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Abstract—Distributed Internet-of-Things (IoT) applications
operate in a dynamic environment, and therefore need to adapt in
response to unexpected failures and changes in the operating con-
ditions. Making IoT applications adaptive is challenging due to
two reasons. First, an IoT application comprises multiple service
components, each with a different performance and dependability
requirement. Second, an application can be deployed in vastly
different runtime infrastructures, each varying in the availability
of resources, and sources of faults. Hence, an adaptivity solution
must be both application-aware and infrastructure-agnostic.

In this paper, we present a middleware system called Immuno-
Plane that transparently provides adaptivity to IoT applications.
ImmunoPlane provides a domain-specific language for users
to declaratively state application-specific requirements, and it
produces an adaptive deployment plan based on the given
infrastructure and the user-provided application requirements.
We show that ImmunoPlane can satisfy application requirements
such as availability, throughput, and latency, under both failures
and network congestion, in three different infrastructures.

Index Terms—Internet of Things, Adaptive systems, Middle-
ware, Failure Tolerance, Domain-specific Language

I. INTRODUCTION

Distributed Internet-of-Things (IoT) applications operate

in a dynamic environment where unpredictable events such

as device failures, network outages, and abrupt spikes in

resource consumption can degrade their performance and

correctness [1]. Making IoT applications adaptive to such dy-

namic operating conditions while satisfying user requirements,

is critical to ensuring their utility. In this work, we focus on

two important adaptivity goals for distributed IoT applications

– performance management (coping with fluctuations in re-

sources), and fault tolerance (coping with failures).

Ensuring adaptivity in IoT applications is challenging due

to two reasons. First, IoT applications can have different

performance and dependability requirements. Second, an IoT

application can be deployed in different runtime infrastructures

[2]. For example, consider a “Home Security” application used

for surveillance of residences or storefronts (§II). This is a

video analytics application that includes a real-time processing
pipeline for live object detection and end-user notification, and

a batch processing pipeline for video encoding and storage.

This application has different local requirements (i.e., perfor-

mance and dependability requirements) for each processing

pipeline. For the live object detection task, it must deliver low

end-to-end latency and high availability. For the video storage

task, it must preserve the integrity of the stored footage.

To satisfy the above requirements, we must determine the

appropriate deployment plan, which involves the placement
of service components, and the feedback control loop mech-

anisms (i.e., monitoring and invoking adaptive actions) for

coping with failures and resource fluctuations. For each given

infrastructure, we need to adjust the deployment plan based

on the available resources and the location of faults that can

occur in that infrastructure. This is the focus of our work.

Existing systems that potentially provide adaptivity in the

IoT domain have two limitations. They either assume a global

requirement across all service components (thus lacking in

application-awareness), or require the user to manually set up

the monitoring and adaptation mechanisms (thus lacking in

infrastructure-independence). For example, stream processing

frameworks (SPFs) such as Apache Flink [3] and Spark [4]

provide failure recovery and dynamic scaling. Both frame-

works, however, target a specific class of applications, and do

not support fine-tuning for local requirements, which is needed

for IoT applications such as our Home Security example.

On the other hand, coordination systems such as CHARIOT

[5] and PCL (Program Control Language) [6] allow users

to customize the deployment plan through imperative APIs,

which explicitly tells the system to monitor a specific resource

in a given infrastructure, and update/replicate a specific com-

ponent. However, due to the imperative design, the user must

write a different deployment plan for each new infrastructure.

Our goal is to design an adaptivity solution that works

across different IoT infrastructures with minimal user effort,

while also providing a user the ability to customize the solution

for each target application. To this end, we present a middle-

ware system called ImmunoPlane that provides adaptivity to

IoT applications in an infrastructure-agnostic manner.

ImmunoPlane has two innovations to achieve its goal. First,

ImmunoPlane provides a domain-specific language (DSL) for

a user to declare component-specific requirements, allowing

the middleware to be application-aware. Second, Immuno-
Plane implements an algorithm that produces a concrete

adaptive deployment plan based on these requirements, while

taking into account the resource characteristics of the target

infrastructure. To the best of our knowledge, ImmunoPlane is
the first IoT middleware to provide adaptivity while achieving
both application-awareness and infrastructure-independence,
and requiring minimal user effort.
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Contributions. Our work makes the following contributions.

• We propose a DSL that enables developers to express

application-level performance and dependability require-

ments in a declarative fashion (§IV-B). This DSL allows

users to declare component-specific local requirements

without specifying the adaptation conditions and actions.

• We develop an algorithm to compute a concrete adap-
tive deployment plan, consisting of the placement of

service components and a set of specialized adaptation
components (§IV-C). Based on user-provided application

requirements (expressed in the DSL), our algorithm con-

structs an application-specific search heuristic, which is

then used to efficiently guide the search for a placement

that satisfies the custom user requirements.

• We implement ImmunoPlane, a distributed middleware

that delivers the deployment plan produced by the above

procedure. ImmunoPlane is built on our prior work,

OneOS [7], and has been publicly released 1.

• We evaluated ImmunoPlane across 14 different bench-

mark applications, taken from four papers (Yahoo Stream-

ing Benchmark [8], RIoTBench [9], DSPBench [10],

and ThingsJS [11]). We find that ImmunoPlane delivers

three-nines (99.9%) availability (conservatively assuming

a device failure every 28 minutes), maintains similar 99th

percentile latency as Flink at 15, 000 events/sec under

congestion in a single route, and recovers from device

failures within 2 seconds, on par with existing SPFs (§V).

ImmunoPlane transparently provides adaptivity in three

different infrastructures, with minimal user effort.

II. MOTIVATING EXAMPLE

We highlight the design complexities encountered by a

user while developing an adaptive IoT application with an

example of a Home Security application from prior work [7].

We use this application as a running example in this paper

to describe how our proposed solution, ImmunoPlane, helps a

user address these design challenges. The application setup

that we describe is a simplified representation of popular

video analytics applications such as those built on Microsoft

Rocket [12]. The application has three high-level objectives:

1 analyze a live video stream from a camera to detect events

of interest – e.g., “a person moving” – and notify the end-user,

2 store the video stream on persistent storage, and 3 provide

a live feed of the video stream for viewing by the end-user. We

assume that the application is written in JavaScript (Node.js).
The Home Security application comprises a set of commu-

nicating services that can be distributed over the edge and

the cloud. Each of these services, or application components,

consumes data from an upstream component, processes the

data and then passes it on to a downstream component.

The application can be expressed as a directed acyclic graph

(DAG), as shown in Fig. 1. The nodes in the DAG represent

the components, while the directed edges represent the flow

of data from one component to another.

1Available at: https://github.com/DependableSystemsLab/OneOS/tree/
ImmunoPlane

Fig. 1: Dataflow diagram representing the “Home Security” applica-
tion example. Each node represents an individual service component,
and edges represent the data flow from one service to another.

We briefly describe the individual components below:

• Streamer reads the input from a physical video device

(e.g., a camera) and publishes the video frames in real

time to three other components via three edges.

• Detector reads the frames from Streamer, performs

image recognition tasks, and publishes messages about

events of interest (e.g., “a person moving”).

• Notifier is a messaging service that receives event data

from the Detector, and sends a message to the end-user

if any changes are detected.

• Recorder reads the frames from Streamer, and stores

the frames as one-minute long video files on a disk.

• Viewer is a web service that reads the video frames from

Streamer, and provides a live feed through the web.

Component-specific Local Requirements. In the Home
Security application, the processing pipelines along different

edges have different performance and dependability require-
ments, depending on the purpose and the processing pattern of

each component. Streamer continuously sends video frames

in real time to Detector (along edge E1), as long as the

video device is on. Detector and Notifier (along edges

E1 and E4) are continuous stream-processing services, and

are expected to be highly available and have low latency
as they serve a critical functionality in real-time (i.e., 1

“secure the premises”). On the other hand, the Recorder
is a batch-processing service that saves a video file after

every 1-minute worth of video frames are buffered. For the

Recorder, integrity is more important than availability, i.e.,

it is acceptable for the Recorder to not operate continuously,

but it is not acceptable to lose the video frames it processes

(as they may be security critical). Finally, the Viewer is a web

server, and has neither availability nor integrity requirements.

As shown in our example, an IoT application contains

multiple processing pipelines and each has its own local
requirement. This is in contrast to stream-processing or parallel

computing applications, which have end-to-end uniform global
requirements over the entire processing pipeline. An IoT solu-

tion must, therefore, take into account the various component-

specific performance and dependability requirements when it

provides adaptivity to a given application.

Support for Diverse Runtime Infrastructures. Typically,
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an application like the Home Security application would

be deployed in different deployment environments such as

residences, storefronts, or offices. For each environment, we

need a different adaptive deployment plan, because the runtime

infrastructure (i.e., the availability and connectivity of compute

resources) is much more diverse in IoT environments than

in cloud or enterprise environments. By adaptive deployment
plan, we mean the appropriate placement of components and

the dynamic application of adaptive actions. For each given

infrastructure, the application components must be distributed

strategically to deliver the performance required, and different

adaptive actions might be required depending on the sources

of fault present. For example, component migration might be

used to deal with battery draining to low levels, and component

parallelization might be used to deal with network congestion.

For example, consider two different infrastructures (Fig. 2).

Infrastructure A has three edge devices and a cloud server.

Edge Device 1 and 2 are configured to host three components,

Streamer, Detector, and Recorder. Edge Device 3 is con-

figured to provide redundancy for Detector and Recorder,

so that in case Edge Device 2 fails, it transparently takes over

to ensure that Detector is available. Streamer sends the

video frames to both replicas of Recorder running on Edge

Devices 2 and 3, to ensure the integrity of the recordings

through redundant copies. Notifier and Viewer are hosted

on Cloud Device 1 without any redundancies, relying instead

on the reliability guarantees provided by the cloud.

However, this particular deployment plan does not transfer

directly to Infrastructure B, which has a single edge device

and three cloud devices. In Infrastructure B, since there is no

redundant edge device, Edge Device 1 hosts both Streamer
and Detector to avoid streaming video to the cloud. There-

fore, to satisfy the availability and integrity requirements of the

Notifier and Recorder components, the cloud devices are

inevitably used. To meet latency requirements while sending

data over the edge-cloud link, a cloud-based message broker is

used to avoid creating multiple edge-cloud device connections.

The differences between runtime infrastructures require

significant changes to the deployment plan, which can be

quite cumbersome. Therefore, an adaptivity solution for IoT

applications must allow users to be infrastructure-agnostic, and

not ask them to develop a new plan for each new infrastructure.

III. CHALLENGES

What makes it difficult to build an adaptivity solution
for IoT applications that is both infrastructure-agnostic and
application-aware? There are two broad challenges: 1 the

diversity of application architectures, and 2 the heterogeneity

of the IoT environment. We detail them below.

A. IoT Application Diversity

IoT applications are very weakly classified, likely because

the scope of the IoT is quite broad and general. This is

in contrast to well-defined paradigms such as stream pro-

cessing” [13] or “serverless computing” [14]. There is an

extremely diverse set of IoT applications, ranging from smart

Fig. 2: Different deployment plans employed in two different in-
frastructures A and B for the same “Home Security” application.
Infrastructure A makes use of redundant edge devices, whereas
Infrastructure B relies on the higher reliability of cloud devices.

farms, content-delivery systems, to federated learning sys-

tems [15]. The range of applications precludes well-defined

systems architecture, and hence we can make few assumptions.

This diversity in application architecture makes it difficult

to develop a general adaptation solution, because (1) an

adaptation technique that works for one application may not

work well for another, and (2) different applications have

different performance and reliability requirements. We outline

below the specific challenges we face in this regard.

• (C1) User Requirements. Different IoT applications

have different requirements. Real-time video analytics

applications might prioritize availability at the cost of

detection accuracy [16], whereas ETL (extract-transform-

load) applications might prioritize throughput and in-

tegrity over latency and availability. Thus, not only do

applications have different requirements, the metrics that

applications prioritize can be different from each another.

• (C2) Dataflow Topologies. There is no standard way

to organize the computation pipeline of an IoT appli-

cation. Our “Home Security” example contains three

concurrent and independent pipelines, map-reduce ap-

plications contain parallel and synchronized pipelines,

and event-processing applications contain concurrent and

asynchronous pipelines. Without knowing what parts can

be parallelized or what parts need to be synchronized, it

is difficult to adapt for performance.

• (C3) Data Types IoT applications handle various types

of data, ranging from tuples, JSON dictionaries, video

segments, to raw byte arrays. Knowing a priori what type

of data an application processes is necessary for applying

adaptation techniques over the data stream. For example,

we need to know a priori how to index a message to

dynamically partition the stream for parallel processing.

• (C4) Statefulness. IoT applications can be stateful or

stateless. In the case of stateful applications, the state can

be centralized or distributed. The adaptation technique we

can employ depends on the above. For example, we can

easily scale a stateless application component horizon-

tally by running multiple instances. However, we cannot

do the same for a stateful application component, unless

we synchronize the state across the replica components.
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B. IoT Environment Heterogeneity

The IoT ecosystem encompasses various types of devices,

each serving a different purpose, connected at different parts

of the global network. Thus, the availability of physical

resources such as processor, memory, and disk, as well as the

network connectivity greatly varies across the devices [17]. As

multiple resource and connectivity constraints need to be taken

into account for different components, it becomes difficult to

determine the optimal placement of computations (C5). For

example, adding redundant components in a homogeneous

network is straightforward, as they would run similarly across

all the devices. In a heterogeneous network, however, we need

to determine whether the redundant components would deliver

the same level of performance, given that the host device has

different hardware and connectivity. We have to tackle the

additional complexity that arises from heterogeneity.

IV. APPROACH

We design and implement ImmunoPlane, a distributed mid-

dleware system that provides adaptivity to various classes

of IoT applications, without requiring the user to make

infrastructure-specific choices such as component configura-

tion and placement. ImmunoPlane is a middleware between

the application and the runtime infrastructure, and effectively

provides an abstract adaptivity layer in which the configuration

and placement decisions are made transparently.

A. System Overview

We first provide an overview of ImmunoPlane by describing

the workflow from the perspective of a user. Let us assume that

the user wants to deploy an IoT application such as the Home

Security application. To gain adaptivity via ImmunoPlane,

the user first describes the logical dataflow topology of the

application as a DAG using the ImmunoPlane DSL. A node
is used to define a service component, and an edge is used

to express the communication link between two components.

Then, for each of the nodes and edges in the DAG, the

user declares requirements such as high service availability
or minimum link throughput using policy directives.

Figure 3 shows the description of the Home Security

application written in the ImmunoPlane DSL. Through various

constructs (discussed in §IV-B), the ImmunoPlane DSL allows

users to characterize the features of an application, so that

it can provide an adaptation mechanism tailored for that

application. Thus, we address the challenges C1 - C4 (§III-A).

To deploy the application, the user submits the DAG and

the set of requirements to the ImmunoPlane Scheduler. The

Scheduler is a separate component that has full visibility of the

compute and network resources available on the ImmunoPlane
Workers running on each of the devices in the network. We

propose a novel placement algorithm in the Scheduler that

takes into account the user requirements and the characteristics

of the runtime infrastructure, thus addressing the challenge C5

in §III-B. Based on the user-provided requirements and the

currently available resources, the Scheduler computes a con-

crete adaptive deployment plan, consisting of the placement

1 graph HomeSecurity (camera, outfile, clientEmail) {
2 node streamer: process("node", "streamer.js " + camera);
3 node detector: process("node", "detector.js", { outFormat: "

json" });
4 node recorder: process("node", "recorder.js " + outfile);
5 node viewer: process("node", "viewer.js");
6 node notifier: process("node", "notifier.js " + clientEmail,

{ inFormat: "json" });
7
8 edge e1: streamer -> detector;
9 edge e2: streamer -> recorder;

10 edge e3: streamer -> viewer;
11 edge e4: detector -> notifier;
12 }
13
14 policy BasicPolicy () for HomeSecurity {
15 place (#camera || #webcam) streamer;
16 always () detector;
17 save (30) recorder;
18 min_rate (2.5) e1, e2, e3;
19 }

Fig. 3: The Home Security example application and its application-
level requirements written as a graph and policy respectively, using
the ImmunoPlane DSL

of nodes and the necessary feedback control mechanisms for

adapting to changing conditions. Each Worker runs the nodes

assigned to it and the corresponding adaptation mechanisms.

B. Domain-specific Language

As mentioned above, the two main constructs in our DSL

are: 1 a dataflow graph for describing the logical dataflow

topology of the application, and 2 a policy containing the

performance and dependability requirements for each node
and edge in the graph. We focus our discussion mainly on 2

in this section, as our graph construct is based on a generic

DAG used in many other flow-based programming systems

such as Node-RED [18], Apache NiFi [19], and OneOS [7].

Dataflow Graph. We have added two features in our DAG

construct. The first is typed edges for indicating the type of

message exchanged between two nodes. The message type

information enables ImmunoPlane to correctly slice the mes-

sage segments at the binary level in the network buffer. This

further allows ImmunoPlane to dynamically route messages

over parallel streams, and to sequence the messages coming

from concurrent streams. The second feature is the support for

parallel (split/merge) edges for indicating whether a dataflow

can be safely parallelized without synchronizing the states.

The Scheduler leverages this information to further tailor the

adaptivity mechanism for the given application.

Policy Directives. A user provides a policy that accom-

panies a graph. In the policy, a user can declare various

requirements for each node and edge in the graph using a set

of policy directives. ImmunoPlane currently supports five types

of directives, which we describe below. We found that these

directives were sufficient for satisfying the requirements of

the benchmark applications we used (§V); however, additional

directives can easily be supported, if needed.

• always x, y, ... z – indicates that components x,

y, and z must be highly available. While achieving
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100% availability is extremely difficult, ImmunoPlane
maximizes availability on a best-effort basis.

• min_rate|max_rate (c) p, q, ... r – indicates

the minimum/maximum data transfer rate required for

edges p, q, and r is c MB/s (alternatively, c can be

provided in terms of messages/s using mps(c))

• order_by (c) p, q, ... r – used to indicate the

message order for merge edges (-*> in our DSL), if the

downstream components expect to receive messages in a

particular order. c can be an anonymous function invoked

for each message to return a custom index value.

• save (c) x, y, ... z – indicates that the state of

the components x, y, and z must be persistent and

recoverable at least up to c seconds prior to a failure.

• place (c) x, y, ... z – used when a node has

a hard placement constraint, evaluated by the boolean

function c, e.g., it needs to be placed on a specific device.

Note that all the directives are declarative, namely they

are used to state a requirement, rather than imperatively
describing how to achieve the requirement. Further, none of

the directives require any infrastructure-specific knowledge.

We discuss how each directive influences the Scheduler’s

placement and configuration decisions in the next section.

C. Middleware Architecture

The ImmunoPlane middleware system consists of a Sched-

uler and a set of Workers (§IV-A) organized in the conven-

tional manager-worker architecture. The Scheduler, working

as the manager, is responsible for producing the adaptive

deployment plan, and each Worker is responsible for executing

the part of the plan for which it is responsible. The Worker

manages the local components it hosts, and is able to pause,

resume, and checkpoint a running component. It periodically

reports its local resource usage (CPU, memory, and disk) to

the Scheduler. Since the Worker’s role is straightforward, we

focus on the Scheduler’s operation.

The Scheduler’s decision making involves two stages: 1

graph configuration stage in which the given dataflow topol-

ogy is modified and instantiated, and 2 component placement
stage in which the node instances are assigned to the Workers.

At the end of the procedure (shown in Algorithm 1, the

Scheduler produces an adaptive deployment plan, which is

basically a concrete placement of node instances, plus a set of

special adaptation nodes that implement the feedback control

loop for adaptation. The user-provided policy directives are

used in both the stages for different purposes.

Graph Configuration Stage. During this stage, the abstract

dataflow graph is instantiated – similar to a class being in-

stantiated in a program – by enumerating the actual processes

to be spawned for each of the nodes. For example, there might

be a single node in the graph, which can be instantiated

as multiple replica processes, if the Scheduler decides to

parallelize the node. We shall refer to such processes as node
instances to differentiate them from the abstract nodes.

Based on the policy directives, the Scheduler modifies the

graph by adding special adaptation nodes to implement the

Fig. 4: Three types of adaptation nodes added to the dataflow graph
based on the user-provided policy directives.

appropriate adaptation mechanism. We discuss three different

modifications, shown in Figure 4:

1) Standby and Watch. (Top row in Fig.4) For implement-

ing a failover mechanism for a given primary node
instance, a secondary standby node instance and a

special watcher node (an adaptation node) is injected

into the graph. The watcher monitors the liveness of

the primary instance through a heartbeat mechanism,

and activates the standby instance if the primary instance

fails. This mechanism is employed when a node requires

high availability (indicated by the always directive), or

when a node requires a minimum input rate (indicated

by the min_rate directive) but is not parallelizable.

2) Load balancer. (Middle row in Fig.4) For managing the

data transfer rate along a parallel edge, a load-balancer
node (an adaptation node) is injected between the source

and the sink nodes to maintain the required transfer

rate (indicated by either the min_rate or max_rate
directive). It dynamically routes the messages from the

source to different sinks based on the backpressure

observed at the outgoing links to the sinks.

3) Sequencer. (Bottom row in Fig.4) In some cases, a

node that receives messages from multiple sources must

receive them in a specific order (e.g., a component

calculating running average over a time series data). The

Scheduler injects a sequencer node (an adaptation node)

right before the node that requires orderly data. While

this node does not implement an adaptation mechanism

on its own, it is a necessary component for ensuring the

correctness of the application.
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Aside from the modifications done at the graph level, the

Scheduler also configures individual nodes and edges. For

example, the Scheduler defines a checkpointing interval for

a node if a save directive is used to indicate that its state

should be persistent. Based on this node configuration, the

Worker hosting this node periodically creates checkpoints.

Component Placement Stage. After a graph is instantiated

and there are concrete node instances to be spawned, the

Scheduler needs to determine the placement of the node
instances on different Workers, such that all the user require-

ments can be satisfied. This placement problem is basically a

type of vector bin packing problem [20], which is NP-hard.

However, the Scheduler only aims to find one viable solution

(not the optimal solution), and does not need to search the

entire solution space. We use traditional search optimization

techniques such as branch pruning and prioritization.

Given this problem formulation, we chose a baseline place-

ment policy of ranked round-robin placement, in which we try

to minimize co-tenancy of components rather than minimize

the number of Workers used. By ranked, we mean that the

round-robin placement prioritizes devices with more resources.

The baseline policy is used if no policy directives are provided

(i.e., the user does not specify any requirements). We chose a

baseline policy of minimal co-tenancy as previous work [21],

[22] has found that co-tenancy degrades overall performance.

The user-provided policy directives produce a custom

heuristic used to guide the search process into different

paths from where the baseline policy would have traversed,

prioritizing paths that lead to solutions that satisfy all the

given user requirements. For example, if there is a min_rate
directive defined over the edge between nodes A and B, and

assuming that A is assigned to Worker X, the Scheduler will

override its aversion for co-tenancy and thus prioritize Worker

X when placing node B. Such Worker selection priority is cap-

tured by a node-specific score function scorenode(worker)
constructed from the policy directives. Unlike global search

heuristics, our heuristics based on policy directives are local-

ized to single search steps. Thus, the Scheduler is application-
aware, as it derives a separate score function for each node,

and applies a localized heuristic at each step of the search.

Algorithm 1 shows the pseudo-code for how the Sched-

uler constructs the score functions and searches for a place-

ment. The main feature of this algorithm is in “flattening”

the various node-specific requirements into a node-specific

score function. As we iterate over each policy directive, we

create a new score function for each node by combining

the existing score function with the partial, directive-specific

score function. The flattened score function simultaneously

captures both constraints and preferences for a Worker, and is

used both to eliminate requirement-violating Workers (branch

pruning) and to favor requirement-optimizing Workers (branch

prioritization) when selecting a Worker to place the node.

The algorithm works as follows. We search for a valid

placement of node instances through an exhaustive depth-first

search, using the score functions to guide the search. We start

by looking for a Worker to place the most upstream node in

1 function PlaceApp(graph: Graph, policy: Policy) :
Map<Node,Worker>

2 NodeList ← TopologicalSort(graph.nodes)
3 ScoreFunctions ← Map<Node, Func<Worker,float»
4 foreach declaration in policy.directives["place"] do
5 scoreFunc ←(worker: Worker) ⇒ (
6 declaration.predicate(worker) ? 1 : 0
7 )
8 foreach operand in declaration do
9 prevFunction ← ScoreFunctions[operand]

10 ScoreFunctions[operand] ←(worker: Worker) ⇒ (
11 prevFunction(worker) × scoreFunc(worker)
12 )
13 end
14 end
15 /* repeat similar steps for all other directives */
16 Assignment ← Map<Node,Worker>
17 found ← FindAssignment(NodeList, Assignment)
18 if !found then
19 throw PlacementError
20 end
21 return Assignment
22 end
23 function FindAssignment(nodes: List<Node>, assign:

Map<Node,Worker>) : bool
24 if nodes.length == 0 then
25 return true
26 end
27 scoreFunc ← ScoreFunctions[nodes[0]]
28 eligibleWorkers ← Workers.sort(scoreFunc)
29 foreach selected in eligibleWorkers do
30 assign[nodes[0]] ← selected
31 found ← FindAssignment(nodes[1:], assign)
32 if found then
33 return true
34 end
35 assign.remove(nodes[0])
36 end
37 return false
38 end

Algorithm 1: Placement Algorithm

the graph. We rank the Workers by using the score function,

filtering out ineligible Workers whose score is zero (lines 27

- 28). We place the node instance on the highest ranking

Worker, then move on to the next node instance (lines 30 - 31).

We repeat the same process, ranking the eligible Workers and

placing the node instance on the highest scoring Worker (lines

23 - 31, via recursion). If no eligible Worker is found (i.e., all

the Workers have a score of zero), we backtrack to the previous

node instance, and then place it on the next highest ranking

Worker (lines 32 - 35). Though we perform an exhaustive

search, the search is fast in practice due to our heuristics.

We walk through the pseudocode using our Home Security

application example (Fig. 3). At the beginning of the search,

we create five score functions scorex,0(worker), one for each

node x. Initially, the score function returns a score based on

the baseline policy. Then, for the place directive applied

for the streamer node, a partial function fs(worker) is

created for the streamer node, which returns either 1 or 0

based on whether the given worker has a camera (lines 5 -

7). A new score function (scores,1(worker)) is created for

streamer, which is scores,0(worker) ∗ fs(worker) (lines 9

- 12). Next, for the min_rate directive, the score functions

of both the source and sink nodes of the edges e1, e2, and
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Requirement Benchmarks Adaptations Used Evaluation Criteria
Availability Home Security [11] Standby and watch Mean Time To Recover

Processing
Latency

YSB [8]
DSP-FraudDetection
DSP-TrafficMonitoring
DSP-AdsAnalytics
DSP-ClickAnalytics
DSP-SmartGrid
DSP-SpikeDetection [10]

Load balancer,
Sequencer

Percentile Latency

Throughput

DSP-LogProcessing
DSP-WordCount [10]
RIoT-ETL
RIoT-STATS
RIoT-TRAIN
RIoT-PRED [9]

Load balancer,
Standby and watch

Mean Throughput

TABLE I: Applications used for evaluation. The last column shows
the evaluation criteria used for each application.

e3 are updated in a similar manner. For example, for edge

e1 connecting streamer and detector, two partial func-

tions gs(worker) and gd(worker) are created, for streamer
and detector respectively. gs returns a score based on the

available bandwidth of all the outgoing links, such that a

worker with the most egress bandwidth receives the highest

score. gd(worker) also returns a score, but based on the

available ingress bandwidth. The partial functions are then

multiplied by the existing score functions for streamer and

detector, producing scores,2 and scored,1 respectively. Af-

ter processing all policy directives, each node has an associated

score function scorex(worker), which is used to evaluate the

“goodness” of a Worker for placing the given node.

D. Implementation

We implemented the ImmunoPlane Scheduler and integrated

it into OneOS [7], an IoT platform we developed in our prior

work. The implementation uses C# and the .NET 2.0 standard.

V. EVALUATION

We evaluate ImmunoPlane in two parts. First, we evaluate

whether ImmunoPlane is able to provide adaptivity to different

types of applications, and for different user requirements

(i.e., application-awareness). Second, we evaluate whether

ImmunoPlane can provide adaptivity under different deploy-

ment infrastructures, without requiring any programming or

configuration effort (i.e., infrastructure-independence).

A. Part 1: Support for Different Requirements

Evaluation Strategy. We investigate ImmunoPlane’s ability

to provide adaptivity to different applications with varying

performance and dependability requirements. To this end, we

selected a variety of benchmark applications with different

dataflow topology and requirements. For each application, we

expressed the dataflow graph and declared its requirements

using the ImmunoPlane DSL (summarized in Table I). We

used 14 benchmarks taken from 4 different papers, and broadly

categorized them into three groups based on the application’s

requirements. We deploy each application on ImmunoPlane,

and study the effect of both failures and network congestion.

Experimental Setup. Though ImmunoPlane was designed

for IoT infrastructures (which might be more resource-

constrained), we used a resource rich, cloud-like infrastructure

for this part of the experiment, because we were interested in

studying ImmunoPlane’s ability to adapt under external events,

rather than internal events such as resource contention. We

consider IoT-based infrastructures in the next part (§V-B).

We used six NUMA machines all located in the same rack.

Each machine has two Xeon E5-2640 @ 2.5 GHz, with 6 cores

each and with hyper-threading enabled (24 logical CPUs in

total), 64 GB RAM, and 2.4 TB HDD. The machines were

connected through a gigabit Ethernet switch, and have an

average communication latency of 0.279±0.037 ms.

We hosted the Scheduler exclusively on a machine, and used

five machines to run Workers. We configured ImmunoPlane
to be sensitive to failures and network congestion, to promote

adaptations for our experiment. The Workers were configured

to send a heartbeat every second, and the Scheduler was

configured to consider even a single missed heartbeat as a

disconnection. To observe adaptation to network congestion,

we configured the Workers to adapt after five continuous sec-

onds of network requirement violations. This interval was long

enough to tolerate natural jitter in throughput measurements,

but short enough to detect true congestion. We consider three

requirements, (1) availability, (2) latency and (3) throughput.

1) Availability Requirement: We evaluate the ability of Im-
munoPlane to ensure high availability for the Home Security

benchmark, even when the devices (Workers) hosting these

components fail randomly. The Home Security benchmark

(Fig. 1) contains three data processing pipelines. Among

them, the pipeline including the detector and notifier
components needs to be highly available (see Section II).

There are three steps in the experiment. First, using the DSL,

we indicate that the detector and notifier components

need to be highly available, using the always directive. We

then submit the application description (written in the DSL as

shown in Fig. 3) to the Scheduler, and wait until the application

is deployed. At a random time during the application’s execu-

tion, we crash the Worker hosting the detector component.

Finally, we measure the mean time to recover (MTTR) of the

detector, i.e., the time between the device failure and the

restarting of detector component on another device.

We observed an average MTTR of 1364.6±275.1 ms. Based

on the recovery time obtained, we compute the availability =
MTBF

MTBF+MTTR . We plot the availability curve as a function of

the MTBF (mean time between failures), which varies among

devices. Fig. 5 shows the availability curve (blue line) in

logarithmic scale. We evaluate whether we can achieve three-

nines (99.9%) availability, which is the minimum considered

as “high availability” in both academia [23], [24] and industry

(e.g., most cloud service providers issue 25%-100% refunds if

the availability drops below 99.0%, or two-nines [25], [26]).

We find that ImmunoPlane can provide three-nines availability

under random node failures, assuming the host machine fails

every 23 minutes (1363.24 seconds). This is a conservative

assumption, as many IoT devices have higher MTBFs, e.g.,

health-tracking IoT devices fail about four times a day [27].

2) Processing Latency Requirement: The Yahoo Streaming

Benchmark (YSB) [8] and six of the DSPBench applications

19



1,323,636 ms

0.999

Fig. 5: Availability of application versus MTBF of the host machine,
under a single node failure, in three different infrastructures. MTTR:
in Cloud-only = 1365 ms, in IoT-only = 1714 ms, in Cloud-IoT =
1622 ms. Higher availability is better, lower MTTR is better.

shown in Table I comprise parallel or concurrent processing

pipelines, where the input workload is distributed among

multiple components. For these applications, we evaluate

ImmunoPlane’s ability to deliver low processing latency, even

when under network congestion. We discuss the results for the

YSB, but we obtained similar results for DSPBench programs.

The YSB consumes input messages via Kafka [28], filters

and transforms messages in parallel, and commits processed

messages into Redis [29]. Because the YSB was developed for

SPFs such as Flink and Spark, we had to remove all Flink-

specific deployment and configuration code in order to run

them as ImmunoPlane components. We followed a similar

process for the DSPBench applications, which had Storm-

specific code. We verified that we preserved the application’s

semantics by comparing the outputs produced by our version

against those produced by the original implementation.

We also used the unmodified, original test client written by

the authors of YSB. We can set the input message rate (in mps
– messages per second), and the corresponding benchmark per-

formance is measured by reading the timestamps in the output

messages and calculating the end-to-end processing latency.

Prior to performing our experiments, we profile the baseline

processing capacity of YSB (maximum message processing

rate without violating end-to-end latency requirements, and

under no faults). We measured the baseline capacity to be

≈ 20, 000 mps. We test ImmunoPlane’s ability to adapt for a

given minimum required processing rate of N mps, which we

indicate using the DSL directive min_rate (N mps).

We consider two scenarios. In the first scenario, we ran-

domly crash a Worker as we did for the Home Security

benchmark. In the second scenario, we introduce congestion

at a target link by using the Linux Traffic Control (tc [30]) to

limit its bandwidth. At a random time during the application’s

execution, we limit the bandwidth between one of the parallel

components and the sink component for a 60 second duration.

We observe that, upon failure, the volume of data handled

by the failed Worker is evenly distributed among the rest of

the Workers (Fig. 6), as ImmunoPlane employs round-robin

message distribution unless a distribution policy was provided

by the user. The end-to-end percentile latency is unaffected by

Fig. 6: Messages processed by each Worker (W1 to W5) every 250
ms, during the first 100 seconds of execution. Higher values are better.

Fig. 7: 99th Percentile latency for the YSB application under varying
levels of network congestion. The congestion level in the x-axis
indicates the reduction in bandwidth, and the y-axis shows the 99th
percentile latency (p99 latency). Lower values are better.

the failure, as ImmunoPlane adapts quickly to the failure.

We examine how ImmunoPlane helps the application adapt

as we vary the bandwidth at the target link (Fig. 7). The

expected 99th percentile latency (p99) is around 10,000 ms

[8]. We observe that, when the required message rate is under

15,000 mps, the p99 latency remains around 11,000 ms, un-

affected by the congestion. For message rates between 17,500

and 20,000 mps, the application delivers expected performance

without congestion. However, we observe a degradation in

performance as congestion approaches 1 to 1.2 MB/s. This

indicates a point at which the application is unable to deliver

the performance required even with adaptation. As we increase

the message rate further, the effect is more pronounced, with

the p99 latency approaching 50 seconds. Thus, we infer that

ImmunoPlane can adapt to deliver the required performance

for YSB as long as the user requires processing rate of

15,000 mps or less, which is 75% of the maximum processing

capacity. The user needs to profile the application a priori (as

we did) to obtain the maximum processing capacity.

3) Throughput Requirement: We used four RIoTBench [9]

applications and two of the DSPBench applications - these

applications have similar dataflow topology as the benchmarks

used in § V-A2. However, they prioritize throughput rather

than latency, as they process large input files offline.

The RIoT-ETL and DSP-WordCount applications are simi-

lar to YSB; they have a parallel processing pipeline through

which the input data is distributed uniformly. Therefore, the

behavior we observe in RIoT-ETL and DSP-WordCount is

the same as that of YSB. Upon a failure or congestion, the
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Fig. 8: Messages processed over time by the Average component
in RIoT-PRED. Higher values are better.

Physical Link Capacity
Application Processing Capacity

Fig. 9: Observed throughput versus available bandwidth for the
Average component in RIoT-STATS. Higher values are better.

messages intended for the failed Worker are distributed to the

other Workers. Therefore, we do not discuss these results.

The other three benchmarks in RIoTBench and the DSP-

LogProcessing applications exhibit a different behavior when

dealing with failure or congestion. Since these benchmarks

contain pipelines that are not parallel, data cannot be routed

to another component when a pipeline fails or is congested.

Therefore, for the components that do not have parallelism, Im-
munoPlane applies the Standby and Watch mechanism in order

to make them highly available. Fig. 8 illustrates what happens

to a non-parallel pipeline with and without the Standby and
Watch mechanism. Without it, the application does not recover

from the failure, and the processing stops immediately. With

it, the stream is routed to the standby component upon failure.

As a result, the end-to-end throughput requirement is satisfied.

To observe the effect of congestion, we perform similar

experiments as those in § V-A2; we deploy the benchmark,

then at a random point in time, we limit the bandwidth of

the input stream of one of the components for 60 seconds

using tc. We run this experiment for varying levels of required

throughput, set using the min_rate directive.

Fig. 9 shows the observed link throughput for the target

link (input to the Average component2) in the RIoT-STATS

benchmark. The curve y = x is the link capacity – throughput

can never exceed the physical bandwidth. When we set the

required throughput to 500 mps, we observe that the link

throughput is at maximum capacity. The throughput plateaus

when the bandwidth is greater than 3.5 MB/s, indicating that

2We refer the reader to the original RIoTBench [9] and DSPBench [10]
papers for detailed topology and component description.

Fig. 10: Critical bandwidth at which adaptation is triggered, for
different levels of user requirement.

the application cannot deliver a higher throughput. When the

link bandwidth is set to 500 KB, the throughput drops to zero.

This is the point (we call it the critical bandwidth) at which

ImmunoPlane triggers adaptation, migrating the component

to another Worker with a larger available bandwidth. As we

increase the required throughput, we observe that the criti-

cal bandwidth also increases, indicating that ImmunoPlane’s

adaptation strategy adjusts to the user requirements.

Fig. 10 shows the critical bandwidth for the benchmarks,

plotted in log-log scale for different values of user-required

throughput. We observe that the critical bandwidth varies

among the benchmarks, showing that ImmunoPlane transpar-

ently adapts for different benchmarks. However, when the user

requirement exceeds 3000 mps for RIoT-STATS and RIoT-

PRED, ImmunoPlane cannot satisfy the requirement as it

either exceeds the physical capacity or the application capacity.

The throughputs for DSP-LogProcessing and RIoT-TRAIN are

orders of magnitude smaller, but we observe the same trend.

Summary of Part 1. Using 14 benchmark applications, we

evaluated ImmunoPlane’s ability to support different user re-

quirements in a cloud-like infrastructure. For each benchmark,

we have used our DSL to express the requirements in terms

of policy directives, and then observed whether ImmunoPlane
adapts to satisfy the requirements under random failures and

different levels of congestion. We find that ImmunoPlane is

able to deliver 99.9% availability even assuming a single

device failure every 23 minutes. In terms of satisfying latency

or throughput requirements, ImmunoPlane is able to satisfy

them as long as the requirement is set to less than 75% of the

baseline processing capacity. This is an approximate lower

bound for the performance level under which ImmunoPlane
can provide adaptivity, and is lower than those claimed for

SPFs (90%) [31], [32]. Determining a precise performance

requirement to set (such as maximum sustainable throughput)
is out of the scope of this work – this is a subject of

active research [31], [32]. We also observe that ImmunoPlane
triggers adaptations at different congestion levels, depending

on the requirements set by the user. Overall, ImmunoPlane can

support different application-level requirements specified.
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B. Part 2: Adaptivity in Different Infrastructures

In this part, we examine whether ImmunoPlane can trans-

parently provide adaptivity in different deployment infras-

tructures. We take the same benchmark applications and

requirements from the previous part (§ V-A), and deploy

them in two additional infrastructures: IoT-only, and Cloud-
IoT infrastructures. We introduce random device failures and

congestions as we did for the Cloud-only infrastructure, and

observe how ImmunoPlane adapts in different infrastructures.

Experimental Setup. We use two setups in addition to the

cloud-only setup in §V-A. The first is the IoT-only testbed,

which consists of four Raspberry Pi 3s and two Raspberry Pi

4s. The Raspberry Pi 3 is equipped with a quad-core 1.2 GHz

ARM7, 1 GB RAM, and 32 GB Micro SD. The Raspberry

Pi 4 has a quad-core 1.5 GHz ARM8, 4 GB RAM, and 64

GB Micro SD card. One of the Raspberry Pi 4s is used to

host the Scheduler, and the five other Raspberry Pis run the

Workers. They are connected wirelessly over a gigabit router.

The second setup is the Cloud-IoT testbed, consisting of three

NUMA machines – used in Part 1 – and three Raspberry Pi

3s. One of the NUMA machines is used for the Scheduler.

As before, we consider the same three requirements, namely

availability, latency, and throughput.

1) Availability Requirement: We perform the same random

failure experiment from Part 1 on the IoT-only and Cloud-IoT

testbeds. For the Cloud-IoT testbed, we assign an IoT device

(Raspberry Pi 3) to run the streamer component (the data

source). From the user’s perspective, no additional code or

configuration is required to run the application. However, the

Scheduler produces a different placement for each infrastruc-

ture to satisfy the availability requirement.

The MTTR is 1713.8 ± 311.5 ms in the IoT-only testbed

and 1622.1 ± 207.9 ms in the Cloud-IoT testbed, taking

marginally longer than in the Cloud-only (1364.6 ms) testbed.

We calculate that ImmunoPlane can provide three-nines avail-

ability when the MTBF is 29 minutes (1712.09 seconds) or

greater in the IoT-only testbed, and the MTBF is 27 minutes

(1620.48 seconds) or greater in the Cloud-IoT testbed (Fig. 5).

Due to slower recovery, a larger MTBF is required in the IoT-

only and Cloud-IoT testbeds to achieve the same availability

as in the Cloud-only testbed.

Note that in homogeneous infrastructures (Cloud-only and

IoT-only), the Scheduler produces similar plans, distributing

the application components uniformly among the Workers.

However, in the Cloud-IoT testbed, the Scheduler predomi-

nantly favors cloud Workers, since there are more resources

available on cloud machines. As a result, the two cloud ma-

chines host all the components except the streamer. Upon a

failure, one of the IoT Workers restarts the failed components.

2) Processing Latency Experiment: We run the YSB in the

two additional testbeds. Because each testbed has a different

physical capacity, we set different input rates for them. We

performed a profiling run to obtain the appropriate range of

message rates (as we did for Part 1). For the IoT-only testbed,

the input rate is set in the range of 1,000 to 2,600 mps, and

for the Cloud-IoT testbed, the input rate is set in the range of

5,000 to 10,000 mps.

The general trend is that the p99 latency at different

congestion levels (Fig. 11a) is similar to that of the Cloud-only

testbed from Part 1 (Fig. 7). The only difference we observe is

that the processing capacity of the IoT-only testbed is around

1,800 mps (12% of Cloud-only testbed).

In the Cloud-IoT testbed, we experimented with introducing

congestion either in the cloud (Fig. 11b) or in the IoT links

(Fig. 11c). We observe that the application performance is

much more sensitive to congestion in the cloud. ImmunoPlane
is able to adapt to congestion when the required throughput is

under 5,000 mps or if the congestion is less than 200 KB/s.

However, the performance degrades quickly as the congestion

approaches 1 MB/s. When congestion was introduced in the

IoT link, the application performance is not affected as much

by varying congestion levels. Consequently, the application

requirements are met as long as they are under 8,000 mps,

but not when they are higher.

3) Throughput Requirement: Again, we run the same ex-

periments from Part 1, in the IoT-only and Cloud-IoT testbeds.

The overall behavior is similar to that for the Cloud-only

testbed (§V-A3) – i.e., ImmunoPlane adapts by activating

the standby component when the available link bandwidth

becomes critically limited. In both testbeds, ImmunoPlane is

able to adjust the critical bandwidth depending on the user

requirement, just as it did in the Cloud-only testbed. Hence,

we only highlight the notable differences. For the IoT-only

testbed, we observe that the range of critical bandwidth is

much lower (in the range of 50 to 200 KB/s), understandably

because the throughput requirement is set to a lower value

to reflect its physical capacity. For the Cloud-IoT testbed, we

observe that the Scheduler always places the target component

and its standby component on the cloud, so that upon a

requirement violation, another cloud Worker takes over. Thus,

the link throughput we observe for the Cloud-IoT testbed is

in the same ballpark as in the Cloud-only testbed.

Summary of Part 2. We evaluated ImmunoPlane’s ability

to adapt in different deployment infrastructures. For each

infrastructure, we profiled the baseline processing capacity for

each benchmark, so that we can set a reasonable performance

requirement for our experiments. We find that ImmunoPlane is

able to provide similar levels of availability across the Cloud-

only, IoT-only, and Cloud-IoT testbeds. However, there are

minor differences caused by IoT devices taking slightly longer

than cloud devices to recover failed components. We observe

that ImmunoPlane employs similar adaptation strategies in

different types of homogeneous infrastructures (Cloud-only

and IoT-only). In the Cloud-IoT testbed, ImmunoPlane favors

running more work on the cloud, and thus is more sensitive

to failures and congestion in the cloud. Overall, ImmunoPlane
transparently produces deployment plans optimized for differ-

ent infrastructures to meet the user requirements.
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(a) IoT-only (b) Cloud-IoT, congestion in Cloud (c) Cloud-IoT, congestion in IoT

Fig. 11: 99th Percentile latency under varying levels of congestion, in different infrastructures (testbeds). Lower values are better.

VI. RELATED WORK

Stream Processing Frameworks. As many IoT applications

involve processing data streams, we studied stream processing

frameworks (SPFs) to see whether they can provide adaptivity

for IoT applications. SPFs such as Apache Kafka [28], Flink

[3], Storm [33], and Spark [4] provide built-in adaptivity

features such as failure recovery and load-balancing. A user

can leverage these features through the framework’s API, in an

infrastructure-agnostic manner. However, SPFs are specialized

for parallel processing of large datasets. Thus, they optimize

either for end-to-end latency (e.g., Kafka, Flink, Storm) or

for overall throughput (e.g., Spark). Although SPFs provide

infrastructure-agnostic adaptation capabilities, they support

only a fixed set of global requirements, and do not support

component-specific local requirements.
IoT/Edge Computing Frameworks. IoT and edge computing

frameworks generally do not provide built-in support for

adaptivity. Instead, they provide specialized services (often

cloud-based) that can serve as building blocks for adaptivity.

For example, AWS IoT Greengrass [34] provides services such

as IoT Device Shadow for monitoring devices, Amazon S3 for

reliable data storage, and Amazon SQS for reliable messaging.

By using the appropriate services, a user can customize their

deployment plan. However, for each deployment environment,

the user still needs to determine the appropriate placement

and configuration, such that the application’s requirements are

satisfied. Although the cloud services reduce the development

effort to some extent, the user still needs to design the concrete

deployment plan for each application and environment.
Dataflow Optimization and Adaptivity Frameworks. There

are frameworks that provide additional optimization and adap-

tivity features on top of existing runtime systems. These

systems also aim to reduce the burden on the user.
Nemo [35] is an optimization framework that transparently

produces an optimized deployment configuration for a target

SPF. It compiles applications written in dataflow languages

such as Beam [36] into an abstract intermediate representation
(IR) DAG, from which concrete optimizations are generated

for a target SPF such as Spark. A similar approach was

taken in Musketeer [37] and Optimus [38], both focusing on

systems such as Spark [4] and DryadLINQ [39]. The high-

level idea of converting infrastructure-agnostic policies into

concrete deployments is similar to our approach. However,

they support only stream processing applications.

Steel [40] is an edge computing framework with motivations

similar to ours. Steel automatically configures and deploys

edge applications over the cloud and edge, and demonstrates

the approach on top of the Azure ecosystem. Unlike Immuno-
Plane, Steel requires the user to specify component placement,

and does not allow users to specify different requirements.

Program Control Language (PCL) [6] is a coordination lan-

guage used for enabling adaptivity in a distributed application.

PCL provides APIs for specifying the metrics to observe and

describing the adaptations to apply. While a user can customize

the adaptation plan for each application, they must be aware of

the performance characteristics of each target infrastructure.

CHARIOT [5] is a framework that facilitates autonomous

management of IoT systems. It provides a DSL for describ-

ing the application components, their relationships, and the

deployment configuration. For instance, it allows a user to

describe which component to replicate and where, so that the

component can tolerate failures. However, the user still needs

to determine how to achieve the high-level user requirements

using the provided functionalities in their DSL.

To summarize, systems such as Nemo and Steel transpar-

ently produce deployment plans, but they target a specific class

of applications and do not support different requirements. In

contrast, systems such as PCL and CHARIOT can be used to

satisfy different requirements, but require the user to develop

the concrete deployment plan, which requires user effort.

VII. CONCLUSION AND FUTURE WORK

We presented ImmunoPlane, a middleware system that

enables IoT applications to adapt to failures and network con-

gestions in different runtime infrastructures, while satisfying

their requirements, with minimal user effort. ImmunoPlane
provides a DSL for users to express different requirements

in a declarative manner, without having to describe the adap-

tation mechanism explicitly. By providing an adaptation layer,

ImmunoPlane transparently converts the application require-

ments into an adaptive deployment plan for the underlying

runtime infrastructure. We evaluated ImmunoPlane using 14

benchmarks, and showed that it supports various types of

applications, and user requirements e.g., availability, latency,

and throughput. Further, ImmunoPlane transparently supports

the same requirements in different runtime infrastructures.

There are two directions for future work. First, Immuno-
Plane supports common performance and dependability re-
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quirements such as latency, throughput, and availability. In

our future work, we want to consider requirements such as

energy consumption when providing adaptivity. Second, we

have conducted our experiments in a setting where there was

little contention between components. We will examine the

effect of resource contention in future work.
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