 in the second topology. In the first case, in
Figure 4(b), the two topologies do not have internal nodes
in common, i.e., nodes C and D are at different locations
than node A, and thus they can directly be merged. In the
second case, in Figure 4(c), node A is an internal node in
both partial topologies. If the distance A-to-E is smaller than
A-to-B, then node E can be located on the link A-to-B and
vice versa. Now Algorithm 1 needs be run on the distance
measurements between nodes 1 or 2 and 3, and 4 to determine
the location of the parent node for 3 and 4. If the parent
node is B or E, then this process needs to be continued. It is
therefore advisable to choose partial topologies (based on the
set of ranging measurements) such that they have no internal
nodes in common. This can always be done for binary tree
graphs.

In a practical scenario, the two cases shown in Figures 4(b)
and (c) may be difficult to distinguish, since ranging inaccu-
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Fig. 5. Grid topology from [18] used for performance evaluation. Nodes
equipped with PLC modems are represented by filled circles. Branch points
are represented by circles. Edge labels are distances. Dashed-lined and solid-
line circled areas are used for ranging accuracy and topology estimation tests.

racies will lead to estimation errors in the edge lengths of
the reconstructed graph. Hence, if nodes A and C or D are
relatively close, we suggest to always run Algorithm 1 on an
overlapping subset of nodes from the two partial topologies
to determine whether these are identical or distinct internal
nodes.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
tomography-based topology inference. We consider the grid
topology from Figure 2, which is shown again in Figure 5
with edges labeled with the branch lengths in meter (disregard
the labeling of nodes, special markers, and grouping of nodes
for the moment). We note that this topology represents a low-
voltage distribution grid served by a transformer (the left-most
node) [18]. The PLC nodes are located at the transformer and
at the loads, which mimics an AMM scenario with commu-
nication between meters at loads and a data concentrator at
the transformer. We apply the deterministic channel modeling
approach described in Section II-B to compute the channel
transfer functions between PLC nodes. We assume that 4-
conductor cables of type NAYY150SE are applied (see [2,
Section 2.3.3.1] for details). The load impedance values are
as specified in [18, Figure 8].

We first consider the accuracy of ranging using PLC trans-
mission, which is underlying to the tomography approach. For
concreteness, we apply two-way ranging based on energy-
detection time-of-arrival estimation as described in [14]. The
PLC modems transmit with a power spectral density of
−55 dBm/Hz in the frequency band of 2 MHz to 28 MHz
as typical for broadband PLC, and the receiver-side noise
power spectral density (PSD) is −110 dBm/Hz. Sampling
with symbol rate Ts = 1/26 µs, integration over one symbol
interval, and a relative threshold of λ = 0.8 are applied for
the energy detector, respectively, see [14, Eq. (17)]. The two-
way time-of-flight is translated into distance estimates using
the phase velocity value of vp = 1.5 · 108 m/s.

Table I presents the achieved ranging accuracies in terms
of the empirical mean value and standard deviation for the
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TABLE I
MEAN AND STANDARD DEVIATION OF THE ABSOLUTE RANGING ERROR

FOR PATHS OF DIFFERENT LENGTHS BETWEEN THE NINE NODES IN THE

PART OF THE TOPOLOGY IN FIGURE 5 ENCIRCLED BY THE DASHED LINE.

Distance in meter
Node 2 3 4 5 6 7 8 9

1 1106 1750 1592 2183 2097 2291 2615 2891
2 1286 1128 1719 1633 1827 2151 2427
3 428 1915 1829 2023 2347 2623
4 1757 1671 1865 2189 2465
5 330 1494 1818 2094
6 1408 1732 2008
7 718 994
8 520

Mean value of absolute ranging error in meter
Node 2 3 4 5 6 7 8 9

1 6.7 2.7 5.0 2.5 2.0 3.6 6.6 25.6
2 5.4 2.1 4.7 4.3 1.8 2.7 3.4
3 4.4 3.1 4.2 1.7 3.5 4.4
4 1.5 1.9 3.0 3.2 4.5
5 4.4 5.0 3.7 2.8
6 4.5 3.4 3.1
7 2.7 3.4
8 4.6

Standard deviation of absolute ranging error in meter
Node 2 3 4 5 6 7 8 9

1 0.0 0.0 0.2 1.2 1.4 2.0 5.0 169.0
2 0.0 0.8 0.8 0.1 2.3 2.5 3.3
3 0.0 1.9 0.7 2.2 3.1 4.0
4 0.6 2.2 0.0 2.3 2.9
5 0.0 0.0 0.4 1.7
6 0.0 0.0 1.1
7 0.0 0.0
8 0.0

absolute ranging error obtained for different links in 1000
experiments. The subset of nine nodes which are encircled
by the dashed line in Figure 5 are considered. For clarity,
these nodes are enumerated in Figure 5 and Table I, and the
table also includes the distances between every pair of nodes.
We observe that accuracies within a few meters are generally
achieved. In fact, the very low standard deviation for many
of the links, mostly with lengths of less than 2 km, indicates
that the resolution of the PLC signal, which corresponds to
Tsvp = 5.8 m, limits accuracy. Fine tuning of the sampling
rate Ts, threshold λ, and integration interval for the energy
detector could improve this accuracy. We further note a fairly
large mean error and standard deviation for the longest link
of 2891 m, which shows the limitations of PLC-based ranging
due to signal attenuation and thus low signal-to-noise ratio.

The ranging measurements discussed above are now input to
the tomography-based topology inference algorithm presented
in Section III. In particular, one set of ranging measure-
ments between the nine nodes is used for topology inference.
Figure 6 shows the reconstructed topology corresponding to
the part of the entire topology in Figure 5 encircled by the
dashed line. Comparing the tree in Figure 6 with the partial
topology in Figure 5, we observe that the topology is correctly
reconstructed. In particular, the internal nodes (nodes 10 to
16) are found correctly, and the lengths of the branches are
recovered fairly accurately. The maximal error is 8 m, which
occurs for the link to node 9 and which is due to the fact that
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Fig. 6. Example of a reconstructed partial topology for the nine nodes
encircled by the dashed line in Figure 5 using the tomography-based method.
The numbers at the edges are the distances as inferred by the algorithm, and
the actual distances are shown in parentheses. Internal nodes (branch points
in Figure 5) 10 to 16 are created by the algorithm.

node 9 is part of the longest link and thus the largest ranging
error, as shown in Table I. Hence, even higher accuracy in
terms of estimated branch lengths can be achieved if a smaller
subset of nodes, say nodes 1 to 8, is only considered for
topology reconstruction.

We now move on to reconstruct the entire topology shown
in Figure 5. Due to the large distances between nodes in this
topology, we divide it into two overlapping parts, as indicated
by the solid-line encircled areas in Figure 5. The overlap would
not be chosen a-priori (as the topology layout may be mostly
or completely unknown), but after the first partial topology
reconstruction has been executed. Figures 7 and 8 show the
two estimated topologies. A comparison between these two
trees and Figure 5 confirms that the partial topologies are
faithfully reconstructed. Furthermore, as can be seen from the
estimated and true (in parentheses) branch lengths shown in
Figures 7 and 8, the reconstruction is fairly accurate in terms
of distances. If desired, accuracy can further be improved by
dividing the topology into more partial topologies.

For combining the two reconstructed partial topologies,
nodes 6 and 7 from the partial topology in Figure 7 (see
Figure 5 for node numbering) have been included in the esti-
mation of the second partial topology in Figure 8. The nodes
are identified by the larger markers in the figures. They would
be chosen as they are within the communication range of all
other nodes of the respective partial topologies. Considering
the paths between these two nodes in the trees in Figures 7
and 8, we observe that we have a case as illustrated in
Figures 4(a) and (b). That is, the branch points on these paths
do not coincide, even when taking into account estimation
errors for the branch lengths in the reconstruction. Hence,
the combination of the two partial topologies is obtained by
including the subtree with the root-node identified with the
triangle marker in Figure 8, which is the internal node 17 in
Figure 5, at the edge also identified with a triangle marker
in Figure 7. This completes the topology inference for this
example.
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Fig. 7. Reconstructed partial topology for the nodes encircled by the solid
line on the left side of Figure 5 using the tomography-based method. The
numbers at the edges are the distances as inferred by the algorithm, and the
actual distances are shown in parentheses. The red and green markers identify
the nodes 5, 6, and 17 from Figure 5.
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Fig. 8. Reconstructed partial topology for the nodes encircled by the solid
line on the right side of Figure 5 using the tomography-based method. The
numbers at the edges are the distances as inferred by the algorithm, and the
actual distances are shown in parentheses. The red and green markers identify
the nodes 5, 6, and 17 from Figure 5.

V. CONCLUSIONS

In this paper, we have introduced a grid-topology inference
method that is based on distance estimation using PLC signals
followed by a topology reconstruction algorithm, which has
been borrowed from the network tomography community.
Since our method relies on end-to-end measurements to infer
the entire topology including its internal structure, we refer
to it as tomography-based inference. Our method can be
used for a number of applications in smart grids, including
optimization of energy generation and consumption [14], fault
identification [15], PLC routing [16], online monitoring and
smart fault localization [9]–[11], [17]. Our numerical results
for a typical low-voltage distribution grid example have clearly
demonstrated the capabilities of tomography-based topology

estimation. Further improvements in accuracy can be achieved
through more accurate ranging methods. In the journal version
of this work [22] we elaborate further on this and also
introduce a new parametric ranging algorithm.
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