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In  Cognitive  Radio  (CR)  systems,  the  fluctuating  nature  of  the  available  frequency  resource  due  to Primary
Users  (PUs)  activity  necessitates  the introduction  of admission  and  eviction  measures  at the  CR system  if
a  guaranteed  Quality  of  Service  (QoS)  is  required  by Real  Time  (RT)  Secondary  Users  (SUs).  This  problem
has  been  recently  addressed  in the  literature  with  simplified  assumptions  that  might  become  unrealistic
in  practical  system  setups.  In this  paper,  we  tackle  the  problem  of  admission  and  eviction  control  of RT SUs
esource allocation
pectrum management
ognitive Radio systems
rthogonal Frequency Division Multiple
ccess (OFDMA)

in multiple-user  Orthogonal  Frequency  Division  Multiple  Access  (OFDMA)  CR  systems  and  propose  new
solutions  that  are  practical  and  efficient  at the  same  time.  In particular,  we  propose  three  different  ways
to install  a  Resource  Buffer  Zone  (RBZ)  at the  time  of  admission  to limit  future  call  drops  resulting  from
fluctuating  PU activity.  We  also  study  the  effect  of  PU activity  on  the  feasibility  of the  resource  allocation
problem  and  propose  three  different  methods  to resolve  system  outages  once  they  occur.  Numerical
results  obtained  through  Monte  Carlo  simulations  demonstrate  the  efficacy  of the  proposed  techniques.
. Introduction

As more services migrate towards the wireless domain to sup-
ort user mobility, the need for more spectrum is higher than ever.
evertheless, several measurement-based studies have indicated

hat the currently allocated spectrum is underutilized due to the
tatic nature of the spectrum assignment. That is why  dynamic
pectrum allocation (a.k.a Cognitive Radio (CR)) has been recog-
ized to be one of the best means to solve the rising spectrum
carcity problem [1,2]. In CR systems, a Secondary User (SU) is
llowed to communicate over a specific frequency band as long
s it guarantees no harmful interference to the spectrum owners
Primary Users (PUs)). This can be achieved by either fully prohibit-
ng any transmission from SUs in the presence of any PU activity,
r by limiting the transmission power at the SU transmitter such
hat the interference generated at the PU receiver does not exceed

 predetermined level known as the interference temperature [3].

ither one of these techniques would require the SU transmitter to
ense the band of interest to identify spectrum holes that represent

 transmission opportunity for SUs [4,5].
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Orthogonal Frequency Division Multiple Access (OFDMA) has
been recognized to be one of the prime candidates to enable CR
communications due to the flexible nature of carrier assignment.
Carriers that are occupied by the PUs can be identified and excluded
when transmitting to SU receivers. Thus, resource allocation tech-
niques similar to the ones used in multiple-user OFDMA [6–8] can
be used to allocate the available carriers to different SUs in an
exclusive manner (i.e., each carrier is assigned to one SU) in the
CR context. The solutions in [7,8] utilizing a Lagrange dual decom-
position approach are particularly apt, as the resource allocation
problem can be divided into several, per-carrier, sub-problems that
can be solved efficiently in parallel. Furthermore, it was shown in
[7,9] how the duality gap between the primal and dual problems
approaches zero as the number of carriers increases. If spectrum
overlap with the PUs is allowed by constraining the amount of
interference experienced by the PUs due to the CR transmission,
the techniques from [6–8] can be extended as shown in [10,11].

Looking back at the works in [6–8,10,11],  we can see that only
Best Effort (BE) users were considered with no guarantees on the
rate achieved by each user. However, in most Real Time (RT) appli-
cations, a constant bit rate is necessary to achieve a satisfactory user
experience. For this reason, extensions to include per-user rate con-
straints were studied in [12,13]. We  note that introducing the new
rate constraints to the problem of rate maximization could deem

the problem infeasible due to the limited amount of power the sys-
tem is allowed to utilize. The authors in [12,13] assumed that the
problem is always feasible, although recognizing that this might
not always be true. We  argue that the possibility of overloading the

dx.doi.org/10.1016/j.aeue.2011.09.007
http://www.sciencedirect.com/science/journal/14348411
http://www.elsevier.de/aeue
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optimization techniques that are necessary to solve the feasibility
and resource optimization problems discussed in Sections 3 and 4,
respectively.
02 T. Al-Khasib, L. Lampe / Int. J. Elect

ystem at some point necessitates the introduction of admission
nd eviction control mechanisms that deal with the two  fundamen-
al tasks of (i) accepting/rejecting requests by new users in a way
hat limits the probability of calls being dropped during the lifetime
f the user’s session and (ii) dealing with the problem of infeasibil-
ty when it occurs due to changes in system resources dominated
y unexpected PU activity on some of the previously available
arriers. The authors in [14] recognized the possible infeasibility
roblem and proposed to fairly allocate the available resources to
ll the users when infeasibility occurs. This way, however, the rate
onstraint of almost every user in the system gets violated. Further-
ore, [14] falls short of providing an admission control mechanism

hat limits such a disliked possibility.
Admission and eviction control for CR systems was the subject

f several recent studies [15,16]. In [15], a fractional guard chan-
el reservation scheme was used to control the balance between
he blocking rate of newly arriving users and the dropping rate
f the already admitted ones. The authors used a continuous time
arkov chain model to describe the dynamics of the system, and

y solving the global balance equation they were able to obtain the
tationary probabilities of blocking and dropping a user. In [16],
he authors proposed the use of a semi-Markov decision process to
olve a profit maximization problem. By assigning a cost/revenue
o each action of interest (admission, blocking, eviction, and com-
letion), they were able to come up with an admission/eviction
olicy that maximizes the revenue of the system. In both [15] and
16], rate requirements by users were translated directly into band-
idth requirements. That is, there is a deterministic link between

he amount of bandwidth currently available and the ability to
dmit or the necessity to evict a user at any point in time. While
uch an assumption was necessary for [15,16] to apply tools from
arkov decision process theory, it ignores the current link condi-

ions in the CR system, which limits the practicality of the resulting
chemes.

In this paper, we tackle the problem of admission and eviction
ontrol in a CR environment while taking into account the impor-
ant effect of the instantaneous channel conditions of users on the
dmission, resource optimization, and eviction dynamics of the sys-
em. We  propose the use of a Resource Buffer Zone (RBZ) to limit
he number of RT call drops due to the fluctuating nature of the
vailable frequency resource. Unlike the RBZ described in [15], the
uffer zone we install is only used at the time of admission of a new
T SU and can be freely utilized by the system afterwards to achieve
he highest possible system throughput. We  propose three differ-
nt ways to set up such a buffer zone, two of which use statically
llocated RBZs consisting of reserved power levels or frequency car-
iers that get held back at the time of admission. The third technique
redicts the size of the RBZ based on current system dynamics. We
lso tackle the problem of user removal that is necessary to treat
ny infeasibility situation the system could face due to the dynamic
ature of the available set of resources resulting from independent
U activity. We  present three algorithms for user removal and dis-
uss their advantages and disadvantages. Results show how the
roposed admission control techniques can be efficiently used to
educe the drop rate of admitted RT SUs. The results also show how
e can resolve any system infeasibility using user removal algo-

ithms that have low complexity and high efficiency at the same
ime.

Organization: The rest of this paper is organized as follows. In
ection 2 we present the system model under consideration. In Sec-
ion 3, we deal with the problem of admission control and propose
echniques to limit future user drops due to fluctuations in the

vailable resources. In Section 4, the resource optimization prob-
em is presented and the problem of infeasibility is identified and
esolved using several proposed techniques. Finally, in Section 5,
e present selected performance results and we conclude the paper
Fig. 1. Multiple-user downlink Cognitive Radio system.

in Section 6. Due to the large number of used abbreviations, a list
of them is provided in Appendix A.

2. System model

We  consider a multiple-user downlink CR system, as schemati-
cally illustrated in Fig. 1, that shares a frequency bandwidth with a
primary system, which is the licensed owner of the spectrum. The
CR system can utilize any portion of the bandwidth as long as it is
not actively used by the primary system. The bandwidth of inter-
est is B Hz and is divided at the CR Base Station (BS) into N OFDMA
sub-bands.

2.1. Signaling model

OFDMA is utilized at the CR BS for signal transmission to mul-
tiple SUs in which an exclusive carrier allocation is assumed to
prevent interference between different SUs. The received signal at
the kth SU on the nth carrier can be written as

yk,n = hk,nxk,n + vk,n, (1)

where hk,n, xk,n and vk,n are the channel gain, transmitted signal
and the zero mean unit variance i.i.d circularly symmetric com-
plex Gaussian noise associated with the kth SU and nth carrier,
respectively.

We define pk,n and rk,n as the transmit power and rate associ-
ated with the nth carrier and the kth SU, respectively. Tight bounds
on pk,n as a function of the Bit Error Rate (BER) requirement, and
carrier loading, rk,n, are available in the literature for uncoded M-
ary Quadrature Amplitude Modulation (QAM) signals transmitted
over Additive White Gaussian Noise (AWGN) channels, as in (1).
For example, in [17,18] pk,n is tightly approximated by

pk,n ≈ ˇk,n (2rk,n − 1) , (2)

where ˇk,n > 0 is a function of
∣∣hk,n

∣∣ and the BER requirement. We
observe that the approximation of pk,n is convex,2 increasing in rk,n,
and that pk,n = 0 when rk,n = 0. The convexity of the approximation in
(2) is of great importance as it facilitates the use of efficient convex
2 For real-valued rates, rk,n , convexity of pk,n is well defined. When rk,n belongs
to  a discrete set of rates, convexity of the discontinuous staircase function means
that  the lines connecting consecutive corners of the staircase constitute a convex
continuous function [8].
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.2. PU activity model

On the primary system’s side, the same bandwidth of interest,
 Hz, can support up to L PUs with a bandwidth of B/L Hz each. It

s widely accepted that the activity on each one of the PU bands is
ndependent and can be modeled using a two state Markov Chain
MC) [14,19,20].  The independence assumption is plausible since
raffic and channels experienced by different PUs will generally be
ndependent. Once a PU band is busy, it becomes free in the next
ime slot with probability pb→f. Otherwise, the PU band remains
usy with probability 1 − pb→f. On the other hand, once the PU band

s in the free state, it becomes busy or stays free in the next time slot
ith probabilities pf→b and 1 − pf→b, respectively. It can be easily

hown that this model is equivalent to a PU activity model that has
ndependent exponentially distributed busy and free times similar
o the one adopted in [16].

The CR BS continuously senses the spectrum of interest and
nly those carriers that carry no primary communications can be
tilized for secondary transmission. At any time instance t, the
et of free carriers is Nfree(t). The cardinality of the set of free
arriers, Nfree(t), evolves according to a fully connected MC  in
hich each state represents the number of free PU bands that

xperience no active PU transmission in the time slot of inter-
st. Thus, while in state i ∈ 0, . . .,  L at time t, the MC  indicates
he availability of Nfree(t) = iN/L  free carriers that can be utilized
or CR transmission. The state transition matrix P can be obtained
sing [14]

pi,j =
L∑

�=0

(
i

�

)
p�

f→b(1 − pf→b)i−�

×
(

L − i

� − i + j

)
p�−i+j

b→f (1 − pb→f)
L−j−�,

(3)

here pi,j is the element from the ith row and jth column of P that
epresents the transition probability from the ith state to the jth
tate.

.3. SU arrival process

We  consider two types of SUs based on their rate requirements.
on Real-Time (NRT) SUs have no rate requirements and are con-

idered for BE service. The second set of users is the RT users that
ave a minimum rate requirement that is necessary to achieve a
atisfactory user experience. We  assume that the SU arrival to the
R system follows a Poisson process with rates �RT and �NRT for RT
nd NRT traffic, respectively. We  also assume that the call duration
f each RT and NRT user, k, is exponentially distributed with an
verage of 1/�k. These assumptions are common in the literature
or data and voice traffic over wireless links and are not far from
eality (e.g. [15,16]).

Upon their arrival, NRT SUs are always admitted and they
eceive as much resources as the system allows in a best effort man-
er. On the other hand, RT SUs are admitted only when there are
nough system resources, including power and frequency carriers,
o support their minimum rate requirement, assuming that they
ave higher priority than NRT SUs. Specifically, NRT SUs receive lit-
le or no resources when the system goes through a high load of RT

raffic.

Without loss of generality, we assume that all system events,
ncluding SU arrival, SU departure, and PU activity changes are dis-
rete time events that are synchronized based on a unified system
lock. This is a practical assumption since transmission decisions
re often made on a frame-by-frame basis.
mmun. (AEÜ) 66 (2012) 401– 409 403

3.  Admission control

Upon the arrival of a new RT SU, an admission control mecha-
nism is invoked to decide on whether to admit or reject the new
request. The decision is made based on the availability of enough
resources and the ability to maintain these resources over the
course of the connection’s lifetime. The two  main goals of any
admission control system are to i) minimize the number of users
that get dropped before their actual session end time and to ii)
minimize the number of users being blocked for lack of resources.

The set of carriers that are free from any PU activity, Nfree(t),
continuously changes according to the MC  model discussed in Sec-
tion 2.2.  Thus, an already admitted RT SU can possibly lose service if
the available set of free carriers can no longer support all admitted
RT SUs without violating the maximum transmit power threshold
(Pmax). The user drop rate can be reduced by installing an RBZ con-
sisting of unallocated system resources to deal with any expected
variations over the life-time of the user’s session. Obviously, the
larger the RBZ is the lower the drop rate. On the other hand, a too
large RBZ would underutilize the system and prevent users from
being admitted while resources are setting idle.

The concept of an RBZ has been used extensively in the cel-
lular networks context [21,22]. In cellular networks, dropping an
ongoing call is perceived to be more annoying than blocking a new
call request. Thus, some system channels are reserved to serve calls
handing over from neighboring cells. Similarly, dropping an already
admitted RT user is more inconvenient than blocking a new admis-
sion request. Thus, we propose two  types of admission control
policies based on a static RBZ that is composed of portions of one of
the available resources: frequency carriers or transmission power.
In the third proposed admission control technique, we use a prag-
matic approach towards estimating the size of the RBZ, in terms of
number of frequency carriers, dynamically such that a pre-defined
level of protection against RT SU call drops is achieved.

3.1. Fixed power threshold

In this scheme, a fixed portion of the available transmission
power will be held back when a user is admitted. In other words,
upon the arrival of a new RT SU with a minimum rate constraint,
the following optimization problem is solved (for clarity, we  drop
the time index t)

min
∑

k∈K+
RT

∑
n∈Nfree

pk,n (4a)

s.t.
∑

n∈Nfree

rk,n ≥ Rk, ∀k ∈ K+
RT, (4b)

if p
k̂,n

/= 0 then pk,n = 0, ∀k /= k̂ ∈ K+
RT, ∀n ∈ Nfree, (4c)

where K+
RT is the set of the already admitted RT SUs plus the newly

arriving SU seeking admission and Rk is the minimum rate require-
ment of the kth SU. Assuming that the sum power constraint at the
CR BS is Pmax, the new user is admitted to the system if and only if
the total amount of power required to fulfill the rate requirements
of all RT SUs is lower than a predetermined threshold. That is, if∑
k∈K+

RT

∑
n∈Nfree

pk,n > ˛Pmax, (5)

the new user is blocked for lack of resources. The factor  ̨ ∈ [0, 1]
limits the maximum allowable power level at the BS at admission

time. This way, the system is allowed to “breathe”, i.e., even if the
set of available resources change, up to a certain limit, after the user
becomes admitted, the call is not dropped and the required rate is
maintained. The lower  ̨ is, the higher the probability the call is
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aintained for the whole call duration without interruption. On
he other hand, a low  ̨ increases the probability of rejecting new
equests from RT users.

.2. Fixed carrier release

The other available resource dimension that can be employed
o implement an RBZ in OFDMA systems is frequency. We  then
ropose, in the second scheme, to forge an RBZ by voluntarily sur-
endering a fixed number, C, of the available carriers for admission
urposes only. The carriers to surrender are picked randomly and
he system is then checked for feasibility as in (4),  but with a
educed set of available carriers N̂free. If the problem turns feasi-
le, i.e.,

∑
k∈K+

RT

∑
n∈N̂free

pk,n ≤ Pmax, the new user is admitted and

he full list of available carriers Nfree is used for resource allocation.

.3. Predictive carrier release

The previous two protection schemes are static in the sense
hat the size of the RBZ is fixed and needs to be chosen before-
and. This requires the availability of actual or simulated system
easurements for the system administrator to be able to set the

orresponding system parameters,  ̨ and C, accordingly. Alterna-
ively, in this scheme, we try to predict the size of the RBZ, in term
f number of carriers C, dynamically such that the system achieves

 certain level of protection against call drops of RT SUs.
Towards that, we assume that a user drop happens mainly due

o a decline in the number of carriers available for secondary trans-
ission after the user was admitted. Although a user drop could

lso happen when the total number of available carriers remains
he same or even increases if the set of available carriers is differ-
nt from the one at admission time, we ignore this possibility since
e assume that (i) the number of available carriers is usually large

64–2048), (ii) the channels are frequency selective across carriers,
.e., there is sufficient frequency diversity such that it is less likely
hat all available frequency carriers go into a deep fade simultane-
usly, (iii) the diversity created by the presence of multiple users
educes the effect of carrier shuffling due to PU activity, (iv) and
ost importantly, unlike [15,16], the resource allocation process,

resented in Section 4 below, is dynamic and will produce a new
arrier allocation map  that achieves the best possible performance.

In general, a user that is admissible at time T0 is only admitted if
t would still be admissible at all time slots, T0 < t ≤ T0 + Tmax, in the
oreseen future with some probability pprotect. Thus, based on the
rgument presented above, we need to determine by how many
arriers the number of free carriers at time T0, Nfree(T0), is expected
o drop within a time interval of size Tmax given an accuracy of
rediction that is greater or equal to pprotect. The RT SU dropping
ate is directly related to the prediction accuracy, pprotect, only when
he load of the system is high enough to keep the system full at most
f the times. It is at that system environment when the existence of
n RBZ reflects directly on preventing a user drop. In particular, the
eed for an admission control is manifested and only takes effect
hen the network experiences high system loads. On the other
and, at lower system loads, the installation of an RBZ does not
ffect the operation of the system nor does it affects the efficiency
f the resource allocation. Thus, for the rest of this section, we will
efer to the probability 1 − pprotect as the dropping risk probability
prisk).

Our goal is to find, up to a dropping risk probability (prisk), what
s the maximum number of PU bands (Cmax) that are expected to be

ost to PUs in future time slots until the first SU departure happens.
imiting the time horizon of the prediction algorithm to the time
he first SU departure is expected to happen is intuitively valid since
he departure of an SU releases some of the system resources that
mmun. (AEÜ) 66 (2012) 401– 409

add directly to the protection of the already admitted users. But, we
note that other choices for the time horizon are possible. Without
loss of generality, we  assume that T0 = 0 to simplify the notation in
the following.

From the properties of the exponential distribution, the time
until the first departure amongst KRT RT SUs each with exponen-
tially distributed call duration with mean 1/�k, is also exponentially
distributed with mean 1/� = 1/

∑KRT
k=1�k. Thus, the probability that

the first SU departs after time T is

p1(T) = Pr(First SU departs after T time slots) = exp(−�T).  (6)

On the other hand, the probability that the total number of free PU
bands drops by C bands by time T is,

p2(C, T) = Pr(Xt ≤ X0 − C for any t ≤ T |X0)

=
T∑

t=1

Pr(Xt ≤ X0 − C, Xt−1,...,1 > X0 − C|X0)

=
T∑

t=1

X0−C∑
j=0

Pr(Xt = X0 − C − j, Xt−1,...,1 > X0 − C|X0),

(7)

where Xt is the number of free PU bands at time t such that
Nfree(t) = XtN/L. Assuming that P(X0−C) is equal to the transition
matrix P but with all the transition probabilities leading to states
less than or equal to X0 − C set to zero, then Pr (Xt = X0 − C − j,
Xt−1,. . .,1 > X0 − C|X0) in (7) is equal to aX0,X0−C−j(t, X0 − C), where

A(t, X0 − C) = P
t−1
(X0−C)P, (8)

and ai,j(t, X0 − C) represents the element of matrix A(t, X0 − C) on
the ith row and jth column.

The joint probability that both events happen, i.e., the proba-
bility that the total number of free PU bands drops by C bands by
time T and the first SU departs after time T, is equal to the prod-
uct of the two probabilities, i.e., p1(T)p2(C, T), since both events are
independent.

Define CT as the minimum number of PU bands that makes
p1(T)p2(C, T) ≤ prisk. Then we  need to determine

Cmax = max
T∈{T0,...,Tmax}

CT . (9)

The time horizon, Tmax, is the time at which p1(Tmax) ≤ prisk. The
pseudocode in Table 1-Algorithm I provides an efficient implemen-
tation of the procedure discussed above.

As an example, consider a CR system that has N = 128 carri-
ers, out of which Nfree(T0) = 100 are free from any PU activity at
time T0. At the primary system side, the same band is divided
amongst 128 PUs, i.e., L = N, that switch independently between the
Free and Busy states according pb→f = 0.2 and pf→b = 0.05. Assume
that the CR system has 10 already admitted RT SUs with indepen-
dent call durations that are exponentially distributed with identical
mean 1/�RT = 30 time slots each. For a dropping risk probability of
prisk = 0.01, the product p1p2 from Algorithm I in Table 1 evolves
with time T as shown in Table 2. It is clear from Table 2 that the max-
imum drop in the number of free carriers the system could face is
Cmax = 9 carriers. Thus, the size of the RBZ that needs to be installed
to achieve a dropping risk of at most 1% is 9 carriers. It should be
noted that most figures in Table 2 are shown for illustrative pur-
poses only. Algorithm I in Table 1 only captures the shaded numbers
in Table 2, which are sufficient to obtain Cmax in (9).  The underlined
figure on each row of Table 2 corresponds to CT as defined above.
4. Resource optimization

After having investigated the problem of admission control in
Section 3, we now turn our attention to the problems of resource
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Table 1
Pseudocode of Algorithms I and II.

Algorithm I: find expected carrier drop
1:  T = 1
2: Cmax = 0
3: p1 = exp(− �T)
4: if p1 ≤ prisk then
5:  exit
6: end if
7: p2 = Pr(Xt ≤ X0 − Cmax for any t ≤ T|X0)
8: if  p1p2 < prisk then
9:  T = T + 1
10: go to 3
11: end if
12: Cmax = Cmax + 1
13: go to 7
Algorithm II: Optimal User Removal (OptRem)
1: // Initialize number of RT SUs to drop
2:  d = 1

3: S: set of all

(
K

K − d

)
user combinations

4:  F:  set of feasible combinations in S
5:  if F is empty then
6: d = d + 1
7: go to 3

o
s
S
a
p
s

m

s

w

e
t
i
a
l

T
p

8: end if
9: find combination in F with highest sum rate

ptimization and eviction control of already admitted SUs. At any
ystem event such as a new SU being admitted, an already admitted
U leaving the system, or a change to the system’s resources, i.e.,
vailable carriers, due to PU activity, the following optimization
roblem is solved to efficiently and optimally allocate the available
ystem resources

ax
∑
k∈K

∑
n∈Nfree

rk,n, (10a)

.t.
∑

n∈Nfree

rk,n ≥ Rk, ∀k ∈ KRT, (10b)

∑
k∈K

∑
n∈Nfree

pk,n ≤ Pmax, (10c)

if p
k̂,n

/= 0 then pk,n = 0, ∀k /= k̂ ∈ K,  ∀n ∈ Nfree, (10d)

here K is the set of all, RT and NRT, admitted users.
This problem and the power minimization problem in (4) can be

fficiently solved using a Lagrange dual decomposition similar to

he one in [7,8,12,13]. In particular, each one of the rate constraints
n (4b) and (10b) as well as the sum power constraint in (10c) gets
ssociated with a Lagrange multiplier and the Lagrange dual prob-
em is solved. It should be noted that the problem in (10) might

able 2
1p2 from Algorithm I in Table 1.

C = 0 C = 1 C = 2 C = 3 C = 4 

T = 1 0.3461 0.2539 0.1729 0.1089 0.0633 

T = 2 0.3113 0.2463 0.1834 0.1282 0.0841 

T = 3 0.2485 0.2041 0.1587 0.1165 0.0809 

T = 4 0.1909 0.1606 0.1283 0.0972 0.0698 

T = 5 0.1439 0.1232 0.1005 0.0778 0.0572 

T = 6 0.1073 0.0932 0.0772 0.0608 0.0455 

T  = 7 0.0794 0.0698 0.0586 0.0468 0.0355 

T  = 8 0.0584 0.0519 0.0441 0.0357 0.0274 

T  = 9 0.0428 0.0384 0.0330 0.0270 0.0210 

T  = 10 0.0313 0.0283 0.0245 0.0203 0.0159 

T  = 11 0.0228 0.0208 0.0182 0.0151 0.0120 

T  = 12 0.0166 0.0152 0.0134 0.0113 0.0090 

T  = 13 0.0120 0.0111 0.0099 0.0084 0.0067 

T  = 14 0.0087 0.0081 0.0072 0.0062 0.0050 
mmun. (AEÜ) 66 (2012) 401– 409 405

become infeasible if the set of available carriers becomes insuffi-
cient to provide the required data rates by the admitted users. The
infeasibility problem could still be faced even when an admission
control mechanism as proposed in Section 3 is used. Changes to the
available system resources beyond those predicted can still occur
forcing the system into an infeasible state. Thus, before attempting
to solve the problem in (10), a feasibility check has to be per-
formed to ensure that the system is still in a feasible state. The
feasibility check involves solving a power minimization problem
similar to that in (4).  The system is declared feasible when the
total amount of power required to fulfill the rate requirements
of all RT SUs is lower than the maximum power constraint (i.e.,∑

k∈K+
RT

∑
n∈Nfree

pk,n > Pmax).

When the system can no longer support the promised rates, a
decision needs to be made to bring the system into a feasible state
again. One possible solution could be to drop the rate requirements
for all users and then allocate the available resources to the already
admitted users in a fair manner. This approach was investigated in
[14]. Another approach could be to drop as few users as possible to
bring the system back to a feasible state. We  believe that the lat-
ter user removal approach is more appropriate, since dropping the
rate requirement of all users could lead to serious QoS degradation
for most of the users by violating the promised rate guarantees. A
user removal approach would limit the unsatisfactory effects to a
limited set of users while satisfying the needs of most of the already
admitted users.

In the following sub-sections, we propose three different algo-
rithms to resolve system infeasibilities through user removal.
The first two approaches represent the two extreme alternatives
in terms of performance complexity tradeoff. In the third algo-
rithm, we  devise an innovative approach that delivers performance
advantages over the long run and still maintains a low computa-
tional complexity profile.

4.1. Optimal User Removal (OptRem)

We  consider the Optimal Removal (OptRem) algorithm to be the
one that (i) minimizes the number of users that need to be dropped
to make the problem in (10) feasible, and (ii) if there exist multiple
user dropping choices with equivalent number of users, choose the
one that maximizes the overall achievable rates. The pseudocode
for the OptRem algorithm is shown in Table 1-Algorithm II. It tests
all user combinations that involve a single user removal for feasibil-
ity. If a single user removal yields no feasible combinations, i.e., set F
(Line 4) is empty, all user combinations with two  users removed are

tested and so forth until a non empty set of feasible combinations
is obtained (Lines 4–8). Once a non-empty set F is available, the
algorithm picks the user combination that maximizes the system
sum rate (Line 9).

C = 5 C = 6 C = 7 C = 8 C = 9

0.0340 0.0168 0.0077
0.0518 0.0301 0.0166 0.0086
0.0531 0.0331 0.0196 0.0111 0.0060
0.0475 0.0308 0.0190 0.0113 0.0064
0.0399 0.0266 0.0169 0.0103 0.0060
0.0324 0.0219 0.0142 0.0088 0.0052
0.0257 0.0177 0.0116 0.0073 0.0044
0.0200 0.0140 0.0093 0.0059 0.0036
0.0155 0.0109 0.0073 0.0047 0.0029
0.0119 0.0084 0.0057 0.0037 0.0023
0.0090 0.0065 0.0044 0.0029 0.0018
0.0068 0.0049 0.0034 0.0022 0.0014
0.0051 0.0037 0.0026 0.0017 0.0011
0.0039 0.0028 0.0020 0.0013 0.0008
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Fig. 2. Average of the maximum number of SUs, among 5 SUs, the system can main-

significance since one or two  user removals are usually sufficient,
in most realistic models, to bring the system to a feasible state.
06 T. Al-Khasib, L. Lampe / Int. J. Elect

The OptRem algorithm is very complex since it explores up to
D
d=1

(
K

K − d

)
user combinations, D being the number of users

ctually dropped, before coming up with the list of users to be
ropped. This complexity grows as the number of already admitted
sers increases and as the number of users to be removed at a time,
, increases. This algorithm is only used as a benchmark to com-
are to other algorithms and is not recommended for real systems
iven the high complexity associated with the exhaustive search.

.2. Random User Removal (RandRem)

The OptRem algorithm, discussed above, can be classified as
he most extreme solution in terms of computational complexity.
nother, pragmatic and lower-complexity heuristic is the Random
emoval (RandRem) algorithm. Once the system hits a state of

nfeasibility, this algorithm randomly picks one user for call ter-
ination and the system gets checked for feasibility again. If the

ystem remains infeasible, another user is removed until a feasible
et of users is achieved.

Compared to the OptRem algorithm above, RandRem can result
n the removal of more users before bringing the system to a feasible
tate. The extra loss would only happen if a single user drop was
ot sufficient to alleviate the problem of infeasibility. This can be
ostly observed when the PU dynamics are very fast or the range

f user rate requirements is very large.

.3. User removal based on Lagrange multipliers (LagRem)

The Lagrange multiplier associated with each rate constraint in
he admission control problem in (4) or the resource allocation
roblem in (10) represents a measure of how difficult it was to
eet the corresponding constraint. That is, the higher the Lagrange
ultiplier the bigger the effect of that constraint on the system’s

bjective function [23]. Thus, dropping it would give the biggest
ossible room for other users to achieve their needs.

That being said, when the problem in (10) becomes infeasible,
e propose to sequentially drop the user with the highest Lagrange
ultiplier until the system becomes feasible. We  will refer to this

lgorithm as the LagRem algorithm. As we will see in Section 5,
his method leads to desirable long term effects in contrast to the
ptRem algorithm. To explain, the “optimality” of the OptRem algo-

ithm introduced above is only guaranteed on a short term basis
ince the user dropping decision is based on the instantaneous
onditions of the system. Such a decision might turn out to be
ub-optimal over the long term dynamics of the system. Since the
ptRem algorithm frees the least amount of resources necessary

o bring the system back to a feasible state it creates a tight fit, in
erms of number of users and achievable rates, that might cause

ore drops in the near future as the system progresses. Different
rom this, the LagRem algorithm is best suited for long term activ-
ty by design since it drops the user that gives the biggest room
ossible for other users to maintain their sessions. Furthermore, it
njoys a low computational complexity that is equal to that of the
andRem algorithm discussed above. This is true since the Lagrange
ultipliers come as a bi-product of solving the feasibility check dis-

ussed earlier using a Lagrange dual decomposition similar to that
roposed in [7,8,12,13].

. Simulation results
In this section, we present simulation results to evaluate the pro-
osed admission control mechanisms from Section 3 and the user
emoval algorithms from Section 4. We  adopt the approximation
rom (2) with ˇk,n according to [18] for the per-tone transmission
tain while achieving a feasible resource allocation given a sum power constraint:
comparing three different user removal algorithms.

power, pk,n, as a function of the required BER and the carrier load-
ing, rk,n. We  assume that the rates rk,n can take real values3 and the
minimum BER requirement is 10−4.

5.1. Performance of user removal algorithms

5.1.1. Short term performance of user removal algorithms
We start by evaluating the short term performance of the three

user removal algorithms from Section 4. Towards that end, we
assume that 5 SUs with minimum rate requirements of {5, 10,
15, 20, 25}  bits/symbol were initially admitted based on an earlier
channel realization that is of no significance. We  then generated
10,000 i.i.d channel realizations and tested for system feasibility
with the presence of all 5 users given a sum power constraint. If
the problem turns infeasible given a specific channel realization,
we invoke the three removal algorithms to achieve a feasible set
of users. Fig. 2 shows the average number of supported users, and
equivalently the system goodput, using the three removal algo-
rithms for different levels of the sum power constraint. In this
figure, we assume the presence of no primary system and the band
is divided into N = 64 frequency carriers. The relatively low number
of users and frequency carriers is inevitable due to the very high
complexity of the OptRem algorithm.

The figure clearly shows the superiority of the OptRem algo-
rithm and how it supports the highest number of users compared to
the other two algorithms. However, the complexity of the OptRem
algorithm is prohibitive, especially when the number of admitted
users is high or the number of users to be removed is high. The
figure also shows how the LagRem algorithm has a performance
that is close to that of the OptRem algorithm when the removal
of one user is sufficient to bring the system into a feasible state. It
also performs better than the RandRem algorithm especially in the
region that involves up to two user drops. This region is of great
3 Without loss of generality, a finite set of discrete carrier loadings, rk,n , can be
easily accommodated, see e.g. [8] for an optimization problem similar to (4).
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ig. 3. Average RT SU drop rate versus a range of RT SU arrival rates (�RT): comparing
hree different user removal algorithms.

.1.2. Long term performance of user removal algorithms
After confirming the superiority of the OptRem algorithm on

hort term basis, we now consider the performance of the three
ser removal algorithms in the long run. For this, and for the
est of this section, we consider the downlink of a CR system
hich shares the bandwidth with a primary system that has pri-

rity over the band of interest. This bandwidth is divided into
 = 128 OFDMA narrowband carriers, and the channels between

he CR BS and the different SUs are i.i.d circularly symmetric
nit variance complex Gaussian across tones and SUs. We would

ike to emphasize that the assumed channel model is not critical
o the performance of the proposed algorithms, and was cho-
en for simplicity. We  further assume, for simplicity and ease
f analysis, that all arriving RT SUs have the same rate require-
ent of R = 20 bits/symbol and the same average call duration

f 1/�  = 30 time slots. The maximum power that the CR BS can
tilize is Pmax = 30 dB (note the power normalizations applied
o channel gains and noise). The number of PUs occupying the
ame bandwidth is L = 128. Each one of the PU bands transitions
etween the busy and free states with probabilities pf→b = 0.05 and
b→f = 0.2.

In Fig. 3, we plot the average drop rate of admitted RT SUs versus
heir arrival rate to the system for the three different removal algo-
ithms. Interestingly, we see that the OptRem algorithm achieves
he worst performance, in terms of RT SU drop rate, compared to
he other two algorithms. This is mainly due to the fact that the
ptRem algorithm releases the least amount of system resources
ecessary to achieve a feasible solution to the resource allocation
roblem. Recall that the OptRem algorithm maintains the high-
st number of users possible and the highest sum rate possible
mongst the admitted users set. This way, the algorithm tightly
ts as many users and as much rate as possible making the system
ulnerable to more service outages in the near future. In contrast to
his, the LagRem algorithm is designed to remove users that have
he biggest influence on the system performance and thus, cre-
ting the biggest room, resource wise, that accommodates future
ystem dynamics better than other removal techniques. That is
hy the LagRem algorithm achieves the lowest drop rate in the
ong run. For the rest of the results presented in this section, we
ill assume that the LagRem algorithm is used to resolve any sys-

em infeasibility due to its low complexity and superior long term
erformance.
Fig. 4. Average RT SU drop rate versus a range of RT SU arrival rates (�RT) when an
RBZ based on fixed power threshold is installed.

5.2. Performance of admission control algorithms

5.2.1. Admission control with static RBZs
After evaluating the performance of the different user removal

algorithms, we move forward towards evaluating the performance
of the three admission control mechanisms from Section 3. First,
in Fig. 4, we  present simulation results for the power threshold
based RBZ technique from Section 3.1.  Fig. 4 shows the average
drop rate of RT SUs against their arrival rate, �RT, for differ-
ent admission power thresholds,  ̨ = {0.9, 0.94, 0.98}. The figure
clearly shows how the drop rate of RT SUs decreases as more
power gets held back when admitting new arrivals. The power gap
between admission time and resource optimization time in cur-
rent and future time slots protects admitted RT SUs against a level
of resource fluctuation that is proportional to the size of the power
gap.

The second alternative towards installing a fixed RBZ for user
protection against call drops after admission is through the use of
the fixed carrier release method from Section 3.2.  Similar to Fig. 4,
Fig. 5 plots the average RT SU drop rate for different arrival rates
and different levels of carrier release C. It can be seen that the more
carriers we  voluntarily release while testing for admissibility, the
more protection the admitted users get against call drops while in
service due to PU activity.

In Figs. 4 and 5, the RBZ is static and is usually assigned before
any system activity can begin. Thus, some measurements, actual or
simulated, are necessary for these thresholds to be set if a specific
level of RT SU drops is required. By looking at plots similar to the
ones in Figs. 4 and 5, a system administrator seeking a drop rate that
is below 1%, for example, would pick a fixed power threshold or a
fixed number of carriers to be released according to the maximum
anticipated system load.

To see the effect of the RBZ on the number of RT SUs that
get blocked from service, Fig. 6 plots the average blocking rate
of RT SUs versus the size of the RBZ, in terms of released carri-
ers C, for different levels of RT SU arrival rates. As the size of the
RBZ increases, more carriers are held back at the time of admis-
sion, which reduces the number of RT SUs the system can support.
Thus, more RT SUs get denied admission for the sake of protect-

ing already admitted RT SUs. Although the number of RT SUs that
get admitted drops as the size of the RBZ increases, the number
of dropped RT SUs decreases too. Thus, the number of RT SUs
that successfully finish their sessions, referred to as “good” RT
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ig. 5. Average RT SU drop rate versus a range of RT SU arrival rates (�RT) when an
BZ based on fixed carrier release is installed.

Us, does not necessarily drop in the same manner. To illustrate
his, Fig. 7 plots the average number of good RT SUs admitted
o the system at any given time slot versus the size of the RBZ
or different levels of RT SU arrival rates. At low RBZ sizes, the
eduction in the drop rate is more significant than the reduction
n the admission rate. Thus, the number of good users increases. As
he RBZ size increases, the drop rate eventually approaches zero,
nd any increase in the RBZ size only prevents new RT SUs from
eing admitted causing a drop in the overall number of good RT
Us.

The system administrator could either choose the size of the
BZ, C, such that the overall system goodput is maximized regard-

ess of the dropping and blocking rates associated with that C
r, alternatively, aim at maintaining a minimum level of RT SU
ropping rate and choose C that achieves the best overall system

oodput given the dropping rate constraint. We  believe that the
atter approach is preferable since it provides a guarantee on the
evel of QoS as seen by the end user.
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ig. 6. Average RT SU blocking rate versus size of the installed RBZ that is based on
he  fixed carrier release algorithm.
Fig. 7. Average number of “good” RT SUs admitted to the system at any given
time slot versus size of the installed RBZ that is based on the fixed carrier release
algorithm.

5.2.2. Admission control with predictive RBZ
Figs. 4 through 7 reveal the inherent tradeoff between the drop-

ping rate and blocking rate and its implications on the overall
system performance. To capture all of these effects, the availability
of actual or simulated measurements is crucial to set the size of the
RBZ accordingly. If these measurements were not available before-
hand, protection based on predictive carrier release RBZ becomes
the preferred option. In the predictive carrier release approach, a
target maximum level of dropping rate, prisk, is specified and the
algorithm sets the size of the RBZ accordingly without compromis-
ing the overall system performance.

In Fig. 8, we  plot the average RT SU drop rate against the
RT SU arrival rate when the requested dropping risk probability

was prisk = {0.7 % , 1 % , 7 % }. Recall that the dropping risk probabil-
ity, prisk, represents the maximum level of call drops the system
should encounter when the system load is high. The figure clearly
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Fig. 8. Average RT SU drop rate versus a range of RT SU arrival rates (�RT) when an
RBZ based on predictive carrier release is installed.
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or different levels of RT SU arrival rates (�RT) when an RBZ based on predictive
arrier release is installed.

hows how the algorithm successfully protects against a level of RT
U dropping rate that is proportional to the requested prisk. The
gure also shows how the average RT SU drop rate approaches
risk as the arrival rate of RT SUs increases. The same observa-
ions can be made when looking at Fig. 9, in which the average
T SU drop rate curves are all below the 45◦ line that repre-
ents the point at which the requested dropping risk probability
atches the actual drop rate. Again, as the system load increases,

he closer the performance curve moves towards the 45◦ line.
e believe that adopting an admission control mechanism that

s based on the predictive RBZ algorithm alongside the LagRem
lgorithm for infeasibility resolution constitutes a complete and
ersatile solution for the downlink of multiple-user OFDMA CR
ystems.

. Conclusion

In this paper, we studied the problem of admission and evic-
ion control of RT SUs in the downlink of multiple-user OFDMA
R networks. We  proposed three different ways to protect against
ervice outages by means of an RBZ that gets installed at the time
f user admission. Two of the proposed methods are static and
equire the availability of actual or simulated system measure-
ents to effectively choose the static RBZ size. The third method

s dynamic and adapts the size of the RBZ according to the cur-
ent conditions of the system by predicting resource availability in
he future. We  also devised three different methods to deal with the
roblem of system infeasibility that might occur due to PUs activity
n the shared resource. We  showed how the user removal method
ased on Lagrange multipliers gave the best performance on long

erm basis. In conclusion, admission and eviction control mecha-
isms are essential components of any viable CR system and the
roposed techniques are excellent candidates to effectively realize
hese mechanisms.
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Appendix A. List of acronyms

AWGN Additive White Gaussian Noise
BE Best Effort
BER Bit Error Rate
BS Base Station
CR Cognitive Radio
MC Markov Chain
NRT Non Real-Time
OFDMA Orthogonal Frequency Division Multiple Access
PU  Primary User
QAM Quadrature Amplitude Modulation
QoS Quality of Service
RBZ Resource Buffer Zone
RT Real Time
SU Secondary User
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