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a b s t r a c t

We propose a novel receiver for Ultra-Wide-band Impulse-Radio communication in
Wireless Sensor Networks, which are characterized by bursty traffic and severe power
constraints. The receiver is based on the principle of Compressed Sensing, and exploits
the sparsity of the transmitted signal to achieve reliable demodulation from a relatively
small number of projections. The projections are implemented in an analog front-end
as correlations with tractable test-functions, and a joint decoding of the time of arrival
and the data bits is done by a DSP back-end using an efficient quadratic program. The
proposed receiver differs from extant schemes in the following respects: (i) It needs neither
a high-rate analog-to-digital converter nor wide-band analog delay lines, and can operate
in a significantly under-sampled regime. (ii) It is robust to large timing uncertainty and
hence the transmitter need not waster power on explicit training headers for timing
synchronization. (iii) It can operate in a regime of heavy inter-symbol interference (ISI),
and therefore allows a very high baud rate (close to the Nyquist rate). (iv) It has a
built-in capability to blindly acquire and track the channel response irrespective of line-
of-sight/non-line-of-sight conditions. We demonstrate that the receiver’s performance
remains close to themaximum likelihood receiver under every scenario of under-sampling,
timing uncertainty, ISI, and channel delay spread.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Ultra-Wide-band (UWB) radio [1–3] is widely regarded
to be a promising candidate for power-constrained ap-
plications like Wireless Sensor Networks (WSN) [4], on
account of its ability to trade bandwidth for a reduced
transmit power, its ability to coexist with extant licensed
narrow-band systems, and its localized nature which is
ideal for short-haul multi-hop transport. Impulse-radio
(IR), in particular, is especially well suited to WSNs due to
its low cost, immunity to severe multi-path fading even in
indoor environments [3], and potential to provide accurate
localization [5].
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Notwithstanding these advantages, a UWB–IR physical
layer has not been widely adopted due to the relative
difficulty of implementing a coherent UWB–IR receiver for
WSNs, where the transmitter in each ‘mote’ periodically
makes short bursts of transmissions, and goes into a sleep
mode in the relatively long inter-burst intervals to save
power. In a burst, a small payload is modulated either
in the amplitude or temporal position of very narrow
(∼1.0 ns) IR pulses transmitted at a pulsing rate (baud
rate) fbaud. In indoor settings this radio signal typically
encounters a channel having tens or even hundreds of
resolved multi-path components and a large temporal
dispersion of 10–100 ns [6]. Although a coherent all-digital
receiver that implements maximum likelihood sequence
estimation (MLSE) would be optimal in terms of the bit
error rate (BER), it is impractically complex when there
is heavy Inter-Symbol Interference (ISI), and furthermore
requires an expensive and power-hungry high-speed
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analog-to-digital (A/D) converter on account of the large
bandwidth [3]. On the other hand, analog equalization of
the channel is also a formidable challenge, and results in
a significant signal-to-noise ratio (SNR) penalty relative to
MLSE. Consequently, a pragmatic solution often used [7] is
to avoid ISI all-together by using a sufficiently low baud-
rate fbaud � 2Ω = fnyquist , where Ω is the signal
bandwidth. The MLSE then simplifies to a matched filter
(MF), which can be implemented entirely in the analog
domain (no A/D) in the form of a maximum ratio
combining (MRC) rake [3]. Of course, the choice of a
low baud-rate translates to a low instantaneous data
rate, longer channel occupancy, and a reduced number of
supported transmitters.
Even if one avoids high-speedA/D andMLSE complexity

by using a small fbaud and a rake receiver, one still needs
an accurate up-to-date estimate of the channel impulse
response, and a timing synchronization that is correct
to within a small fraction of the pulse width Tpulse. The
problem of UWB channel estimation has been investigated
in [8] under the assumption of Nyquist rate sampling,
and in [9] based on a Compressed Sensing approach.
Although the problem of timing synchronization is, in
principle, subsumed in the problem of channel estimation,
the variations in the time of arrival (TOA) due to the drift
of the transmitter’s baud clock and the motion of the
transmitter/receiver,1 are fast relative to the changes in
the physical environment. Such rapid changes in timing
cannot be tracked by the channel estimator and hence
there is essentially no timing information available from
one burst to the next. Hence timing acquisition has to be
done afresh for each burst, via techniques like correlation,
serial search [3] or ‘dirty template’ [10], and to achieve this
we need to modulate a sufficiently long sequence of training
bits as a preamble to each burst before we modulate the
comparatively small set of information carrying bits. This
is highly wasteful of power and undermines the very
rationale of using UWB–IR.
Alternative non-coherent approaches suggested in the

literature include energy detecting (ED) receivers [11],
transmit-reference (TR) receivers [12,13], and differential
transmit-reference (DTR) receivers [14], all of which in
principle need neither the channel response nor accurate
timing synchronization. However it is quite difficult to
ensure robust operation of such non-coherent schemes
in the regime of significant ISI [15], and hence they too
usually remain restricted to low baud rates. Moreover,
ED receivers suffer a very large SNR penalty relative to
coherent systems, as do TR and DTR to a lesser extent.
TR/DTR also involve the use of a very long analog delay
line (of 1/fbaud s), which is difficult to implement with the
requisite accuracy.
In this paper we offer a solution that combines the ad-

vantages of MLSE coherent receivers (high system gain,
high baud rate, ability to operate in ISI) and non-coherent
receivers (low complexity, robustness to timing uncer-
tainty and ignorance about the channel response), while

1 Small scale relative motion only alters the overall TOA, while leaving
the shape of channel response invariant.
avoiding their respective drawbacks. We propose a flex-
ible and robust receiver architecture that performs a
‘joint’ decoding of timing and amplitude information. This
joint decoding is inspired by the principle of compressed
sensing (CS) proposed by [16,17]. The uncertainty in the
arrival time of each burst is treated as ‘sparsity’ in the
classical sense of [16,17] and therefore tackled automati-
cally in the reconstruction process which is a variation of
the L1-minimization used by [16,17]. Furthermore, the fact
that the amplitudes are antipodal {+1,−1}, and hence the
overall transmit signal belongs to a relatively small discrete
set rather than being a generic real-valued ultrawide-band
signal, is also exploited by the reconstruction process. As
a result, the receiver architecture completely bypasses the
requirement of high-rate ADC conversion. Instead we use
an analog front-end consisting of a bank of correlatorswith
tractable test functions (like square waves), a low-rate A/D
converter, and a DSP back-end that utilizes the knowledge
of the channel response. The number of correlators can
be significantly smaller than the requirement suggested
by the Shannon–Nyquist sampling theorem, and neverthe-
less the performance degrades gracefully with such sub-
Nyquist sampling.
The work-horse of the DSP back-end is a computation-

ally efficient quadratic program (QP). The proposed re-
ceiver works robustly even in significant ISI, and hence we
are not restricted to a low baud-rate. At the same time, the
complexity of the receiver is far smaller than a full-fledged
MLSE. Moreover, we do not rely on long analog delay lines
or any specific modulation format as in TR/DTR. The same
architecture can operate with various levels of timing ac-
curacy, ranging from a fraction of Tpulse to many multi-
ples of Tpulse, and in each case a performance close to the
MLSE receiver is attained. Furthermore, as the burst size
becomesmoderately large, the receiver implicitly acquires
perfect timing ‘on the fly’ and hence the penalty associated
with timing uncertainty becomes negligible. Therefore we
can send bursts without training headers, and yet at-
tain a power efficiency comparable to genie-aided timing.
Finally, although the DSP back-end needs to know the
channel response, it can blindly acquire and track it based
on the same observations that are available for bit de-
modulation. Unlike [9], who use a matching-pursuit re-
construction and exploit the sparsity of the received signal,
our channel estimator uses amaximum likelihood stochas-
tic approximation that exploits the much more significant
sparsity of the transmitted signal.
CS has been used previously by [18] for mitigation of

narrow band interference. In an approach analogous to
ours, [19–21] have used CS for direct detection of IR pulses
without using a rake or a digital correlator. However note
that [19,20] have formulated a generalized likelihood ratio
test (GLRT) for the detection of a single bit in an ISI-free
regime, and they presume accurate timing while doing so.
Similarly, although [21] do explicitly address the timing
problem, their proposal also assumes an ISI-free regime
and involves the exact solution of a set of linear equations
that are often ill-conditioned.
Outline of the paper: In Section 2we describe the system

model and the architecture of the proposed receiver. In
Section 3 we first formulate and analyze the maximum
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likelihood (ML) receiver (which is typically intractable),
and then propose signal demodulation via a significantly
simpler suboptimal QP optimization. Section 4 presents
a stochastic recursive algorithm based on ML principles
for identifying the channel response. Section 5 presents
extensive simulations of the proposed receiver, and in
Section 6 we make some concluding remarks. Convention:
With an abuse of notation, P(x) will denote the density
or mass function of a random variable X . U([a, b]) will
denote a uniform distribution over the interval [a, b] of
the real line or of integers, depending on the context. xT
will denote the transpose of a vector or matrix x. When
x is a vector, ‖x‖2 will denote the L2-norm (Euclidean
length), ‖x‖1 the L1-norm (largest absolute value), and
‖x‖0 the number of non-zero elements. H(f ),Φ(f ) etc
will denote Fourier transforms of continuous-time finite-
energy signals h(t), φ(t) etc. h(t) ? φ(t) denotes a con-
volution of the signals.

2. Systemmodel and receiver architecture

In this section wewill describe the overall UWB–IR sys-
temunder consideration, and thenpresent the architecture
of our receiver. The reader is advised to refer to Fig. 1.

2.1. Transmitter

The UWB–IR transmitter consists of three main blocks,
namely, a timing block that generates a clock signal at a
nominal frequency fbaud, a payload block that supplies the
information bits, and an IR pulse generator. The baud clock
provides the timing for the IR pulses within each burst, as
well as the timing for the start of each burst after requisite
down-sampling. A total of K pulses are transmitted in
each burst after which the transmitter hibernates till the
start of the next burst.2 At the k-th strobe of the clock
within a burst, the IR pulse generator sends on the air a
pulse φ(t), amplitude modulated3 by the bit Bk provided
by the payload, drawn equiprobably from {+1,−1}. The
pulse φ(t) is nominally centered at the frequency fc with
a bandwidth Ω . There is no other RF processing at the
transmitter, like heterodyning or filtering, which makes
this transmitter very simple, small and inexpensive to
build.
For example, consider Fig. 2 which displays the

Hanning modulated RF pulse of [2] which we used in our
simulations, with a center frequency fc = 4.0 GHz and
a 6 dB bandwidth Ω = 2.0 GHz. The pulse duration
is small, Tpulse = 1.0 ns. It is well-known that the
maximumpossible ISI-free baud-rate over an ideal channel
of bandwidth Ω = 2.0 GHz is fnyquist = 2Ω = 4.0

2 Our receiver architecture continues to be applicable without modifi-
cation even in the scenario where a repetition code is used, that is, one
information bit is repeated Nf times in the payload {Bk}. The effect of the
repetition code is simply to improve the BER vs. SNR characteristic by a
factor 10 log10(Nf ) dB, at the cost of a

1
Nf
rate reduction. Unless otherwise

stated we will assume that no repetition code is present (Nf = 1).
3 A generalization to pulse positionmodulation is possible, but will not
be discussed here.
GBaud.However, since the temporal dispersion of theUWB
channel in indoor environments is often as large as τchan =
100 ns, a conventional UWB–IR system needs to choose a
much smaller baud-rate, fbaud ≤ 1/τchan = 10 MBaud,
to avoid ISI. Our receiver, on the other hand, can tolerate
significant ISI and therefore we may choose a baud-rate
close to the Nyquist frequency, say fbaud = fnyquist/8 = 500
MBaud. Hence the interval between consecutive pulses
is Tbaud = 1/fbaud = 2.0 ns, and a burst of K = 64
bits will therefore last for 127 ns. In contrast, the interval
between consecutive bursts may be as large as Tburst =
100µs. Since a practical inexpensive clock has a significant
timing drift of ρ ∼ 40 parts per million (p.p.m.) caused
by random frequency modulation [7,22], the total drift
from the beginning to the end of a burst is limited to
(K − 1)ρ/fbaud = 5.1 ps, which is negligible considering
the fact that a timing error of up to 40 ps causes an SNR
penalty of nomore than 1.0 dB for coherent demodulation.
Thus if exact timing synchronization is available at the
start of a burst, there is no further timing problem. On
the other hand, the drift from one burst to the the next
is very large, ∼ 4.0 ns, resulting in a catastrophic loss in
rake receivers unless long training headers are used for re-
synchronization per burst.
Without loss of generality we can concentrate on the

reception of a single burst, and treat the estimated epoch
of arrival of that burst as the temporal origin, t = 0. The
residual error of the coarse timing block is then perceived
as a late arrival of the actual burst by an amount υ seconds.
(By prefixing a sufficient guard interval in the coarse
timing estimate, we can ensure that υ > 0 with high
probability, i.e. the true arrival can only be late but never
early.) For simplicity suppose that the true arrival time υ is
distributed over the interval [0, γ ] according to a uniform
density. From the point of view of the receiver, the output
of the transmitter during the burst is then written as

S(t) =
K−1∑
k=0

Bkφ(t − kTbaud − υ). (1)

Notice that in writing this equation we ignore the
negligible timing drift within a burst. Our setup also
subsumes the case of a low baud rate fbaud ≤ 1/τchan (used
to avoid ISI, as in [7]), if we choose K = 1 (one pulse in
each burst), treat the pulse-to-pulse drift as the burst-to-
burst drift υ , and demodulate each pulse independently.

2.2. Channel

The UWB channel is known to be linearly dispersive
with tens or hundreds of resolvedmulti-path components,
depending on the radio environment. In [6], a set of stan-
dardized random models has been postulated covering
several scenarios like indoor line-of-sight (LOS) in residen-
tial environments (CM1), indoor non-line-of-sight (NLOS)
in residential environments (CM2), indoor LOS in office
environments (CM3), indoor NLOS in office environments
(CM4) etc. We will use realizations from these standard-
ized models in our simulations.
The demodulation algorithm to be presented in Sec-

tion 3 assumes that the total system response is known.
Of course, apart from the random TOA υ , the shape of
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Fig. 1. Block diagram of the UWB–IR system.
Fig. 2. Impulse radio pulse shape φ(t), and its power spectrum.
the channel impulse response (the set of multi-path am-
plitudes and relative delays) itself can vary with time
because of the large-scale motion of the transmitter/recei-
ver as well as random changes in the radio environment
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(log-normal shadowing). However, these variations are
relatively slow (i.e. Doppler spread is small) andwe can as-
sume [3,23] that in the duration of one burst the shape of
the channel impulse response is a time-invariant function
hc(t). In fact the channel coherence time is typically of the
order of tens or hundreds ofmilliseconds [24,25], which al-
lowsus to use an incremental estimator to acquire and track
the shape of the channel response (cf. Section 4). The fast
variations in the TOA will not be treated as channel varia-
tions, but instead be inferred explicitly fromburst-to-burst
and provided explicitly to the incremental channel estima-
tor, whose relatively slow dynamics will integrate out the
occasional error.

2.3. Receiver

The receiver consists of an analog front-end and a DSP
back-end. The defining characteristic of our receiver is
that we relieve the analog front-end of difficult tasks like
fast A/D conversion and accurate delay lines, and instead
compensate by using an elaborate DSP back-end. We keep
the DSP back-end tractable by avoiding a full-fledged ML
demodulator, and instead use a QP reconstruction. QP is
considered an ‘easy’ problem in optimization theory, that
can be solved in low-order polynomial time [26] by state-
of-the-art interior point (IP) methods. A the same time,
we will demonstrate that it gives negligible degradation
relative to the ML decoder.

2.3.1. Analog Front-end
Let the received signal at the antenna be denoted by

U(t). The first block in the analog front-end is a noise-
limiting bandpass-pass filter g(·) centered at fc , having a
bandwidth≈ Ω . The output of this filter is

R(t) =
K−1∑
k=0

Bkh(t − kTbaud − υ)+W (t), (2)

where h(t) denotes the total impulse response, which is
the convolution of the transmit pulse φ(t), the channel
hc(t), and the filter response g(t), and

W (t) =
∫
V (t − τ)g(τ )dτ (3)

is band-limited zero-mean additive Gaussian noise, mod-
eled as the response of the filter to a white Gaussian ther-
mal noise process V (t) of power spectral density N0.
The signal R(t) is fed to a bank of M parallel analog

correlators, followed by M integrators. This module
replaces other conventional structures like a rake receiver,
a fast A/D converter for subsequent MLSE or digital
correlation, an ED receiver or a TR/DTR receiver. The test
function used in correlator numberm is denoted asψm(t),
and the whole ensemble of test functions is denoted by
{ψm(t)}. In Section 3.4, we will discuss the criteria for
selecting the ensemble. At this point, it suffices to note that
we do not need to tune the timing of these test functions
(i.e. no analog delay lines), and hence they are relatively
easy to implement. All we require is that the ensemble be
known to the DSP back-end.
The integratorsm = 0, 1, . . . ,M−1 are reset to zero at

the epoch t = 0 and their output is sampled synchronously
at the epoch λh + γ + (K − 1)Tbaud when all of the energy
of the burst is known to have arrived with high probability
(recall that γ is the uncertainty in the TOA of the burst).
Thus we have theM measurements

Ym =
∫ λh+γ+(K−1)Tbaud

0
R(t)ψm(t)dt,

m = 0, 1, . . . ,M − 1. (4)
The vector of measurements Y = [Y1, Y2, . . . , YM ]T is then
fed to the DSP back-end, which recovers the payload bits
Bk, k = 0, 1 . . . , K − 1 via a tractable QP algorithm.
Extension to the case of repetition coding: Suppose an
Nf > 1 repetition code is being used, hence payload bits
Bj, j = iNf , . . . , (i + 1)Nf − 1 are all copies of the i-th
information bit C i, and the total burst of K bits corresponds
to K/Nf information bits. In this casewe simply rewrite the
received filtered signal as

R(t) =
K/Nf−1∑
i=0

C ihcomp(t − iT compbaud − υ)+W (t), (5)

where we define hcomp(t) to be a composite impulse
response

hcomp(t) =
Nf−1∑
j=0

h(t − jTbaud). (6)

Since Eq. (5) has the samemathematical form as Eq. (2), we
can clearly use exactly the same DSP back-end to directly
recover the information bits C i, i = 1, 2 . . . , K/Nf from
the measurement vector Y , by appropriately replacing
h(·) with hcomp(·) in the reconstruction algorithm. An
alternative method would be to continue to demodulate
based on the representation in Eq. (2) and then do an
algebraic decoding (hard decoding) of the repetition code
via majority rule. Note that such hard decoding costs
∼1.0–2.0 dB in SNR relative to optimal joint decoding-
demodulation [27].
Signal to noise ratio: Let hU(t)

.
= φ(t) ? hc(t), and define

hlU(t)
.
=

K−1∑
k=0

bkl hU(t − kTbaud), (7)

ξ(f ) .=
1
2K

2K−1∑
l=0

|H lU(f )|
2, (8)

where bkl ∈ {+1,−1} is the k-th bit of the number l ∈
{0, 1, . . . , 2K − 1}. An optimal (but intractable) receiver
would replace the front-end filter g(t) with a bank of 2K
matched filters (MFs), one each for the candidate matched
signal hlU(−t), l = 0, 1, . . . , 2

K
− 1. Assuming that the

timing is perfectly known, it would then declare as the
estimate of the payload, the index l of the filter which
has the maximum output at the sampling time. Such a
hypothetical genie-timedMF receiver serves as a reference
with which we can compare our suboptimal receiver. The
average SNR per bit in theMF receiver is therefore given by

SNRbit
.
=

∫
ξ(f )df

K N02
, (9)

where N0/2 is the two-sided power spectral density of
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the zero-mean additive white Gaussian (AWG) thermal
noise V (t). It is not difficult to show that since the K
bits in the pay-load are i.i.d. Bernoulli( 12 ), (hence all the
candidate signals hlU(t) are a-priori equiprobable), we have
the relation

ξ(f ) = K‖HU(f )‖2. (10)

Hence the SNR per bit in theMF receiver is given simply by

SNRbit
.
=

∫
‖HU(f )‖2df

N0
2

. (11)

For consistency with literature, we will use this definition
of SNR in all our analysis and simulations.

2.3.2. DSP back-end
The demodulation of the payload by the DSP back-

end relies on a consistent discrete time representation of
the signal. Let fs be a sufficiently large virtual sampling
frequency [19] for the received UWB–IR signal. We would
like to emphasize that this is only a ‘thought-experiment’
construction, and no A/D conversion is done at rate fs
in actuality. Choosing an fs as large as possible reduces
aliasing and timing quantization errors. On the other hand,
it also increases the size of the optimization problem,
hence a suitable tradeoff must be made. For example, for
the IR pulse described in Section 2.1, the choice of fs =
2(fc + Ω

2 ) = 10 GHz practically eliminates aliasing and
limits the timing quantization penalty to 1.5 dB. Let h[n]
denote the sampled version of the total impulse response
h(t) at the rate fs samples per second, and let h denote a
vector representation of h[n]. That is, letting Ts

.
=

1
fs
,

h[n] .= h(nTs), n = 0, 1, . . . ,Λh − 1, (12)

h .= [h[0], h[1], . . . , h[Λh − 1]T], (13)

whereΛh = dλhfse is the length of the discrete-time finite
impulse response h[n]. A similar convention will apply to
other signals like g(t), ψm(t),W (t) etc.
Let γ and Tbaud bemultiples of Ts, which can be achieved

by construction. Now, expressed in rate fs samples, the
arrival time uncertainty is Γ .

= γ fs and the baud period
(the interval between consecutive pulses) is Nbaud =
Tbaudfs. DefineΛX

.
= Γ + (K − 1)Nbaud. Then the length of

the total burst response including the timing uncertainty
is

N .
= Λh +ΛX − 1. (14)

Let Υ = round(υfs) be the burst arrival time υ quantized
to a step size of Ts. As remarked earlier, this quantization
introduces an extrameasurement error which is negligible
provided fs is chosen large enough. Now, the sampled
version of R(t) can be written as a vector R ∈ RN given
by

R = HX +W . (15)

Here the vector X ∈ RΛX is a virtual discrete time
information signal which has all samples equal to zero
except for K non-zero samples. The k-th non-zero sample,
for k = 0, 1, . . . , K − 1, has a random amplitude Bk drawn
independently and equiprobably from {−1,+1}, and has
a random location Λk = Υ + kNbaud. On account of the
modeling assumption made in Section 2.1, it follows that
Υ ∼ U([0,Γ ]). The vector W ∈ RN is the sampled
version of the additiveGaussian noiseW (t), and thematrix
H ∈ RN×ΛX is the convolutional matrix (Toeplitz form)
of h[n] (see the equation in Box I), The rows of the matrix
are formed by right shifts of the time-flipped response
h[Λh − 1], h[Λh − 2], . . . , h[1], h[0].
In a similar vein we can further relate the actually

sampled measurements Y at the output of the integrators
to the virtual information signal X . Define the M × N
measurement matrix Ψ to be

Ψ
.
=
1
fs
[ψ0, ψ1, . . . , ψM−1]T , (16)

where, for all i = 0, 1, . . . ,M − 1,

ψi
.
= [ψi[0], ψi[1], . . . , ψi[N − 1]]T . (17)

The sampling lemma [27] tells us that for any signals
x(t), y(t) band-limited to fs

2 , sampling at rate fs leaves
the inner product invariant up to a scaling factor. That is,∫
x(τ )y(τ )dτ = 1

fs

∑
n x[n]y[n]. Hence we can write the

measurement equation

Y = Ψ R = ΨHX + ΨW . (18)

Let B .= [B0, B1, . . . , BK−1]T. Then the aim of the DSP back-
end is to optimally estimate B,Υ from the measurement
Y , based on the relation in Eq. (18) and the a priori
statistical knowledge about B,Υ . Note that B contains the
payload which is of primary interest, while the quantity
Υ is a ‘nuisance’ parameter.4 As we shall see in the next
section, for optimal performance we need to maximize
the observation likelihood jointly over the informative
parameter as well as the nuisance parameter.

3. Bit demodulation based on incomplete measure-
ments

The maximum likelihood (ML) demodulation of B,
based on the measurement Y given by Eq. (18), will be
described in Section 3.1. It involves the maximization
of the likelihood P(Y |B,Υ ) over all the valid values of
payload B and the nuisance timing parameter Υ . Since
this can be complex to implement under a large timing
uncertainty Γ and even moderately large burst length K ,
in Section 3.2 we propose an alternative computationally
efficient reconstruction via a QP. We will see in simulation
results discussed in Section 5, that the QP reconstruction
gives only a small loss compared to ML demodulation.

3.1. ML demodulation and BER analysis

Let us define the set X as the set of all signals x ∈
RΛX that satisfy the following properties: (i) ‖x‖0 = K
(sparsity). (ii) The first nonzero sample is located at `0 ∈
[0,Γ ]. The subsequent non-zero samples are located at

4 In PPM, Υ carries the payload, while B is deterministic. In any case, Υ
will always be informative in the context of localization.
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H =



h[0] 0 0 . . . 0 0 0 0
h[1] h[0] 0 . . . 0 0 0 0

h[Λh − 1] h[1] h[0] . . . 0 0 0 0
h[Λh − 1] h[Λh − 2] h[1] h[0] 0 0 0 0

...
...

...
...

...
...

...
...

0 0 0 . . . h[Λh − 1] h[Λh − 2] h[1] h[0]
0 0 0 . . . 0 h[Λh − 1] h[Λh − 2] h[1]
0 0 0 . . . 0 0 h[Λh − 1] h[Λh − 2]
0 0 0 . . . 0 0 0 h[Λh − 1]


Box I.
positions `k = `0 + kNbaud,∀k = 1, 2, . . . , K − 1 (timing).
(iii) The amplitudes of all the nonzero samples are from
{−1,+1} (signaling alphabet).
Clearly, X is the finite equiprobable alphabet of the ran-
dom information signal X (cf. Section 2.3.2), of cardinality
|X| = 2K (Γ + 1), and there is a one-to-one mapping

{−1,+1}K × {0, 1, . . . ,Γ } → X (19)
(B,Υ ) 7→ X(B,Υ ). (20)

Hence we can write P(Y |B,Υ ) = P(Y |X), which implies
that, without losing optimality, we may first make the ML
estimate X̂ of the information signal X , and then map it to
the optimal payload estimate B̂(X̂) and TOA estimate Υ̂ (X̂).
It is easy to see that the noise termΨW in themeasure-

ment equation (18) is a zero mean multivariate Gaussian
random variable with a covariance matrix σ 2ΨGGTΨ T,
where G is the Toeplitz form of the front-end filter g[n],
analogous to the definition in Box I, and σ 2 = N0/(2fs).
Hence, the likelihood of a candidate signal x ∈ X condi-
tioned on the observation Y is given, up to a normalization
factor, by

P(Y |x) ∝ exp
{
−1
2σ 2

(Y − ΨHx)T

× (ΨGGTΨ T)−1(Y − ΨHx)
}
. (21)

Therefore, theML demodulator declares the estimated sig-
nal as

X̂ = argmax
x∈X

P(Y |x)

= argmin
x∈X

(Y − ΨHx)T(ΨGGTΨ T)−1(Y − ΨHx). (22)

Since B and Υ are drawn equiprobably from their alpha-
bets, they do not have informative priors, and the ML es-
timate is also the Bayesian estimate, which is optimal in
terms of the error rate. Suppose that x0 ∈ X was the true
information signal, hence

Y = ΨHx0 + ΨW . (23)

Let x1 6= x0, x1 ∈ X be some other information signal.
Then, under ML demodulation, the pair-wise error proba-
bility (PEP) is given by

Pr(x0 → x1) .= Pr{P(x1|Y ) > P(x0|Y )}. (24)
With some straightforward manipulation it can be shown
that
P(x0 → x1)

= Q

(√
(x0 − x1)THTΨ T(ΨGGTΨ T)−1ΨH(x0 − x1)

2σ

)
,

(25)

where Q(a) =
∫
∞

a
1
√
2π
exp

{
−x2
2

}
dx is the area under

the tail of a standard normal distribution. Since we have
|X| = 2K (Γ + 1) equiprobable candidates for the select-
ing the transmitted signal x0, and the pair-wise error event
x0 → x1 leads to ‖B̂(x0)− B̂(x1)‖0 bit errors, we can write
the following union bound on the BER,

Pe ≤
∑

x1,x0∈X

‖B̂(x0)− B̂(x1)‖0
K2K (Γ + 1)

×Q

(√
(x0 − x1)THTΨ T(ΨGGTΨ T)−1ΨH(x0 − x1)

2σ

)
. (26)

Note thatH = TsGHU , whereHU is the convolutional
matrix of the response hU [n]. As a sanity check, notice that
if

1. there is no under-sampling (i.e.M = N),
2. Ψ is invertible (i.e. the ensemble {Ψm}M−1m=0 are linearly
independent)

3. G is invertible (i.e. the translations of the pulse g(t) in
steps of Ts are linearly independent)

4. the timing is ideal (i.e. Γ = 0),
5. there is only one bit per burst (i.e. K = 1),

expression (26) reduces to the familiar expression for a
perfectly timed MF,

Pe = Q

(√∫
|hU(t)|2dt
N0
2

)
= Q

(√
SNRbit

)
, (27)

where we used the definition of the SNR per bit from
Eq. (11).

3.2. Suboptimal computationally efficient demodulation via
QP

3.2.1. Motivation for a sub-optimal tractable demodulator
The ML demodulation problem in Eq. (22) clearly be-

comes cumbersome when the timing uncertainty Γ or
the burst length K is large. Even with a dynamic program
like the Viterbi algorithm [27] for MLSE, the complexity
is exponential in K or the channel memory, whichever is
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smaller. With our exemplary choice of fbaud = 500 MBaud,
the channel memory will extend to at least 50 pulses and
so the complexity will scale as 2K for K up to 50. In light of
this difficulty, now we will propose an alternative subop-
timal demodulation technique whose complexity is O(K 3).
The technique is inspired by the philosophy of CS for sparse
signal reconstruction under incomplete measurements
[17,16].

3.2.2. QP demodulation
Let the vector ξ(a, `1, `2) be a positive penalty vector

for the candidate information signals x ∈ X. It incor-
porates the available timing information by giving more
penalty to those locations of x where the occurrence of
the non-zero samples is unlikely. That is, for all n = 0,
1, . . . ,ΛX − 1,

ξ(a, `1, `2)[n]

.
=

{1.0, n = `+ kNbaud, ` ∈ [a+ `1, a+ `2],
k = 0, 1, . . . , K − 1

f, otherwise,
(28)

wheref is some suitable large number like 103. Also define
a corresponding diagonal penalty matrix asΞ(a, `1, `2) =
diag(ξ(a, `1, `2)).
Now consider the following relaxation of the ML demodu-
lation problem (22):

X̃ = argmin
x∈RN :‖Ξ(a,`1,`2) x‖1=K

(Y − ΨHx)T(ΨGGTΨ T)−1

× (Y − ΨHx). (29)

Notice that the new constraint set {x ∈ RN : ‖Ξ(a, `1,
`2) x‖1 = K} is not a discrete set, but rather a continuous
set of signals of adequately small L1 norm. Therefore notice
thatX ⊂ {x ∈ RN : ‖Ξ(0, 0,Γ ) x‖1 = K}. We can further
re-write the problem (29) in amore amenable form [16] by
defining

x+=̇max(x, 0) (30)

x−=̇max(−x, 0) (31)

z=̇[x+T, x−T]T. (32)

Then we have the identities x = x+ − x− and ‖x‖1 =
x+ + x−. We can now rewrite the problem (29) as

X̃n = Z̃n − Z̃n+N , n = 0, 1, 2, . . . ,N,

Z̃ = min f Tz +
1
2
zTQz

z ≥ 0, [ξ(a, `1, `2)T, ξ(a, `1, `2)T]z = K ,
(33)

where

Q =

(
HTΨ T(ΨGGTΨ T)−1ΨH −HTΨ T(ΨGGTΨ T)−1ΨH

−HTΨ T(ΨGGTΨ T)−1ΨH HTΨ T(ΨGGTΨ T)−1ΨH

)
, (34)

f = [−YT(ΨGGTΨ T)−1ΨH, YT(ΨGGTΨ T)−1ΨH]. (35)

(33) is now a standard QP, which has several efficient
large-scale techniques of solution like active set, conjugate
gradient and interior point methods, of which the last is
generally regarded as the fastest [26].
We perform the demodulation in two stages. In the
first stage we solve the QP in (33) using ξ(a = 0, `1 =
0, `2 = Γ ), corresponding to the full TOA uncertainty
Γ . The result of this stage, X̃ (1), is then used to extract
an estimate Υ̂ of the arrival time via correlation with the
template ξ(0, 0, 0)[n] as follows:

Υ̂ = argmax
n′∈{0,1,...,Γ }

∑
n

|X̃ (1)[n− n′]| ξ(0, 0, 0)[n]. (36)

We then solve the QP in (33) again, using ξ(a = Υ̂ , `1 =
0, `2 = 0), which corresponds to the assumption that
the Υ̂ is exactly correct and there is no residual TOA
uncertainty. The result of this stage, X̃ (2), is not necessarily
in the set X. Hence, we cannot consistently map it back
into an estimate B̂ for the payload. To overcome this
difficulty, we must implement a further simple decision
rule: Once X̃ (2) has been delivered, demodulate the payload
as

B̂k = sign(X̃ (2)[Υ̂ + k Nbaud]), k = 0, 1, . . . , K − 1. (37)

In summary, in lieu of the ML demodulation problem,
which involves maximization over a large discrete set X,
we have formulated a relaxed continuous QPwhich jointly
solves for the best sparsity and timing without explicitly
checking each timing epoch and bit pattern individually.
Since the optimization problem size is ΛX = Γ + (K −
1)Nbaud, and interior point methods can solve a QP with
polynomial complexity of degree-3 [26], the demodulation
complexity is now only O(K 3).

3.3. On the relation between relaxed QP demodulation and
L1-minimization

While we have proposed the QP reconstruction as an
inexpensive suboptimal substitute for ML demodulation,
it is also worthwhile to briefly discuss its relationship with
the classical CS reconstruction method based on L1-norm
minimization.
Recall that the information signal X satisfies the prop-

erty ‖X‖0 ≤ K . Actually the constraint ‖X‖0 ≤ K by
itself allows up to K nonzero samples to be placed at arbi-
trary locationswithin the signal and they canhave arbitrary
amplitudes,while in reality our information signal has con-
siderably more structure. But let us ignore the extra struc-
ture for the time being. Let Ψr=̇ΨH , and recall that since
typically M � N , the system of equalities Y = ΨrX is
highly under-determined, and the classical least squares ap-
proach fails badly. In the CS literature [16,28] the problem
of sparse signal reconstruction from incomplete measure-
ments is instead formulated as a basis pursuit:

X̂ = min ‖x‖1
s.t. Y = Ψrx,

(38)

which is a relaxation of the intractable L0-minimization
problem. The central tenet of CS theory is that, if M ≥
ξ log(ΓX )K , then perfect reconstruction of X with high
probability is assured via (38), provided an appropriate ‘de-
coherent’ measurement ensemble is used. The factor ζ is a
constant that depends on the choice of the ensemble, and
is called the over-sampling factor.
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The practical advantage of formulation (38) is that it can
be re-cast as a linear program (LP) and hence can be solved
very efficiently by interior point methods. Unfortunately,
(38) is known to be very fragile to perturbations of the
measurements, and we have verified that it performs
poorly in even moderate amounts of noise. In light of
this problem, it has been proposed that a regularized
optimization in the form of a LASSO [29], a Dantzig
selector [30], or a penalty function [31] would be a better
choice. For example, the LASSO optimization is written as

X̂ =
min ‖x‖1
s.t. ‖Y − Ψrx‖22 ≤ ε.

(39)

Unfortunately, these regularized optimizations are consid-
erably more complex than the linear program in (38), and
can also suffer from problems of local optima and non-
convergence.
However, as remarked earlier, classic CS reconstruction

as well as regularized approaches like the LASSO exploit
only generic sparsity ‖X‖0 ≤ K . In contrast, in our appli-
cation we know that the signal X has exactly K non-zero
samples and they are spaced exactly Nbaud samples apart.
Hence the knowledge of the timing of the first sample
fixes the locations of all the other samples. In this sense
the sparsity of X is not K but just 1. Moreover, we have
the following pieces of side-information: (i) the non-zero
samples are always from a known fixed alphabet, and (ii)
the measurement noise is not white and its covariance
matrix is known. All these extra pieces of information
mean that we can improve upon a generic LASSO type
reconstruction. Specifically, we can switch the cost and the
constraints of the LASSO problem of (39) and recast it as a
QP, which was precisely what was done in Section 3.2.2.
This establishes the connection of the QP reconstruction to
classical CS reconstruction.
The QP receiver gives a better performance than

techniques like LASSO, owing to the side-information.
Additionally, QP has the important advantage of being
computationally much cheaper and more stable than the
LASSO. Lastly, as we shall demonstrate in Section 5.2, the
performance of the QP receiver is essentially invariant
w.r.t. the number of bits per packetK , provided the number
of front-end correlators,M , scales linearlywith K .

3.4. Choice of measurement ensemble

The choice of the measurement ensemble needs to be
made in such a way thatM can be kept as small as possible
while achieving an acceptable performance. Moreover, the
ensemble should be easy to generate practically and the
demodulation should be insensitive to imperfections in
signal generation.

3.4.1. Canonical nyquist and other orthonormal ensembles
At this point it is worthwhile noting that if we set

M = N , idealize the front-end filter be a low-pass Nyquist
filter of bandwidth fs/2 so that g(t) =

sinπ tfs
π tfs

, and let
the test functions be the canonical functions ψm(t) =
δ(t − mTs), m = 0, 1, . . . ,M − 1, the correlator bank
simply provides uniform time domain Nyquist samples of
the incoming signal i.e. an A/D conversion. The resulting
samples can then be used for a digital MLSE or MF as
the case may be. Due to the Nyquist criterion, we know
that the this time domain signal vector of length N will
already be oversampled by a factor fs/(2Ω) and hence the
samples will not be uncorrelated over the ensemble of
all bursts. For critical sampling, where all signal energy is
captured, we need only 2ΩN/fs uncorrelated samples, and
mover over they need not necessarily be made in the time
domain but could be made in any other domain reached
by a linear orthonormal transformation. Digital MLSE/MF
demodulation can then, in principle, be implemented in
any such domain because of the invariance of the inner
product.
Of course, if we haveM < 2ΩN/fs samples, i.e. under-

sampling, then choice of ensemble does become impor-
tant. This is because if the energy of the signal happens to
fall in the null-space of the ensemble with high probabil-
ity, there is no hope of reconstructing the signal. The clas-
sical approach to reduced rate sampling and compression
is the so called transform method, where we a priori iden-
tify the subspace inwhich the signal energy is concentrated
and then take projections only on basis elements that span
that subspace. This, however precludes a universal receiver.
In particular, in our application this sparsity subspace is
spanned by the signals inX and therefore depends on the
channel, the payload size and the timing uncertainty.

3.4.2. Uniformly decoherent ensembles
This leads us to the central question: Is it possible to

devise universal ensembles that allow reliable reconstru-
ction of any under-sampled sparse signal, provided the
under-sampling is not too severe relative to the sparsity?
Moreover, can they allow a graceful SNR penalty in the
presence of receiver noise? The surprising answer to the
first question is known to be in the affirmative, as was
shown in the ground breaking work of [17,16]. In this
paper, we show through the ML demodulator analysis of
Section 3.1 and extensive simulations in Section 5, that
the answer to the second question also seems to be
affirmative. These ‘universal’ ensembles are known to be
sets of randomly generatednoise-like signals. One example
is that of binary pseudo-noise (PN) signals that transit
independently and equiprobably between levels { +1√

N
, −1√

N
}

at intervals of Ts seconds.
The reason why such noise-like ensembles perform

well is that [17,16] (i) they are uniformly decoherent w.r.t
any family of sparse signals, not just those that are
temporally so (it is notable that the philosophy of choosing
measurement signals having such a decoherence property
is the exact antithesis of the philosophy of transform
coding), and (ii) anyM such signals have a full rankM with
high probability, for everyM ≤ N . In other words, ΨΨ T is
invertiblewith highprobability. In fact, though they are not
necessarily exactly orthonormal, they are asymptotically
so, i.e. ΨΨ T → IM as N ↑ ∞.
In order to reject the out-of-band noise we must use a

non-trivial front-end band-pass filter g(t), and hence the
apparent measurement ensemble matrix becomes ΨG. If
we idealize g(t) to be an ideal band-pass Nyquist filter of



A. Oka, L. Lampe / Physical Communication 2 (2009) 248–264 257
bandwidthΩ , we are assured thatGGT = I . Furthermore, if
we pretend that ΨΨ T = I also holds, we have ΨGGTΨ T =
I . The M ≤ 2NΩ

fs
measurements made by the CS front end

are roughly uncorrelated due to the decoherence property,
and hence the under sampling factor Mfs2NΩ is also the frac-
tion of the signal energy they will capture (Parseval’s the-
orem). This will be true no matter which M measurement
signals we choose from the underlying ensemble. This im-
plies that reliable demodulation of the UWB–IR signal is
possible only after paying an under-sampling penalty of
at least 10 log10

2ΩN
Mfs
dB in SNR (which we will call the

‘energy-loss penalty’), and this penaltywill (on an average)
decrease monotonically and vanish as M ↑ N 2Ωfs . What is
significant is that since a CS receiver exploits the sparsity
of the signal, we do not pay any extra penalty on top of this
unavoidable energy-loss penalty. Another pointworth not-
ing is that in a hypothetical noiseless case (with SNRbit =
∞), error-free demodulation is possible with M as small
as 4–8 (depending on the pulse and channel response)
which agrees with classical CS results [17,16]. In con-
trast, when doing direct temporal under-sampling with any
under-sampling factor Mfs2NΩ < 1, there typically is a catas-
trophic loss in performance, farmore than 10 log10

2ΩN
Mfs
dB,

and there is no graceful degradation. Similarly, error-free
demodulation is impossible even in the noiseless case.
Although in practice ΨGGTΨ T is not exactly an identity

due to a non-deal filter g(t) and a finite N , we will never-
theless see in extensive simulation results in Section 5 that
the above described robustness to under-sampling does
hold in all practical settings irrespective of the timing un-
certainty, the size of payload and the amount of ISI.

3.4.3. Fourier and square wave ensembles
Actually we do not need a strictly universal measure-

ment ensemble since we know that our signal sparsity is
always in the temporal domain. It is known [32,28] that
the Fourier ensemble, M sinusoids of random frequen-
cies drawn uniformly from the band [fc − Ω

2 , fc +
Ω

2 ],
is maximally decoherent with respect to such signals (the
renowned Heisenberg uncertainty principle), and would
be the optimal ensemble for our signals in a noiseless set-
ting. However, since we also need to deal with noise, the
optimality in terms of BER performance is not guaran-
teed. Our simulations indicate that a Fourier ensemblewith
proper windowing and frequencies selected deterministi-
cally and uniformly from the signal band [fc − Ω

2 , fc +
Ω

2 ]

performs only slightly worse than the PN-ensemble, pre-
sumably because of the point-like support of the test
functions in the frequency domain. Note that the Fourier
ensemble may still be desirable from the point of view of
robustness to narrow-band interference, an issue which
we have discussed elsewhere [33]. Finally, the ensemble of
square waves of amplitude 1/

√
N and frequencies selected

deterministically and uniformly from the signal band is
also seen to perform as well as the PN ensemble. From a
practical perspective the square wave and Fourier ensem-
bles are perhaps more attractive than the PN ensemble be-
cause we do not need any pseudo-random generators.
3.4.4. Robustness to non-ideal test functions
Another important robustness property inherent to

compressed sensing is that the generated test functions
do not need to have an ideal waveform. For example the
PN ensemble or the square wave ensemble need not have
rectangular level transitions. Imperfections like ringing
and non-ideal rise time are well-tolerated, provided we
know these effects in advance so that we can compensate
for them by choosing an appropriately modified Ψ in the
reconstruction algorithm. Evidence for this property will
be presented in Section 5.4.

4. Channel identification

In the discussion so far we have assumed that the total
system impulse response h(·) is available to the receiver.
We will now describe a technique to estimate the chan-
nel response via a stochastic recursive approximation [34,
35] of the Expectation Maximization (EM) algorithm [36].
It is noteworthy that our estimator uses only the obser-
vations Y and the demodulated virtual information signal
X̂(B̂, Υ̂ ), and hence does not need any extra sensing hard-
ware. Moreover, due to its simplicity, it can be easily ac-
commodated in the DSP back-end without any significant
increase in complexity.
Let ĥ ∈ RΛh denote the current estimate of the total

channel impulse response. Let Ĥ be its Toeplitz matrix
representation as in Box I. We will rewrite P(Y |x) from
Eq. (21) as P(Y |x, h), tomake explicit its dependence of the
total channel response h. Let ε[n] be a suitably chosen time
dependent step size, X̂ = X̂(B̂, Υ̂ ) the information signal
estimated by the QP algorithm by demodulating the burst,
and e = [e0, e1, . . . , eM−1]T the estimated measurement
error given by

e .= Y − Ψ Ĥ X̂ . (40)

LetΨm,b:b+Λh−1 denote the elements on them-th row ofΨ ,
from column b through b+Λh−1.With these conventions
in place, we implement the following update upon the
arrival of each burst:

ĥ ←− ĥ+ ε[n]
∂ log P(Y |X̂, h)

∂h

∣∣∣∣∣
h=ĥ

= ĥ+ ε[n]
1
σ 2W

M−1∑
m=0

em
ΓX−1∑
b=0

X̂bΨ Tm,b:b+Λh−1. (41)

The starting point of this algorithm can be simply cho-
sen to be an all-zero response. Notice that we are updat-
ing the response based on bits X̂ , which are demodulated
under the assumption that the current estimate ĥ is the
correct one. Therefore we have a totally blind algorithm.
We will demonstrate with simulations in Section 5.5 that,
in spite of this blindness, it acquires and tracks the total
channel response very robustly. Of course we can also ac-
commodate the case of training bits by simply replacing
X̂ by the true bits X in the recursion (41), which typically
improves the convergence speed and steady state char-
acteristic of the estimator. However our simulations sug-
gest that such training bits are not necessary in typical
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practical scenarios. Note that while the proposed estima-
tor has similarities to other algorithms like decision feed-
back equalizers [27], its innovation is based not directly on
the fully sampled received signal R but on under-sampled
linear functionals Y thereof, and is made on a per-burst
rather than per-symbol basis. The analysis of the almost
sure convergence of such stochastic EM algorithms based
on averaged gradient methods has been investigated in lit-
erature [37–39], and will not be pursued here.

5. Simulations

In this section we will describe the results of simu-
lations that investigate the performance of the proposed
receiver under practical conditions. Let ‘CS-ML’ denote a
receiver having the CS analog front-end and ML demod-
ulation in the DSP back-end, as described in Section 3.1.
Similarly, let ‘CS-QP’ denote a receiver having the CS
analog front-end and a QP demodulation in the DSP back-
end, as described in Section 3.2. The performance of CS-
ML is always an achievable lower bound with which we
will compare the performance of the practical CS-QP re-
ceiver. Let ‘Genie-MF’ denote a receiver implementing
a perfectly timed matched filter in an ISI-free environ-
ment. Clearly Genie-MF performance represents an ulti-
mate lower bound, but it is not necessarily achievable
when there is ISI, timing uncertainty or under-sampling.
Our discussion is divided into four parts. First, in Sec-

tion 5.1, we will show an example of QP reconstruction
of a transmitted burst. Then, in Section 5.2, we will in-
vestigate the effect of incomplete measurements, timing
error and burst length on the BER of CS-ML and CS-QP re-
ceivers. In Section 5.3 we will demonstrate the robustness
of CS-ML and CS-QP receivers to channelsmodels and their
random realizations, and in Section 5.4 we will discuss ro-
bustness to variations in the shape of the test functions.
In Sections 5.1–5.4 the total system impulse response h[·]
is assumed to be perfectly known. In Section 5.5 we will
demonstrate the performance of the blind incremental al-
gorithm that identifies the total system response.
All simulations were performed with fs = 10 GHz and

the IR pulse described in Section 2.1 (Fig. 2). The baud
rate is fbaud = 500 MBaud. Hence note that there is
significant ISI lasting up-to ∼25–100 symbols. N ranged
from 300 to 1000 samples, depending on the channel type
and realization. In all cases (except a part of Section 5.4)
the measurement ensemble used was the square wave
ensemble described in Section 3.4.3. The front-end filter
g(t) was chosen to be an ideal bandpass Nyquist-filter
response truncated to ± 5

Ω
s, and delayed by 5

Ω
seconds

for causality. No repetition code was used in any of the
simulations (Nf = 1). In the following, the quantity

Mfs
2αΩN

will be called the under-sampling factor, where α is a
constant. For an ideally band-limited signal we would
set α = 1.0 and specialize to the case discussed in
Sections 3.4.1 and 3.4.2. However, in practice the pulse
is not strictly band-limited (see Fig. 2) and the Nyquist
theorem is not directly applicable. Henceweneed to define
a practical measure of bandwidth by accounting for the
‘roll-off’ in the signal spectrum. This is accomplished by α,
so that (α − 1)/α is analogous to the roll-off factor used
in communications literature. We have empirically found
that, for the chosen pulse, a fixed value α = 1.5 ensures
that Mfs

2αΩN = 1.0 achieves a performance indistinguishable
form MLSE under Nyquist rate sampling. Hence the case
Mfs
2αΩN = 1.0 will be called adequate sampling, and the case
Mfs
2αΩN < 1.0 will be called under-sampling.

5.1. An example of QP reconstruction

Consider the illustration in the panel of plots in Fig. 3,
which shows the various signals in the processing stream
of the receiver. The simulation was done under the follow-
ing conditions: SNRbit = 10 dB, a CM1 channel, N = 599,
ΛX = 151,M = 363,Λh = 449,Γ = 10 samples (γ = 1.0
ns), K = 8 bits per burst. The first (top) sub-plot shows
the virtual information signal X[n], that has only K non-
zero sample of amplitudes B, with a random arrival time in
the range 0–10 samples. The second sub-plot shows the net
impulse response of the channel and the pulse,ψ[n]?hc[n].
The third sub-plot shows the noiseless signal U[n] imping-
ing on the receiver antenna after passing through the lin-
ear channel ψ[n] ? hc[n], while the fourth sub-plot shows
the noise contaminated signal R[n] after the front-end fil-
ter. The final sub-plot displays the reconstruction X̃ made
by the QP optimization. Notice that the CM1 channel re-
alization has a very wide temporal dispersion ∼40 ns, yet
the reconstruction X̂k correctly estimates the location and
sign of the impulses in X . As explained in Section 3.2, X̃ is
not necessarily in the setX, and hence we must use a fur-
ther hard decision rule (cf. Section 3.2) to declare the bit
estimates B̂.

5.2. Effect of under-sampling, timing uncertainty and multi-
ple interfering symbols

Now consider Fig. 4 which shows, again for a fixed
CM1 channel, the effect of under-sampling (viaM), timing
uncertainty (via Γ ) and the burst length K . Fig. 4(a), (b)
correspond to Mfs

2αΩN = 1.0, 0.25 under ideal timingΓ = 0,
and Fig. 4(c), (d) correspond to Mfs

2αΩN = 1.0, 0.25 under
uncertain timing Γ = 10. In each sub-figure we simulate
CS-QP with K = 1, 2, 4, 8, 16 bits per burst and plot it
with dashed lines with circle markers. We plot with solid
blue lines the analytical performance of CS-ML given by
Eq. (26), for K = 1, 2, 4, 8. Note that we do not give CS-
ML performance for K = 16 because the calculation seems
intractable. Finallywe also plot theGenie-MF curve (dotted
black line) for reference. The figure is very informative, and
we can make several interesting observations:

(i) We see that with ideal timing Γ = 0 and various
amounts of under-sampling in sub-plots (a), (b), the
CS-QP receiver performance is very close to CS-ML, for
all K . This demonstrates that we can indeed recover
the performance of an ideal coherent receiverwith the
proposed architecture. Furthermore with adequate
sampling, all the CS-ML and CS-QP curves for various
K coincide with the Genie-MF curve, implying that
there is negligible loss due to the ISI. Therefore there
is no inherent justification for avoiding ISI by using a
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Fig. 3. Various signals in the processing stream: the first (top) sub-plot is the virtual information signal X[n], the second sub-plot is the response of the
pulse and the channel, ψ[n] ? hc [n], the third-subplot is the signal impinging on the antenna, U[n], the fourth sub-plot is the signal after the front-end
filter, R[n], and the final sub-plot is the reconstructed information signal X̃[n]. fbaud = 500 MBaud, SNRbit = 10 dB, CM1 channel, N = 599, ΛX = 151,
M = 363,Λh = 449, Γ = 10 samples (γ = 1.0 ns), K = 8 bits per burst.
low baud rate, because it does not appreciably affect
the distance spectrum of the modulation. With under-
sampling Mfs

2αΩN = 0.25, the curves of CS-QP and
CS-ML for all K stay bunched together and have a
consistent penalty of about 6.0 dB. w.r.t. the adequate
sampling case, as predicted in Section 3.4.2.

(ii) Even with non-ideal timing Γ = 10, the CS-QP re-
ceiver performance is reasonably close to CS-ML, for
each K respectively. The loss in performance with ad-
equate sampling is less than one dB, while it is 1–2.5
dB with under-sampling Mfs

2αΩN = 0.25. Note that now
even in the adequate sampling case, the K = 1 curve
of CS-ML suffers a penalty of ∼7.0 dB w.r.t. the cor-
responding curve of ideal timing from sub-plot (a).
While this penalty is big, it is not catastrophic like
the rake receiver which suffers a loss of 20 dB or so
in performance. (This can be inferred from the auto-
correlation of h(t).) More interestingly, as the number
of bits in a burst K increases, the CS-ML curves start
paring the loss and approach the ideal timing curve.
This makes sense heuristically, because as we have
multiple bits in a burst we can acquire timing ‘on the
fly’. Asymptotically the timing acquisition will obvi-
ously become perfect. What is surprising is that with
only K = 8–16 pulseswe can practically eliminate the
timing penalty.

(iii) Finally notice that in sub-plot (d), where we have
both under-sampling as well as non-ideal timing, the
penalty suffered by the CS-ML receiver is approxi-
mately the additive composition of the two individual
penalties, and this is seen to consistently hold for all
K . The CS-QP performance is also seen to mimic this
behavior.

In summary, with CS-ML demodulation, the effects of
under-sampling and timing uncertainty are approximately
de-coupled. The loss due to under-sampling is consistently
10 log10

Mfs
2αΩN dB, and unavoidable in principle. For lossless

sampling we need only M = 2αΩ
fs
N projections, rather

than N samples as in direct A/D. Thus we are inherently
exploiting the bandpass nature of the signal. Timing
uncertainty can be combated by using sufficiently many
bits per burst, and the associated penalty can thus be
practically eliminated. All these observations hold, with
minor caveats, for the tractable CS-QP receiver too.
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Fig. 4. Effect of under-sampling, timing uncertainty and burst length on the receiver performance. Sub-plots (a),(b) correspond to Mfs
2αΩN = 1.0, 0.25 under

Γ = 0, and sub-plots (c),(d) correspond to Mfs
2αΩN = 1.0, 0.25 under Γ = 10. In each sub-figure we simulate CS-QP with K = 1, 2, 4, 8, 16 bits per burst

and plot it with dashed lines with circle markers. We plot with solid blue lines the analytical performance of CS-ML given by Eq. (26), for K = 1, 2, 4, 8.
The dotted line is the Genie-MF performance in an ISI free regime.
5.3. Robustness to stochasticity of channel realizations

In the preceding discussion, we used one fixed realiza-
tion from the CM1 channel model. Now we will study the
effect of the stochasticity of the channel realizations and
variations in the channel models. In Fig. 5(a)–(d) we draw
six random realizations from each model CM1 through
CM4, and respectively plot the BER-vs-SNRbit characteris-
tic of the various receivers CS-QP, CS-ML and Genie-MF. In
all cases we use a constant number of projections M = 128
which corresponds to a significant amount of under sam-
pling ranging from Mfs

2αΩN = 0.15 to 0.25, depending on the
channel model and realization. The timing uncertainty is
Γ = 10 samples and the number of bits in a burst is K = 8.
First notice that, for every channel model, the CS-ML

receiver performance does not vary by more than 2–3
dB no matter what the realization of the channel is. This
demonstrates the universality of the ensemble used in the
analog front-end even in the under-sampled case. (The
reader will recall that the ensemble is not tuned to any
particular channel model or realization.) Obviously if we
used adequate sampling (large enough M), all the curves
would bunch together with no appreciable variation.
Secondly, observe that similar remarks continue to apply
to the CS-QP performance too. The stochastic spread in the
curves is slightly more, say an additional dB, but otherwise
it mimics the performance of CS-ML. The loss of CS-QP
relative to CS-ML is the result of the sub-optimality of CS-
QP and is in line with the loss observed in Fig. 4(d). Finally,
the Genie-MF performance obviously is invariant w.r.t. the
channel model and realization, and is only an optimistic
(unachievable) benchmark. We can thus conclude that the
proposed receiver is indeed very robust to various channel
models and the stochasticity of their realizations.

5.4. Robustness to shape of test functions

To investigate the robustness of the CS-QP receiver
to test functions of different shapes, we will now
compare the performance of the receiver with the Square-
wave ensemble as well as a Hanning-Windowed Fourier
ensemble, under identical conditions of test-frequencies,
under-sampling, timing, and a fixed CM1 channel impulse
response. Fig. 6 shows that the performance of the CS-
QP receiver under the Fourier ensemble is only slightly
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Fig. 5. Robustness to stochastic channel realizations. Sub-plots (a) through (d) correspond to channelmodels CM1 through CM4 respectively. Six stochastic
realizations are derived from each model. For each realization the BER vs. SNRbit characteristic of CS-ML and CS-QP is provided. The Genie-MF curve is also
shown in each sub-plot. In all casesM = 128,Γ = 10 and K = 8.
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Fig. 6. Performance of the CS-QP receiverwith Fourier and Square-wave ensembles under identical conditions of test-frequencies and a fixed CM1 channel
impulse response. (a) Under-sampling ( Mfs2αΩN = 0.25) and poor timing (Γ = 10), and (b)Adequate sampling (

Mfs
2αΩN = 1.0) and perfect timing (Γ = 0).
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Fig. 7. Performance of blind incremental channel acquisition starting from an all zero response. (a) Mean Squared Error (MSE), in dB, of the estimated
response relative to the true response, 20 log10

‖h−ĥ‖2
‖h‖2

. (b) BER of the CS-QP receiver using the latest estimate of the channel, ĥ. Three values of SNRbit
have been simulated, namely 10, 13, 16 dB. Horizontal red dashed lines are the corresponding BERs of the CS-QP receiver operating under ideal channel
knowledge h.M = 128,Γ = 10, K = 8. The true channel realization, h, is from the CM1 model.
worse (about a dB) than the Square-wave ensemble for
conditions of ideal timing and adequate sampling, and
for the case of non-ideal timing and under-sampling the
difference is even smaller. This suggests that the shape of
the test functions is not too critical as long they satisfy the
decoherence property (which, in this case, means that they
need to sufficiently sparse in the frequency domain).

5.5. Channel acquisition and tracking

Finally, we will investigate the performance of the
incremental channel estimator proposed in Section 5.5.
Fig. 7(a) illustrates the Mean Squared Error (MSE) of the
estimator under a realization from the CM1model. Fig. 7(b)
shows the corresponding BER of the CS-QP receiver using
the latest estimate of the channel. (We calculate the
‘instantaneous’ BER by performing a temporal averaging
of the bit errors using an adequate IIR filter.) We also
plot, with a dashed horizontal line, the BER of the CS-QP
receiver operating under ideal channel knowledge, which
was calculated by a separate simulation.
The parameters of the simulation are exactly those used

in Section 5.3, namely M = 128,Γ = 10, K = 8.
We simulate three values of SNRbit namely 10, 13, 16 dB
which are at the very low end of the operating range.
(This is the most vulnerable region, where the error
rates are significant even with ideal channel knowledge.)
In each case we start the estimator from an all-zeros
initial value ĥ. We use the step-size schedule ε[n] =
max

(
10−2, 10.0√n

)
, n = 1, 2, . . ., where n is the burst

number. This schedule allows us to acquire the channel
rapidly, and then settle into a steady state with a small
MSE error floor. We would like to emphasize that we have
simulated a fully blind algorithm where the bit decisions
are supplied by the CS-QP demodulator of Section 3.2.2.
From the MSE and BER results we conclude that the
estimator acquires and tracks blindly and robustly even
at low SNRs. We get qualitatively similar results with
multiple realizations and with other models CM2-CM4,
though we do not display them here for brevity. In every
case we observe that the significant part of the acquisition
is accomplished in less than a thousand bursts. The steady
state MSE (which depends on the channel model and
realization) is sufficiently low so that there is negligible
degradation in the BER relative to the case of ideal channel
knowledge.
Note that when considering any channel identification

algorithm, it is reasonable to separately consider the
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issues of acquisition and tracking. Acquisition refers to
the process of coarsely identifying the channel response
from a state of total ignorance. Tracking refers to tuning
the estimate in response to small fluctuations of the true
channel. Acquisition is typically performed sporadically,
and hence it is not necessary to have an acquisition time
constant of the order of the channel coherence time. For
example, with reference to Fig. 7, if the burst rate is 104
bursts per second, we have an acquisition time of about
100ms. The tracking time constant, on the other hand, does
need to be equal to or smaller than the channel coherence
time. Since in a steady state the step size is 10−2, the
estimator can track channel variations over intervals of
around 102 bursts. Hence, with a burst rate 104 bursts
per second, the tracking time constant is 10−4 × 102 s,
implying that it can track channels with a coherence time
of 10ms or larger. Thiswould be adequate inmost practical
scenarios. If the channel is expected to vary with a time
constant smaller than 10ms, or an acquisition time smaller
than 100 ms is deemed necessary, we can implement
one or both of the following options: (i) Increase the
burst rate by a commensurate amount. (ii) Use training
symbols, which reduce the stochasticity of the gradient
and hence allow us to use a larger ε. Finally, also recall
that we allow the TOA variations to be much faster (orders
of magnitude faster) that 10 ms, since they need not be
tracked by the estimator—the TOA is directly inferred by
the QP demodulator.

6. Concluding remarks

We have proposed a novel receiver for UWB Impulse
Radio transmission based on the principle of Compressed
Sensing (CS). It is very robust to timing uncertainty, ISI
and under-sampling, and gives a performance that is con-
sistently close to that of an optimal (ML) receiver. It al-
lows the use of baud-rates comparable to the Nyquist rate,
and hence large network loading factors. The demodula-
tionprocedure is insensitive to thenature of themulti-path
channel (CM1, CM2etc.). Finally, although the proposed re-
ceiver needs to know the channel response in performing
the demodulation of the payload, it also has a built-in abil-
ity to blindly identify it based on the CSmeasurements. The
receiver is thus ideally suited to low-power applications
with bursty traffic, like wireless sensor networks.
While in this paper we have only considered the prob-

lem of single-user UWB–IR demodulation, the proposed
receiver architecture could also be used for demodulat-
ing multiple non-cooperating users. This would be based
on the property that when the incoming signal is a mix-
ture of ‘signature’ waveforms from several transmitters,
out of which the CS-QP is matched to one, the receiver re-
constructs the data from the matched transmitter while
treating the others as ‘noise’ and hence suppressing them.
However the non-Gaussianness and temporal structure of
the interference may significantly affect this rejection ca-
pability, and hence this scenario needs to be studied in
some detail before its practicality can be judged. Similarly
the possibilities of joint detection or successive interfer-
ence cancelation also need to be revisited in the CS setting.
On a related note, in this work we have not addressed the
important issue of narrow-band interference (NBI).We be-
lieve the CS-QP receiver can be made robust to NBI by the
simple expedient of (a) using frequency selective test func-
tions in the correlators, and (b) implementing a simple dig-
ital notching mechanism,whereinwe identify and drop the
few NBI corrupted measurements. We hope to accomplish
this in future research.
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