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Abstract

Reachability analysis and viability theory are key in providing guarantees

of safety and proving the existence of safety-preserving controllers for con-

strained dynamical systems. The minimal reachable tube and (by duality)

the viability kernel are the only constructs that can be used for this purpose.

Unfortunately, current numerical schemes that compute these constructs

suffer from a complexity that is exponential in the dimension of the state,

rendering them impractical for systems of dimension greater than three or

four.

In this thesis we propose two separate approaches that improve the scal-

ability of the computation of the minimal reachable tube and the viability

kernel for high-dimensional systems. The first approach is based on structure

decomposition and aims to facilitate the use of computationally intensive

yet versatile and powerful tools for higher-dimensional linear time-invariant

(LTI) systems. Within the structure decomposition framework we present

two techniques—Schur-based and Riccati-based decompositions—that im-

pose an appropriate structure on the system which is then exploited for the

computation of our desired constructs in lower-dimensional subspaces.

The second approach is based on set-theoretic methods and draws a new

connection between the viability kernel and maximal reachable sets. Exist-

ing tools that compute the maximal reachable sets are efficient and scalable

with polynomial complexity in time and space. As such, these scalable tech-

niques can now be used to compute our desired constructs and therefore

provide guarantees of safety for high-dimensional systems. Based on this

new connection between the viability kernel and maximal reachable sets we

propose a scalable algorithm using ellipsoidal techniques for reachability.

We show that this algorithm can efficiently compute a conservative under-
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Abstract

approximation of the viability kernel (or the discriminating kernel when

uncertainties are present) for LTI systems. We then propose a permissive

state-feedback control strategy that is capable of preserving safety despite

bounded input authority and possibly unknown disturbances or model un-

certainties for high-dimensional systems.

We demonstrate the results of both of our approaches on a number of

practical examples including a problem of safety in control of anesthesia and

a problem of aerodynamic flight envelope protection.
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Chapter 1

Introduction

1.1 Motivation

Constrained dynamical systems have deservingly received a tremendous

amount of attention among researchers in both academia and industry due

to the presence of safety constraints and hard bounds that appear in many

practical scenarios. Providing guarantees of constraint satisfaction and fa-

cilitating appropriate synthesis of constraint-satisfying controllers therefore

is highly desirable, particularly in safety-critical applications.

One example of such an application with safety constraints and bounded

input authority is the closed-loop control of anesthesia [26]; safety (state

or output constraints) may be defined in terms of prespecified therapeutic

bounds on plasma concentration of the anesthetics, and the input (drug infu-

sion rate) is physically bounded by the actuator limitations. To ensure safety

of the patient and obtain regulatory certificates, guarantees of safety of the

system can play an important role. While we postpone further discussions

on the safety aspects of the control of depth of anesthesia to Sections 5.3.2

and 6.3.3, we shall point out that naive design of a controller—even when all

constraints have been accounted for—may result in violation of the safety

constraints. For example, Figure 1.1 shows the response of a patient using a

model predictive controller (MPC) that has been designed with both input

and safety (output in this case) constraints in mind. Additional pre-design

analysis such as formulation of a terminal constraint set for the receding

horizon optimization problem and/or other tricks and techniques that en-

force invariance, (strong) feasibility, and other properties of the closed-loop

system are warranted. The reader is referred to e.g. [11, 61, 84] for a thor-

ough treatment of such techniques as well as other application areas where

1



1.1. Motivation
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Figure 1.1: Control of drug plasma concentration in a high-responder pa-
tient (#80) undergoing 1.5 hr surgery using an inadequately-
designed MPC. The input (drug infusion rate) is bounded above
and below (u ∈ [0, 0.8]). Clearly, the hard constraint on the out-
put (y ∈ [0.1, 1]) indicating the safety requirement is violated for
nearly 20 mins of the surgery; The receding horizon optimization
becomes infeasible with respect to its initial condition, resulting
in “softening” of the safety constraint.

constraint satisfaction in MPC is desirable.

Another example is the so-called flight or aircraft envelope protection

problem [81, 83, 116, 117], where the safety constraints are defined as the

aircraft’s aerodynamic envelope and consequently the flight management

system must ensure that certain combinations of states are avoided at all

times to prevent stalling or other undesirable behaviors.

Other application domains in which safety must be maintained despite

bounded inputs include aircraft autolanders [8], collision avoidance [25, 28,

46, 89, 96], automated highway systems [80], control of under-actuated un-

derwater vehicles [98], stockout prevention of constrained storage systems in

manufacturing processes [13], management of a marine renewable resource

[9], and safety in semi-autonomous vehicles [119], to name a few.
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1.2. Reachability Analysis and Viability Theory

1.2 Reachability Analysis and Viability Theory

Reachability analysis and viability theory provide solid frameworks for con-

trol synthesis and trajectory analysis of constrained dynamical systems in

a set-valued fashion (cf. [5, 12, 22, 67, 69, 118]) and have been utilized in

diverse applications ranging from those listed above to the control of un-

certain oscillatory systems [23] and verification of temporal properties of a

toggle circuit [44], etc.

Reachability analysis identifies the set of states forward (backward) reach-

able by a constrained dynamical system from a given initial (target) set of

states. Reachability analysis distinguishes itself from what simulations can

achieve in the sense that with simulations a single trajectory or execution

of the system corresponding to a single initial state is computed at a time,

whereas with reachability analysis all points belonging to all possible tra-

jectories or executions are computed at once from all possible initial states.

Properties of the system inferred from such set-valued computations are

therefore universal and hold true for the entire set of initial states. Simi-

larly, viability theory provides a set-valued insight into the behavior of the

trajectories inside a given constraint set. For example, the viability kernel

is the set of initial states for which there exists at least one trajectory or

execution of the input-constrained system that respects the state constraint

for all time.

The notions of maximal and minimal reachability analysis were intro-

duced in [86]. Their corresponding constructs differ in how the time vari-

able and the bounded input are quantified. In formation of the maximal

reachability construct, the input tries to steer as many states as possible

to the target set. In formation of the minimal reachability construct, the

trajectories reach the target set regardless of the input applied. Based on

these differences, the maximal and minimal reachable sets and tubes (the

set of states traversed by the trajectories over the time horizon [70, 86])

are formed. The objects generated by each of these constructs have unique

attributes: The maximal reachability constructs can be used to synthesize

input policies that steer the trajectories of the system to the target (or,
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to analyze how the trajectories behave under uncertainty and/or external

disturbance). The minimal reachability constructs, on the other hand, can

be used to synthesize inputs that keep the trajectories of the system away

from the target set. The viability kernel and the minimal reachable tube are

duals of one another [18, 79], while the invariance kernel (the set of states

that remain in the constraint set for all possible inputs for all time) is the

dual of the maximal reachable tube [5, 69, 79].

It is shown in [86] and [5] that the minimal reachable tube and the viabil-

ity kernel are the only constructs that can be used to prove safety/viability of

the system and to synthesize inputs (controllers) that preserve this safety. As

such it is highly desirable to be able to compute these constructs for possibly

high-dimensional safety-critical constrained systems for which guarantees of

safety and prevention of constraint violation are crucially important.

1.3 Computational Techniques and the “Curse of

Dimensionality”

In this thesis we are concerned with backward constructs generated by reach-

ability analysis and viability theory. That is, we seek to compute the set of

initial states that is formed under the input-constrained system for a given

target/terminal or constraint set of states. In general an exact computation

of the reachability or viability constructs is extremely difficult if not impossi-

ble. Instead, approximations of these sets are computed. Such computations

have historically been subject to Bellman’s “curse of dimensionality”; their

complexity increases rapidly with the dimension of the continuous states [4].

Algorithms that approximate the backward constructs can be divided

into two main categories [86]: Eulerian methods (e.g., [18, 33, 89, 106])

are capable of computing the viability kernel and by duality, the minimal

reachable tube. Although versatile in terms of ability to handle complex

dynamics and constraints, these algorithms rely on gridding the state space

and therefore their computational complexity increases exponentially with

the dimension of the state, rendering them impractical for systems of di-
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mension higher than three or four. The second category of algorithms are

Lagrangian methods (e.g., [30, 39, 40, 50, 70, 73, 78]) that follow trajectories

and compute the maximal reachable sets and tube in a scalable and efficient

manner. These algorithms take advantage of compact set representations

(e.g., ellipsoids and zonotopes) and/or in general the convexity of all con-

straints.1 Their computational complexity is therefore usually polynomial

in time and space, making them suitable for application to high-dimensional

systems.

1.4 The Goal and Contributions of the Thesis

In many applications such as those involving safety-critical systems the abil-

ity to compute the minimal reachable tube and the viability kernel can be

paramount: Guarantees of safety and synthesis of safety-preserving con-

trollers can only be obtained using these constructs. However, if the system

is of even moderate dimension, the Eulerian methods that to this date have

exclusively2 been used to compute these constructs cannot be employed.

This argument is the cornerstone of our research.

This thesis presents our efforts to address the scalability aspect of the

curse of dimensionality to enable the computation of the minimal reachable

tube and the viability kernel for higher-dimensional systems. We do so using

two separate approaches:

• Complexity reduction via structure decomposition, our first approach,

1The convexity requirement may be circumvented if a non-convex constraint can be
represented by the union of appropriate closed and bounded convex sets. In such a case
the computations are performed using a few convex initial sets, which in turn affects
the computational time only linearly in the number of initial sets. In the general case
regardless of the convexity issues, the resulting set computed by Lagrangian methods over
the entire time horizon is a close approximation of the (possibly non-convex) maximal
reachable tube.

2One exception is the method of polytopes [76], a Lagrangian method developed from
within the MPC community, for discrete-time LTI systems that allows for the computa-
tion of the controlled-invariant subset (viability kernel) when all constraints are polytopes.
However, similarly to Eulerian methods, this technique suffers from an exponential com-
plexity for most systems: The number of vertices of the polytope increases rapidly with
each successive Minkowski sum. The convex-hull operation performed by the technique is
also known to be computationally demanding [93].
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aims to facilitate the use of powerful Eulerian methods on higher-

dimensional continuous-time continuously-valued linear time-invariant

(LTI) systems (and by extension, hybrid systems with LTI continuous

dynamics). As such, many of the benefits that Eulerian methods offer

(e.g., ability to handle arbitrarily-shaped possibly unbounded non-

convex constraints, or the synthesis of safety-preserving control laws)

can now be taken advantage of for relatively higher-dimensional LTI

systems.

• Complexity reduction via set-theoretic methods, our second approach,

bridges the gap between maximal and minimal constructs and aims to

facilitate the use of the scalable and efficient Lagrangian methods for

the computation of the viability kernel for continuous- and discrete-

time (possibly nonlinear) systems. Thanks to these results we propose

an efficient and scalable piecewise ellipsoidal algorithm that not only

enables the approximation of the viability kernel for high-dimensional

LTI systems, but also facilities a scalable synthesis of safety-preserving

controllers.

1.4.1 Complexity Reduction via Structure Decomposition

Decomposing the system into lower dimensional subsystems is an approach

(referred to as structure decomposition) that has been utilized in the past

in e.g. [88, 91, 113] as a means to reduce the computational complexity in

reachability analysis. While applicable to nonlinear systems, these tech-

niques assume that the system itself presents a certain structure that can

be exploited. In this thesis we propose a number of techniques, based on

the structure decomposition framework, applicable to LTI systems of generic

form. We assume no initial structures. Our techniques (under certain condi-

tions) will impose the desired structure on the system which is then exploited

for decomposition purposes and ultimately for reduction of complexity in

reachability analysis.

The decomposition allows for the computation of the reachable tube

in lower dimensions, thus reducing the computational burden significantly.
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We accomplish this through transformation of the system into appropriate

coordinate spaces in which reachability analysis could be performed in lower-

dimensional subspaces and is guaranteed to yield an over-approximation of

the actual minimal reachable tube in that space. By performing the analysis

in lower dimensions we obtain significant reduction in the computational

costs, albeit at the expense of over-approximation.

While also applicable to maximal reachable tube computation, our pro-

posed techniques are of primary benefit to the computation of the minimal

reachable tube (or by duality, the viability kernel) for which Eulerian meth-

ods have traditionally been used exclusively.

1.4.2 Complexity Reduction via Set-Theoretic Methods

Through our second approach we will show that the viability kernel can be

expressed as a nested sequence of maximal reachable sets. By bridging the

gap between the viability kernel and the maximal reachable sets we pave the

way for more efficient computation of the viability kernel through the use of

Lagrangian algorithms. Significant reduction in the computational costs can

be achieved since instead of a single calculation with exponential complexity

one can perform a series of calculations with polynomial complexity.

Based on the well-studied ellipsoidal techniques for maximal reachability

analysis [70] we propose an algorithm that computes a guaranteed piecewise

ellipsoidal under-approximation of the viability kernel for LTI systems. We

show that the proposed algorithm is efficient and scalable and can be used

to address the safety needs of high-dimensional safety-critical systems (such

as the anesthesia automation or the flight envelope protection problems

mentioned at the beginning of this chapter).

The presented connection between the maximal reachable sets and the

viability kernel facilitates a more scalable computation of the viability kernel

(and by duality, the minimal reachable tube) as well as the respective safety-

preserving control laws.
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1.5 Related Work

Complexity reduction for reachability analysis has been addressed by a num-

ber of researchers. Methods to compute the reachability constructs (max-

imal or minimal) for higher-dimensional systems can be divided into three

main categories. First are techniques that take advantage of certain repre-

sentations of sets [30, 40, 64, 65, 74, 76, 78, 108]. Second are techniques

that make use of model approximation [42, 47], hybridization [3], projec-

tion [44, 91] and structure decomposition [48, 113, 121]. Finally, third are

methods that combine the approaches from the first two categories; For ex-

ample, the proposed technique in [49] employs Krylov subspace projection

along with low-dimensional polytopes to compute the maximal reachable

sets/tube for large-scale affine systems. Related works on complexity reduc-

tion for the computation of the minimal reachable tube and the viability

kernel are surveyed next.

Efficient techniques for synthesis of maximal reachability controllers that

steer the system to a given target set have been extensively studied in the

past. As the main objective of this thesis is safety and safety-preserving

control, we refrain from surveying these techniques and only provide a few

references: [39, 40, 64, 68, 69, 94]. Instead, here we will discuss relevant

techniques that are capable of directly synthesizing safety-preserving control

laws.

1.5.1 Complexity Reduction for Computation of Minimal

Reachable Tube and Viability Kernel

A projection scheme in [91] based on Hamilton-Jacobi (HJ) partial differen-

tial equations (PDEs) over-approximates the projection of the actual mini-

mal reachable tube in lower dimensional subspaces, with the unmodeled di-

mensions treated as a disturbance. Similarly, [113] decomposes a full-order

nonlinear system into either disjoint or overlapping subsystems and solves

multiple HJ PDEs in lower dimensions. The computed minimal reachable

tube for each subsystem is an over-approximation of the projection of the

full-order minimal reachable tube onto the subsystem’s subspace.
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More recently, in [88] a mixed implicit-explicit HJ formulation of the

minimal reachable tube is presented for nonlinear systems whose state vector

contains states that are integrators of other states. It is shown that the

computational complexity of this new formulation is linear in the number of

integrator states, while still exponential in the dimension of the rest of the

state space.

In [21] an approximate dynamic programming technique is proposed

that, although still grid-based, enables a more efficient computation of the

viability kernel. The viability kernel (similarly to [79]) is expressed as the

zero sub-level set of the value function of the corresponding optimal control

problem. The authors assume that the value function, which is a viscos-

ity solution of a HJB PDE, is differentiable everywhere on the constraint

set. The HJB PDE is then discretized and the resulting value function is

numerically computed on a grid using a function approximator such as the

k-nearest neighbor algorithm. An error bound on the (over-)approximation

of the viability kernel is provided. The approximation converges to the true

kernel in the limit, as the number of grid points goes to infinity.

In [25] it is shown that for systems with order-preserving dynamics when

the control set is a direct product of two compact intervals in R (i.e. the con-

trol set is a two-dimensional, axis-aligned rectangle), the minimal reachable

tube equals the intersection of two reachable tubes each with a constant in-

put. The constant inputs take value on the opposite vertices of the input set

where the maximum of one interval meets the minimum of the other. The

reachable tubes with constant inputs can be computed efficiently resulting

in an efficient computation of the original minimal reachable tube. This

scheme also yields an efficient synthesis of safety-preserving control laws.

Another related approach is the search for a barrier certificate [99] (a

Lyapunov-like function) for the system ẋ = f(x, u), x ∈ X , u ∈ U , that

forms a separating surface between any two given sets A and B. If there

exists a function B : X → R such that B(x) ≤ 0 ∀x ∈ A, B(x) > 0 ∀x ∈ B,

and LfB(x) ≤ 0 ∀(x, u) ∈ X × U along the zero level set of B (here Lf

denotes the Lie derivative along f), then no trajectories will ever go from A
to B. This technique can be adapted to analytically formulate the boundary
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of the infinite-horizon viability kernel as well—if it is non-empty. The Lie

derivative on the surface of the candidate certificate must now satisfy ∃u ∈ U
∀x ∈ X LfB(x) ≤ 0. It is shown in [99] that for systems with polynomial

vector fields and semi-algebraic constraints (e.g. polynomial inequalities),

efficient techniques based on Sum of Squares and semi-definite programming

can be used to find the barrier certificate.3

1.5.2 Safety-Preserving Control Synthesis

Safety-preserving controllers, the control policies associated with viability

kernels and minimal reachable tubes, are capable of keeping the trajectories

of the system within the safe region of the state space. Their synthesis

has therefore received significant attention among researchers as a means to

guarantee the safety/viability of constrained dynamical systems [2, 5, 11,

81, 116] (cf. [7, 12, 89] for more recent expositions).

A classical approach is to use the information of the shape of the com-

puted set (viability kernel or minimal reachable tube) by choosing the safety-

preserving optimal control laws based on the contingent cone [14] or the

proximal normal [5, 18] at every point on the boundary of the set as per

Nagumo’s theorem and its generalizations (cf. [5]). Similarly, a given viabil-

ity kernel can be used as a feasible or terminal constraint set to guarantee

(strong) feasibility of the receding horizon optimization problem in an MPC

framework [11, 61, 84, 100, 101].4 This results in (recursive) constraint sat-

isfaction of the closed-loop system and therefore the generated control laws

can be regarded as safety-preserving. In both cases discussed above the com-

putational complexity of synthesizing such control laws is at best equal to

that of computing the corresponding viability kernel or minimal reachable

3This method cannot be used to formulate the finite-horizon viability kernel which may
be useful when e.g. the infinite-horizon kernel is empty. Moreover, there are no guarantees
that a barrier certificate can be found (even with simple, stable linear dynamics for which
a Lyapunov function can be systematically constructed).

4While alternative techniques exist that eliminate the need for terminal constraint sets
for feasibility (such as ensuring that the horizon of the receding horizon optimization
problem is “sufficiently” large), in this thesis we are only concerned with computing the
viability kernel and the minimal reachable tube as well as their corresponding safety
controllers and will not cover such techniques.
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tube.

Another approach is related to the previously described barrier certifi-

cate technique. The technique has been extended in [102] to synthesize

safety-preserving controllers using density functions and convex optimiza-

tion methods for polynomial nonlinear systems with semi-algebraic con-

straints and simple magnitude bounded inputs. The pros and cons of this

approach are similar to those of computing a barrier certificate with the

exception that for the synthesis problem a gridding of the state space is also

required. Unfortunately, this gridding renders the technique intractable in

high dimensions.

A classification technique based on support vector machines (SVMs)

is presented in [24] that approximates the viability kernel and yields an

analytical expression of its boundary. A sequential minimal optimization

algorithm is solved to compute the SVM that in turn forms a barrier function

[95] (not to be confused with a barrier certificate mentioned above) on or

close to the boundary of the viability kernel in the discretized space. While

the method successfully reduces the computational time for the synthesis of

control laws when the dimension of the input space is high, its applicability

to systems with high-dimensional state space is limited as it relies on the

same state space gridding approach used in the classical techniques e.g.

[106]. Furthermore, the method does not provide any guarantees that the

synthesized control laws are safety-preserving.

The notion of approximate bisimulation [41] can be used to construct a

discrete abstraction of the continuous state space such that the observed be-

havior of the corresponding abstract system is “close” to that of the original

continuous system. Girard et al. in a series of papers [17, 37, 38] use this

notion to construct safety-preserving controllers for approximately bisimi-

lar discrete abstractions and prove that the controller is correct-by-design

for the original systems. The technique is applied to incrementally stable

switched systems (for which approximately bisimilar discrete abstractions of

arbitrary precision can be constructed) with autonomous or affine dynamics,

and safety-preserving switched controllers are synthesized. The abstraction,

however, relies on sampling of time and space (i.e. gridding) and therefore
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its applicability appears to be limited to low-dimensional systems.

1.6 Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 provides

necessary preliminaries and formally formulates the objectives of the the-

sis. Chapter 3 describes our first technique, Schur-based decomposition,

within the structure decomposition framework. Our second decomposition

technique, Riccati-based decomposition, is presented in Chapter 4 building

upon the results of Chapter 3 and providing a more in-depth treatment of

the structure decomposition framework for complexity reduction in reach-

ability analysis. These two chapters are based on the assumption that the

system dynamics are LTI and aim to facilitate the applicability of compu-

tationally intensive Eulerian methods for higher-dimensional LTI systems.

Chapter 5 describes a set-theoretic approach that enables the use of effi-

cient Lagrangian methods for the computation of the viability kernel, cir-

cumventing entirely the need to employ computationally intensive Eulerian

methods. An efficient algorithm is presented that approximates the viabil-

ity kernel of LTI systems in a scalable fashion. Chapter 6 extends these

results to systems with disturbances and then formulates a scalable and

robust safety-preserving feedback control strategy for LTI systems. Chap-

ter 7 summarizes the thesis reiterating its major contributions, and provides

directions for future research.

Finally, supplementary materials are provided in the Appendices: Ap-

pendix A contains the proof of Proposition 3.4 (page 38) and elaborates

on Assumptions 3.1 (page 34) and 4.2 (page 54) used in Chapters 3 and

4. Appendix B contains the proofs of Propositions 4.2 (page 60) and 4.3

(page 61) and also provides an upper-bound on the condition number of the

proposed modified Riccati transformation matrix in Chapter 4. Appendix C

is complementary to the reachability constructs used within the body of the

thesis and presents additional backward constructs that are formed under

constrained dynamical systems. Their connections to one another and to the

constructs used within the thesis are formalized, aiming to help the reader
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attain a more complete picture of the contributions of this thesis.

1.7 Basic Notation

The quantifiers ∃ and ∀ are existential and universal, respectively. We denote

the N×N identity matrix by IN and the inner product by 〈·, ·〉. For brevity,

‖·‖ denotes the infinity norm. For a constant matrix A = [aij ] ∈ Rm×n the

induced norm is

‖A‖ := sup
v∈Rn, v 6=0

‖Av‖
‖v‖ = max

1≤j≤n

m∑
i=1

|aij |. (1.1)

For a Lebesgue measurable function f : R → Rn defined over an interval

[ta, tb] we denote

‖f‖ := ‖f(·)‖L∞[ta,tb] = sup
t∈[ta,tb]

‖f(t)‖ <∞. (1.2)

The Hausdorff distance between any two nonempty subsets X and Y of

a metric space (Rn, d) is defined as

distH(X ,Y) := max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
. (1.3)

The erosion of X by Y (also known as the Pontryagin difference between X
and Y) is defined as

X 	 Y := {x | x+ y ∈ X ∀y ∈ Y}. (1.4)

The Minkowski sum of X and Y is defined as

X ⊕ Y := {x+ y | x ∈ X , y ∈ Y}. (1.5)

The projection of a set A ⊆ X × Y onto X is defined as

ProjX (A) := {x ∈ X | ∃y ∈ Y s.t. (x, y) ∈ A}. (1.6)
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We denote by
◦
X the interior of X , by ∂X its boundary, and by clX :=

◦
X∪∂X

its closure. The set B(δ) denotes a norm-ball of radius δ ∈ R+ about the

origin in Rn. The set X c denotes the complement of X in Rn.
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Chapter 2

Preliminaries and Problem

Formulation

2.1 Backward Constructs for Constrained

Dynamical Systems

Consider a continuously-valued dynamical system

L(x(t)) = f(x(t), u(t)), x(0) = x0 (2.1)

with state space X := Rn (a finite-dimensional vector space), state vector

x(t) ∈ X , and input u(t) ∈ U where U is a compact and convex subset of

Rm. Depending on whether the system evolves in continuous time (t ∈ R+)

or discrete time (t ∈ Z+), L(·) denotes the derivative operator or the unit

forward shift operator, respectively. The vector field f : X × U → X is

assumed to be continuous in its arguments in the discrete-time case, and

Lipschitz in x and continuous in u in the continuous-time case. Let

U[0,t] := {u : [0, t]→ Rm measurable, u(t) ∈ U a.e.}. (2.2)

With an arbitrary, finite time horizon τ > 0, for every t ∈ [0, τ ], x0 ∈ X , and

u(·) ∈ U[0,t], there exists a unique trajectory xux0 : [0, t]→ X that satisfies the

initial condition xux0(0) = x0 and the differential/difference equation (2.1).

When clear from the context, we shall drop the subscript and superscript

from the trajectory notation.

For a nonempty state constraint/target set K ⊂ X this thesis is primarily

concerned with the following backward constructs, their implications, and
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K

Figure 2.1: The maximal reachable set Reach]t(K,U) (blue/plain) for the
target set K (green/patterned). A few sample initial conditions
and trajectories are also shown.

their connections to one another. (For other backward constructs please see

Appendix C.)

Definition 2.1 (Maximal Reachable Set). The maximal reachable set at

time t is the set of initial states for which there exists an input such that

the trajectories emanating from those states reach K exactly at time t (Fig-

ure 2.1):

Reach]t(K,U) := {x0 ∈ X | ∃u(·) ∈ U[0,t], x
u
x0(t) ∈ K}. (2.3)

Definition 2.2 (Maximal Reachable Tube). The maximal reachable tube1

over the horizon [0, τ ] is the set of initial states for which there exists an

input such that the trajectories emanating from those states reach K at some

time t ∈ [0, τ ] (Figure 2.2):

Reach][0,τ ](K,U) := {x0 ∈ X | ∃u(·) ∈ U[0,τ ], ∃t ∈ [0, τ ], xux0(t) ∈ K}. (2.4)

1Also known as the possible victory domain [18], the attainability tube [70], or the
capture basin [6].
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K

Figure 2.2: The maximal reachable tube Reach][0,τ ](K,U) (also includes K
itself). A few sample initial conditions and trajectories are also
shown.

Definition 2.3 (Minimal Reachable Tube). The minimal reachable tube2

over the horizon [0, τ ] is the set of initial states for which for every input

there exits a time t ∈ [0, τ ] such that the trajectories emanating from those

states reach K at t (Figure 2.3):

Reach[[0,τ ](K,U) := {x0 ∈ X | ∀u(·) ∈ U[0,τ ], ∃t ∈ [0, τ ], xux0(t) ∈ K}. (2.5)

Definition 2.4 (Viability Kernel). The (finite-horizon) viability kernel3 of

K is the set of all initial states in K for which there exists an input such

that the trajectories emanating from those states remain in K for all time

t ∈ [0, τ ] (Figure 2.4):

V iab[0,τ ](K,U) := {x0 ∈ X | ∃u(·) ∈ U[0,τ ], ∀t ∈ [0, τ ], xux0(t) ∈ K}. (2.6)

What differentiates the above constructs from one another is the type

2Also known as the certain victory domain [18], or the capture set in the differential
games literature [81] (not to be confused with the capture basin).

3The infinite-horizon viability kernel V iabR+(K,U) is also known as the maximal
controlled-invariant subset [11].
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K

Figure 2.3: The minimal reachable tube Reach[[0,τ ](K,U) (also includes K
itself). A few sample initial conditions and trajectories are also
shown.

and order of quantifiers operating on the time and input variables. These

seemingly subtle differences generate fundamentally distinct sets (with prop-

erties that are unique to each of them). In particular, the following inclusions

hold.

Proposition 2.1.

V iab[0,τ ](K,U) ⊆ K ⊆ Reach[[0,τ ](K,U) ⊆ Reach][0,τ ](K,U). (2.7)

Proof. That V iab[0,τ ](K) ⊆ K is well-known [5]. To showK ⊆ Reach[[0,τ ](K,U)

take x0 ∈ K and let τ = 0. Thus xux0(0) = x0 for any u(·) ∈ U[0,τ ] which

implies x0 ∈ Reach[[0,τ ](K,U). To prove Reach[[0,τ ](K,U) ⊆ Reach][0,τ ](K,U),

take x0 ∈ Reach[[0,τ ](K,U). We have that ∀u(·) ∈ U[0,τ ] ∃t ∈ [0, τ ] xux0(t) ∈
K =⇒ ∃u(·) ∈ U[0,τ ] ∃t ∈ [0, τ ] xux0(t) ∈ K ⇐⇒ x0 ∈ Reach][0,τ ](K,U).
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K

Figure 2.4: The (finite-horizon) viability kernel V iab[0,τ ](K,U) (blue/plain).
A few sample initial conditions and trajectories are also shown.

2.2 Significance of Minimal Reachable Tube and

Viability Kernel

What is so significant about computing the minimal reachable tube and the

viability kernel? The short answer is “guarantees of safety” and “safety-

preserving control synthesis”. To see this let us begin with maximal reach-

ability constructs.

The maximal reachable tube and sets can be used to synthesize input

policies that steer the trajectories of the system to the target, or if the target

is deemed “unsafe”, they can be used to analyze the set of states backward

reachable in the worst case by the system under a bounded disturbance or

uncertainty.

The recently developed Lagrangian methods (e.g. [30, 39, 40, 50, 70, 73])

approximate the maximal reachable tube by first fixing the time variable and

computing the corresponding maximal reachable set, and then taking the
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union of these sets over the time horizon. It is easy to verify that

Reach][0,τ ](K,U) ≡
⋃

t∈[0,τ ]

{
x0 ∈ X | ∃u(·) ∈ U[0,t], x

u
x0(t) ∈ K

}
(2.8)

=
⋃

t∈[0,τ ]

Reach]t(K,U). (2.9)

The equality holds since both quantifiers operating on the input and time

variables in (2.4) are existential and therefore their order can be inter-

changed. This connection, which has been recognized and extensively used

since the earlier works in the literature (e.g. [20, 22, 69]), was also formal-

ized in [86] and proven using the Hamilton-Jacobi-Bellman framework in

[79]. The Lagrangian methods are scalable and computationally efficient

(with polynomial complexity in both time and space).

On the other hand, the minimal reachable tube and the viability kernel

can be used to synthesize safety-preserving inputs that keep the trajectories

of the system away from the unsafe target set, or contained within a safe

constraint set. In fact, it is shown in [86] and [5] that the minimal reachable

tube, and by duality the viability kernel, are the only constructs that can

be employed to prove the existence of an input which guarantees safety of

the system.

Notice that, as shown in [18] and as a dual of the results in [79], we have

V iab[0,τ ](Kc,U) = (Reach[[0,τ ](K,U))c. (2.10)

Since the viability kernel and the minimal reachable tube are duals of one

another, they need not be treated separately. In this thesis we will initially

focus on computing the minimal reachable tube for an unsafe target K in

Chapters 3 and 4, and then shift focus to the case in which constraint K
is deemed safe and therefore compute the viability kernel in the remaining

chapters. Note however that approximating the minimal reachable tube and

the viability kernel are not mutually exclusive—a method that facilitates an

under-approximation of the viability kernel of K automatically provides a
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2.3. Main Goal and Problem Formulation

means for the over-approximation of the minimal reachable tube for Kc.4
In computing the minimal reachable tube the input is universally quan-

tified. Furthermore, the time variable must be quantified only after the

input is quantified. Interchanging the order of quantifiers here will change

the meaning of the set and is therefore not possible. In fact, as also shown

in [86],

Reach[[0,τ ](K,U) ⊇
{
x0 ∈ X | ∃t ∈ [0, τ ],

∀u(·) ∈ U[0,t], x
u
x0(t) ∈ K

}
=

⋃
t∈[0,τ ]

{
x0 ∈ X | ∀u(·) ∈ U[0,t], x

u
x0(t) ∈ K

}
. (2.11)

Among Lagrangian methods, the technique in [72] has been extended to han-

dle universally quantified inputs. However, since the time variable is quan-

tified first, according to (2.11) the resulting set is an under-approximation

of the unsafe minimal reachable tube.

The powerful Eulerian methods (e.g. [18, 33, 89, 106]), in addition to

computing the maximal reachable set, are capable of directly computing

the minimal reachable tube and the viability kernel. However, they rely

on gridding the state space and are therefore computationally intensive.

Although versatile in terms of ability to handle various types of dynamics

and constraints, the applicability of these techniques has been historically

limited to systems of low dimensionality (up to 3D or 4D in practice) due

to their exponential complexity.

2.3 Main Goal and Problem Formulation

Given the fact that for guarantees of safety and the synthesis of safety-

preserving controllers the minimal reachable tube and the viability kernel

can play an extremely important role, we seek to devise efficient techniques

that enable a more scalable computation of these constructs. To this end,

4Under-approximation of the viability kernel and over-approximation of the minimal
reachable tube are the correct forms of approximation; See Section 2.7.
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2.4. Approach I: Structure Decomposition

we present two separate approaches. The first approach, the structure de-

composition techniques that will be presented in Chapters 3 and 4, aims to

enable the use of powerful Eulerian methods on higher-dimensional LTI sys-

tems. The second approach, which is based on set-theoretic techniques, aims

to facilitate the application of efficient and scalable Lagrangian methods for

the computation of the viability kernel and safety-preserving controllers by

drawing a connection between minimal and maximal reachability constructs.

These objectives are defined next.

2.4 Approach I: Structure Decomposition

2.4.1 Objective and Problem Statement

Consider the case in which (2.1) is a continuous-time LTI system

ẋ = Ax+Bu (2.12)

described by matrix notation

S :=
[
A B

]
(2.13)

with A ∈ Rn×n and B ∈ Rn×p, and the constrained input u(t) ∈ U is the

control input.

Problem 2.1 (Objective I). Find an appropriate basis transformation for

(2.12) such that in the new coordinates the system can be decomposed into

lower-dimensional, decoupled or weakly-coupled subsystems for which reach-

ability analysis can be performed independently and thus more efficiently.

2.4.2 Definitions and Preliminaries

A linear transformation of the system S in (2.13) using a nonsingular matrix

T ∈ Rn×n is defined as S ′ = T−1(S) :=
[
T−1AT T−1B

]
. A linear

transformation of a set V ⊆ Rn under the same mapping is defined as Y =

T−1V := {y ∈ Rn | y = T−1v, v ∈ V}.
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2.4. Approach I: Structure Decomposition

Definition 2.5 (Unidirectionally Coupled). The LTI system that consists

of two subsystems

ẋ1 = A1x1 + ∆x2, (2.14)

ẋ2 = A2x2 (2.15)

with A1 ∈ Rk×k, A2 ∈ R(n−k)×(n−k), ∆ ∈ Rk×(n−k), x1(t) ∈ Rk, and

x2(t) ∈ Rn−k, is said to be unidirectionally coupled since the trajectories

of (2.14) are affected by those of (2.15), while (2.15) evolves independently

from (2.14). The worst-case unidirectional coupling can thus be character-

ized by the maximum row sum ‖∆‖.

Definition 2.6 (Unidirectionally Weakly-Coupled). Let there be a non-

singular transformation matrix T ∈ Rn×n, such that [zT1 , z
T
2 ]T = T−1[xT1 , x

T
2 ]T,

and

ż1 = A1z1 + ∆̃ z2 (2.16)

ż2 = A2z2. (2.17)

Then (2.16) and (2.17) are said to be unidirectionally weakly-coupled (in

comparison to (2.14) and (2.15)) if

‖∆̃‖ ≤ ‖∆‖. (2.18)

Definition 2.7 (Disjoint Input). Let there be a nonsingular transformation

matrix T ∈ Rn×n and a coordinate space z = T−1x in which (2.12) can be

partitioned into N subsystems as

żi = Ãizi + gi(u), i = 1, . . . , N, (2.19)

with gi(u) := B̃iu. The input u = [u1, . . . , up]
T ∈ U ⊂ Rp is disjoint across

these subsystems if ∀s ∈ {1, . . . , p}, ∀i, j ∈ {1, . . . , N}, i 6= j,

∂gi(u)

∂us
6= 0 → ∂gj(u)

∂us
= 0. (2.20)
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2.4. Approach I: Structure Decomposition

Example 2.1. Consider the subsystem trajectories of żi = Ãizi + B̃iu with

B̃i = [B̃i1, B̃i2, B̃i3], u = [u1, u2, u3]T, and i ∈ {1, 2}. The input u is disjoint

if for example[
z1(t)

z2(t)

]
=

[
eÃ1(t−t0) 0

0 eÃ2(t−t0)

][
z1(t0)

z2(t0)

]

+

∫ t

t0

[
eÃ1(t−r) 0

0 eÃ2(t−r)

][
B̃11 0 0

0 B̃22 B̃23

]u1(r)

u2(r)

u3(r)

 dr. (2.21)

This ensures that no input from the input vector u occurs in both subsystems.

On the other hand, the input in the following equation is non-disjoint since

u2 influences the trajectories of both subsystems:[
z1(t)

z2(t)

]
=

[
eÃ1(t−t0) 0

0 eÃ2(t−t0)

][
z1(t0)

z2(t0)

]

+

∫ t

t0

[
eÃ1(t−r) 0

0 eÃ2(t−r)

][
B̃11 B̃12 0

0 B̃22 B̃23

] u1(r)

u2(r)

u3(r)

 dr. (2.22)

Definition 2.8 (ETUC). A subsystem is said to be externally-trivially-

uncontrollable (ETUC) if it possesses a null input matrix.

Finally, consider the following two lemmas.

Lemma 2.1 ([123, Lem. 2.7]). The Sylvester equation

EX +XF +H = 0, (2.23)

with E ∈ Rk×k, F ∈ Rm×m, and H ∈ Rk×m, has a solution X ∈ Rk×m if

and only if

rank
[
(FT ⊗ Ik) + (Im ⊗ E) − vec(H)

]
= rank

[
(FT ⊗ Ik) + (Im ⊗ E)

]
, (2.24)
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2.5. Approach II: Set-Theoretic Methods

where ⊗ denotes the Kronecker product and vec(H) is a vector formed by

stacking the columns of H below one another. This solution is unique if and

only if the eigenvalue sum λi(E)+λj(F ) 6= 0, ∀i ∈ {1, ..., k}, ∀j ∈ {1, ...,m}.

Lemma 2.2 (Real Schur Form [43, Thm’s 7.1.3 and 7.4.1], [114, 5R]). For

any real matrix M ∈ Rn×n there exists an orthogonal matrix U ∈ Rn×n

such that UTMU = M̃ is real upper quasi-triangular, and the eigenvalues of

M are the eigenvalues of the block diagonals (each of dimension 2 or less)

of M̃ . Furthermore, the matrix U can be chosen to order the eigenvalues

arbitrarily.

Remark 2.1. There always exists a partitioning of M̃ such that M̃ =[
M̃11 M̃12

0 M̃22

]
. The size of the partitions can be chosen as desired, so long as

each block diagonal entry (maximum size 2× 2) of M̃ is completely covered

by exactly one of the blocks on the diagonal of the partitioned matrix.

2.5 Approach II: Set-Theoretic Methods

2.5.1 Objective and Problem Statement

For the generic, continuously-valued system (2.1) we define our second ob-

jective as follows.

Problem 2.2 (Objective II). Express the viability kernel V iab[0,τ ](K,U) in

terms of the maximal reachable sets Reach]t(K,U), t ∈ [0, τ ] to enable the

use of Lagrangian methods for the computation of the viability kernel and

the synthesis of safety-preserving controllers.

2.5.2 Definitions and Preliminaries

In this section we will present the definitions required for the treatment of

the case in which (2.1) is a continuous-time system (cf. Section 5.1.1) of the

form

ẋ = f(x, u). (2.25)
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2.6. Robust Reachability Analysis: Competing Inputs

Definition 2.9. We say that a vector field f : X ×U → X is bounded on K
if there exists a norm ‖·‖ : X → R+ and a real number M > 0 such that for

all x ∈ K and u ∈ U we have ‖f(x, u)‖ ≤M .

Definition 2.10. A partition P = {t0, t1, . . . , tn} of [0, τ ] is a set of distinct

points t0, t1, . . . , tn ∈ [0, τ ] with t0 = 0, tn = τ and t0 < t1 < · · · < tn.

Further, we denote

• the number n of intervals [tk−1, tk] in P by |P |,

• the size of the largest interval by ‖P‖ := max
|P |
k=1{tk+1 − tk}, and

• the set of all partitions of [0, τ ] by P([0, τ ]).

Definition 2.11. For a signal u : [0, τ ]→ U and a partition P = {t0, . . . , tn}
of [0, τ ], define the tokenization of u corresponding to P as the set of func-

tions {uk : [0, tk − tk−1]→ U}k such that

uk(t) = u(t+ tk−1). (2.26)

Conversely, for a set of functions {uk : [0, tk − tk−1]→ U}k, define their con-

catenation u : [0, τ ]→ U as

u(t) = uk(t− tk−1), t ∈ [tk−1, tk]. (2.27)

Definition 2.12. The ‖·‖-distance of a point x ∈ X from a nonempty set

A ⊂ X is defined as

dist(x,A) := inf
a∈A
‖x− a‖. (2.28)

For a fixed set A, the map x 7→ dist(x,A) is continuous.

2.6 Robust Reachability Analysis: Systems with

Competing Inputs

While the majority of this thesis deals with systems with a single input, there

are instances where we will make use of the differential game framework and
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2.6. Robust Reachability Analysis: Competing Inputs

assume adversarial inputs. For example, an “artificial” disturbance input is

considered in Section 3.3 to perform a robust reachability analysis for one

of the subsystems of the original deterministic system. Another example is

when we extend the results presented in Chapter 5 to compute the robust

version of the viability kernel (known as the discriminating kernel [18]) for

systems with competing inputs in Chapter 6. Therefore in this section we

will briefly lay out the definitions and preliminaries concerning systems with

not only control input, but also uncertainties and/or external disturbances.

Consider the continuous-time system

ẋ(t) = f(x(t), u(t), v(t)), x(0) = x0 (2.29)

with disturbance input v(t) ∈ V where V is a compact convex subset of Rmv .
The vector field f : X × U × V → X is assumed to be Lipschitz in x and

continuous in both u and v. Let U[0,t] be as in (2.2) and define

V[0,t] := {v : [0, t]→ Rmv measurable, v(t) ∈ V a.e.}. (2.30)

For every t ∈ [0, τ ], x0 ∈ X , u(·) ∈ U[0,t], and v(·) ∈ V[0,t], there ex-

ists a unique trajectory xu,vx0 : [0, t] → X that satisfies the initial condition

xu,vx0 (0) = x0 and the differential equation (2.29). As before, when clear from

the context we shall drop the subscript and superscript from the trajectory

notation.

We assume that the disturbance input v is unknown but takes values

on the (bounded) set V. Note that v ∈ V can also be used to capture any

(unknown but bounded) uncertainties in the model.

In a differential game setting the information pattern between the players

(i.e. control input u and disturbance input v) is important and must be spec-

ified. The control input follows a feedback strategy, i.e. u(t) = û(x(t), t) ∈ U
∀t ∈ [0, τ ]. We assume non-anticipative strategies for the disturbance in-

put. A map ρ : U[0,t] → V[0,t] is non-anticipative for v if for every u(·), u′(·) ∈
U[0,t], u(s) = u′(s) for a.e. s ∈ [0, t] implies ρ[u](s) = ρ[u′](s) for a.e. s ∈ [0, t]

[27]. This results in a conservative formulation of our desired constructs by
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2.6. Robust Reachability Analysis: Competing Inputs

giving v a slight advantage over u. (cf. [89] for more detail.)

Definition 2.13 (Robust Maximal Reachable Set). The robust maximal

reachable set at time t is the set of initial states for which there exists a

control for every disturbance such that the trajectories emanating from those

states reach K exactly at time t:

Reach]t(K,U ,V) := {x0 ∈ X | ∃u(·) ∈ U[0,t],

∀ρ : U[0,t] → V[0,t], x
u,ρ[u]
x0 (t) ∈ K}. (2.31)

Definition 2.14 (Robust Minimal Reachable Tube). The robust minimal

reachable tube over the horizon [0, τ ] is the set of initial states for which there

exists a disturbance for every control such that the trajectories emanating

from those states reach K at some time t ∈ [0, τ ]:

Reach[[0,τ ](K,U ,V) := {x0 ∈ X | ∃ρ : U[0,τ ] → V[0,τ ],

∀u(·) ∈ U[0,τ ], ∃t ∈ [0, τ ], xu,ρ[u]
x0 (t) ∈ K}. (2.32)

Definition 2.15 (Discriminating Kernel). The (finite-horizon) discriminat-

ing kernel5 of K is the set of all initial states in K for which there exists a

control such that the trajectories emanating from those states remain within

K for every disturbance for all time t ∈ [0, τ ]:

Disc[0,τ ](K,U ,V) :=
{
x0 ∈ X | ∃u(·) ∈ U[0,τ ], ∀ρ : U[0,τ ] → V[0,τ ],

∀t ∈ [0, τ ], xu,ρ[u]
x0 (t) ∈ K

}
. (2.33)

Note that with V = {0} the discriminating kernel reduces to the viability

kernel under the deterministic system ẋ = f(x, u):

Disc[0,τ ](K,U , {0}) ≡ V iab[0,τ ](K,U). (2.34)

Finally, we will assume that the Isaac’s condition holds and therefore

5The infinite-horizon discriminating kernel DiscR+(K,U ,V) is also known as the robust
maximal controlled-invariant subset [11].
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the players’ order can be interchanged. As such, the discriminating kernel

and the robust minimal reachable tube are duals of one another:

Disc[0,τ ](Kc,U ,V) = (Reach[[0,τ ](K,U ,V))c. (2.35)

2.7 To Over- or Under-Approximate?

Any approximations of the minimal reachable tube (or its robust version)

must be an over-approximation since the target set K for this construct is

generally deemed unsafe. The minimal reachable tube is the set of states

that can become unsafe regardless of the control input applied. An under-

approximation of this set would exclude states for which such property holds,

falsely labeling them as safe.

In contrast, the viability (or the discriminating) kernel must be under-

approximated to ensure that every trajectory initiating from this set stays

viable in K. The constraint set K for this construct is generally associated

with safety. The states that belong to the viability kernel must retain the

property that for each of them there exists at least one control policy that can

keep the trajectory of the system in K. Over-approximating the viability

kernel would include states for which this property does not hold, falsely

labeling them as safe.

The approximative techniques we present in this thesis will ensure that

the minimal reachable tube is always over-approximated and that the via-

bility kernel is guaranteed to be under-approximated.
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Chapter 3

Schur-Based Structure

Decomposition1

The first decomposition technique we present to address Problem 2.1 is in-

spired by a model reduction algorithm for systems with unstable modes

[82, 110]. Our method decomposes LTI systems into either completely de-

coupled or weakly-coupled subsystems. Reachability analysis can be per-

formed on each resulting subsystem independently. Back projecting and

intersecting each of the lower-dimensional reachable tubes provides an over-

approximation of the actual minimal reachable tube. A Sylvester equation

(or an optimization problem) is solved in order to eliminate (or minimize)

the coupling between the subsystems. Additional constraints are imposed

when the control input is non-disjoint across subsystems, to prevent under-

approximation of the (unsafe) minimal reachable tube. In addition, at the

end of this section we will also provide conditions under which a subspace

reachable tube remains unchanged for all time and show how this can be

used in conjunction with the proposed Schur-based decomposition technique

to yield an even further reduction of complexity for a class of systems.

Outline Via Lemma 2.2, as in [104], we obtain an upper block triangu-

lar A-matrix for (2.13). We then perform a second similarity transforma-

tion and obtain a decoupled (or weakly-coupled) block diagonal matrix by

solving a Sylvester equation (or an optimization problem). Therefore, we

effectively decompose the system into two either completely decoupled or

unidirectionally weakly-coupled subsystems. In the case where the decom-

1A version of this chapter has been published in [57, 58].
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3.1. Disjoint Control Input

position is decoupled, the reachable tube is computed separately for each

isolated subsystem. When the decomposed subsystems are unidirectionally

weakly-coupled, the reachable tube is computed independently for the iso-

lated subsystem, whereas for the remaining subsystem, the effect of coupling

is accounted for by treating the coupling terms as disturbance and perform-

ing reachability with competing inputs. For both decoupled and unidirec-

tionally weakly-coupled decompositions, the intersection of back projections

of the lower dimensional reachable tubes is an over-approximation of the ac-

tual reachable tube in the transformed coordinate space. When the control

input across the decomposed subsystems is non-disjoint, a constrained opti-

mization problem is solved in order to make one of the subsystems ETUC.

In the following analysis, we assume a partitioning of (2.13) that results

in exactly two subsystems. However, the proposed method is generalizable

to N subsystems by applying the same decomposition algorithm to each

subsystem iteratively. A higher number of subsystems (i.e. iterated decom-

position) may result in a more conservative over-approximation of the actual

reachable tube.

For k < n, we now apply Lemma 2.2 with transformation matrix U ∈
Rn×n to (2.13) to obtain [

Ã11 Ã12 B̃1

0 Ã22 B̃2

]
(3.1)

with Ã11 ∈ Rk×k, Ã12 ∈ Rk×(n−k), Ã22 ∈ R(n−k)×(n−k), B̃1 ∈ Rk×p, and

B̃2 ∈ R(n−k)×p.

3.1 Disjoint Control Input

Consider the case in which the control input is disjoint across candidate

subsystems.

Proposition 3.1. If there exists a solution X ∈ Rk×(n−k) to the Sylvester

equation

Ã11X −XÃ22 + Ã12 = 0, (3.2)
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3.1. Disjoint Control Input

then a transformation

W =

[
Ik X

0 In−k

]
∈ Rn×n (3.3)

makes (3.1) completely decoupled.

Proof. cf. [82, 104, 110]. Applying the (invertible) transformation W to

(3.1), we obtain[
Ã11 Ã11X−XÃ22+Ã12 B̂1

0 Ã22 B̂2

]
=

[
Ã11 0 B̂1

0 Ã22 B̂2

]
. (3.4)

Notice that the resulting subsystems
[
Ã11 B̂1

]
and

[
Ã22 B̂2

]
have

been effectively decoupled through the coordinate transformation z = T−1x,

T = UW . As we shall see in Section 3.3, reachability analysis (in this trans-

formed coordinate space) can then be performed on each lower-dimensional

subsystem separately.

Now consider the case in which there is no solution to the Sylvester

equation (3.2).

Proposition 3.2. If (3.2) does not have a solution, then the transformation

(3.3) with

X = arg min
Q∈Rk×(n−k)

‖Ã11Q−QÃ22 + Ã12‖ (3.5)

results in unidirectionally weakly-coupled subsystems w.r.t. (3.1).

Proof. Consider Ac := Ã11X −XÃ22 + Ã12 6= 0 in (3.4). It is clear that in

the transformed coordinate space characterized by z = (UW )−1x, the state

vector z2 evolves independently of z1 since ż2 = Ã22z2 + B̂2u2. However, z1

is affected by z2 through Ac. That is, we have ż1 = Ã11z1 + B̂1u1 + Acz2.

(Note that ui, i ∈ {1, 2}, is the effective portion of the input vector u for the

ith subsystem.) Minimization of the infinity norm of Ac therefore translates

into minimizing, i.e. weakening, the worst-case unidirectional coupling of
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3.2. Non-Disjoint Control Input

z1 with z2. To see this, let X∗ = arg min{‖Ã11Q − QÃ22 + Ã12‖ | Q ∈
Rk×(n−k)}. Then the hypothesis ‖Ã12‖ < ‖Ã11X

∗ − X∗Ã22 + Ã12‖ would

imply that X∗ = 0 can never be a solution. Since there are no constraints in

(3.5) imposing this restriction, by contradiction we conclude that ‖Ã11X
∗−

X∗Ã22 + Ã12‖ ≤ ‖Ã12‖. Therefore, according to Definition 2.6, the resulting

subsystems are unidirectionally weakly-coupled.

Remark 3.1. The objective function of (3.5) is convex and therefore a

solution always exists.

Remark 3.2. The main rationale behind minimizing the infinity norm of

the unidirectional coupling term (and thus, obtaining unidirectionally-weakly

coupled subsystems) is that for the purpose of reachability analysis, the in-

finity norm of this term will be used to formulate an upper-bound on the

magnitude of the disturbance to the upper subsystem. This will be discussed

further in Section 3.3.

3.2 Non-Disjoint Control Input

Now consider a decomposition in which the control input is non-disjoint. In

this case even if the dynamics of the subsystems are completely decoupled,

their evolution is tightly paired through a common input. The difficulty

arises, for example, when in the reachability computation a control value

deemed optimal for one subsystem is in fact non-optimal for the full-order

system. Blindly performing reachability for each subsystem separately may

result in an under-approximation and additional measures have to be taken

to ensure the over-approximation of the actual (unsafe) minimal reachable

tube.

One way to remedy this issue is by ensuring that at least one of the

subsystems in the transformed coordinate space is ETUC. It is clear that

in such a case the (otherwise non-disjoint) control action does not affect

the evolution of the reachable tube of the ETUC subsystem. Therefore, an

optimal control input for the subsystem with nonzero input matrix is also

optimal for the full-order system.
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More formally, if either the pair (Ã22, B̂2) or the pair (Ã11, B̂1) in (3.4)

is made ETUC, reachability analysis can be performed as in the disjoint

control input case, separately for each subsystem.

Assumption 3.1. C (B̃T
1 ) ⊆ C (B̃T

2 ) with C (·) the column-space operator.

Proposition 3.3. The transformation (3.3) with

X = arg min
Q∈Rk×(n−k)

‖Ã11Q−QÃ22 + Ã12‖ (3.6)

subject to QB̃2 = B̃1

results in unidirectionally coupled subsystems. Moreover, (Ã11, B̂1) is ETUC.

Proof. Assumption 3.1 is the necessary and sufficient condition for solvabil-

ity of the overdetermined equality constraint in (3.6) (cf. Appendix A.1). To

see the trivial-uncontrollability of (Ã11, B̂1) consider B̂ := W−1B̃ in (3.4).

We have [
B̂1

B̂2

]
:=

[
Ik −X
0 In−k

][
B̃1

B̃2

]
=

[
B̃1 −XB̃2

B̃2

]
. (3.7)

Constraining the optimizer in (3.6) to choose from the class of solutions{
X ∈ Rk×(n−k) | XB̃2 = B̃1

}
simply enforces B̂1 = 0.

The resulting subsystems can now be treated as in the disjoint control

input case, and hence an over-approximation of the reachable tube in each

subspace can be computed.

3.3 Reachability in Lower Dimensions

Denote by

S1 := Rk and S2 := Rn−k (3.8)

the subspaces of Rn in which the two subsystems evolve. In the new coordi-

nate space z = T−1x, T := UW reachability analysis can be performed on

each lower-dimensional subsystem separately:

34



3.3. Reachability in Lower Dimensions

Algorithm 3.1 Reachability in lower dimensions (Schur-Based)

1: Zτ ← T−1K
2: Z iτ ← ProjSi(Zτ ), ∀i ∈ {1, 2} . project onto ith subspace

For lower subsystem:

3: Z2
[0,τ ] ← Reach[[0,τ ](Z2

τ ,U)

For upper subsystem:

4: Treat Acz2 as disturbance . Ac := Ã11X −XÃ22 + Ã12

5: ζ ← ‖z2‖ ≡ supv∈Z2
[0,τ ]
‖v‖

6: Compute upper-bound ‖Acz2‖ ≤ ‖Ac‖ζ
7: Z1

[0,τ ]
consrv.←− Reach[[0,τ ](Z1

τ ,U ,B(‖Ac‖ζ))

8: return(Z1
[0,τ ],Z2

[0,τ ])

Note that steps 4 through 6 of Algorithm 3.1 may or may not be needed

depending on whether the subsystems are obtained from Propositions 3.1,

3.2, or 3.3. The following scenarios describe how the input(s) are quantified

to construct the subsystem reachable tubes:

S1 (Proposition 3.1 is used): For both Z1
[0,τ ] and Z2

[0,τ ], the single input

is control and it is universally quantified.

S2 (Proposition 3.2 is used): For Z1
[0,τ ] the control input is universally

quantified while the disturbance input (unidirectional coupling) is ex-

istentially quantified. For Z2
[0,τ ] the single input is control and it is

universally quantified.

S3 (Proposition 3.3 is used): For Z1
[0,τ ] the single input is disturbance

(unidirectional coupling) and it is existentially quantified. Note that

in this case the robust minimal reachability operator in step 7 of the al-

gorithm is effectively replaced by Reach][0,τ ](Z1
τ ,B(‖Ac‖ζ)). For Z2

[0,τ ]

the single input is control and it is universally quantified.

The over-approximation of the actual minimal reachable tube of the full-

order system in X can be obtained using the following lemma.
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3.3. Reachability in Lower Dimensions

Lemma 3.1 ([91, 113]). Let Z i[0,τ ], i ∈ {1, 2}, be the computed lower-

dimensional over-approximative reachable tube of subsystem i. Then the

inverse transformation of the intersection of the back-projection of these sets

onto Rn is a guaranteed over-approximation of the actual full-order reachable

tube Reach[[0,τ ](K,U) of the system (2.13):

T
(

(Z1
[0,τ ] × S2) ∩ (S1 ×Z2

[0,τ ])
)
⊇ Reach[[0,τ ](K,U). (3.9)

3.3.1 Formulating an Upper-Bound on Growth of Z1
[0,τ ] in

Scenario S3

When the subsystems are obtained via Proposition 3.3, the reachable tube

in the subspace of the ETUC subsystem is computed without the need for

solving a differential game. In fact, for this subsystem the unidirectional

coupling is treated as disturbance and, therefore, it is existentially quanti-

fied. Consequently, this disturbance together with the dynamics strive to

enlarge the reachable (unsafe) set as much as possible. This allows us to for-

mulate an analytic upper-bound on the over-approximation of the reachable

tube in this subspace in terms of system and design parameters:

Let z̄1 ∈ Z1
τ and suppose D[0,τ ] is the set of measurable functions from

[0, τ ] to B(‖Ac‖ζ). There exists an admissible input ϑ(·) ∈ D[0,τ ] such that

(using time-reversed dynamics) we have

z1 := e−Ã11τ z̄1 −
∫ τ

0
e−Ã11(τ−r)ϑ(r)dr, (3.10)

z1 ∈ Z1
[0,τ ]. (3.11)

Bounding the effect of the input on the evolution of the trajectories we
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3.3. Reachability in Lower Dimensions

obtain

‖z1 − e−Ã11τ z̄1‖ ≤
∫ τ

0
e‖Ã11‖(τ−r)‖Ac‖ζdr (3.12)

=
e‖Ã11‖τ − 1

‖Ã11‖
‖Ac‖ζ (3.13)

=

(
lim
M→∞

M∑
i=1

τ i‖Ã11‖i−1

i!

)
‖Ac‖ζ (3.14)

≤
(

lim
M→∞

M∑
i=1

τ i
(√
k σ(Ã11)

)i−1

i!

)
‖Ac‖ζ (3.15)

=: µ[0,τ ] (3.16)

where σ(·) is the largest singular value operator, and k is the dimension of

the ETUC subsystem. Therefore, an upper-bound for how much Z1
[0,τ ] can

grow in backward time can be written as

Z1
[0,τ ] ⊆

 ⋃
t∈[0,τ ]

e−Ã11tZ1
τ

⊕ B(µ[0,τ ]) (3.17)

in which ⊕ denotes the Minkowski sum. In particular, the choice of k,

the magnitude of the unidirectional coupling ‖Ac‖, the supremum of the

reachable tube in the lower subspace ζ = supv∈Z2
[0,τ ]
‖v‖, and the largest

singular value of the upper subsystem σ(Ã11) can all affect the conservatism

of the reachable tube Z1
[0,τ ]. Moreover, given k and τ , the flexibility of the

Schur form in placing the eigenvalues in any order along the block-diagonals

of Ã can be exploited to make this subsystem evolve with slower dynamics.

Through various tests we were able to confirm that doing so could potentially

prevent the excessive growth of Z1
[0,τ ] by influencing both e−Ã11t and µ[0,τ ].
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3.4. Further Reduction of Complexity

3.4 Further Reduction of Complexity in

Reachability for a Class of Unstable Systems

We now demonstrate that for a specific class of unstable LTI systems, the

Schur-based decomposition can be used to further reduce the computational

burden associated with reachability analysis.

Particularly, we decompose any full-order unstable system into stable

and anti-stable subsystems with disjoint input across them. To do this,

we employ the presented Schur-based decomposition while rearranging the

order of eigenvalues such that the lower (controlled) subsystem contains

only the non-negative eigenvalues and the upper (uncontrolled and possibly

perturbed) subsystem contains the strictly-negative ones. As we will show in

Proposition 3.4, under certain conditions, reachability analysis in the anti-

stable subspace need not be performed since the target and the reachable

tubes coincide for all time.

Proposition 3.4. Suppose that for a controlled linear system (2.12) the

following conditions are satisfied.

(i) K is convex (but possibly arbitrarily shaped) and 0 ∈ K;

(ii) the A-matrix is anti-stable (analytic in the open left-half complex plane)

with repeated and real eigenvalues λ1 = · · · = λn ≥ 0;

(iii) the algebraic and geometric multiplicities of λi(A) are equal.

Then for any τ ∈ R+,

Reach[[0,t](K,U) = K ∀t ∈ [0, τ ]. (3.18)

Proof. The proof is provided in Appendix A.2.

Remark 3.3. Condition (i) is easily generalizable to star-convex sets for

which the origin is the convergence point (any line segment from the origin

to x ∈ K is contained in K). An example of this is when the states are

constrained to lp-space with 0 < p < 1.
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3.4. Further Reduction of Complexity

K

nonconvex set

λ λ= ji

Figure 3.1: Phase-plane of a planar system with a non-convex target set K.
Even though conditions (ii) and (iii) are satisfied, the backward
reachable tube will grow.

An intuitive 2-dimensional illustration of various cases that would vio-

late conditions in Proposition 3.4 is given in Figures 3.1 and 3.2 where the

trajectories are shown in backward time.

Note that although Proposition 3.4 is stated in terms of a general full-

order system (and as such, may seem too restrictive), it makes the following

assertion:

Corollary 3.1. If any isolated subsystem of any given unstable system in

any coordinate space satisfies the conditions in Proposition 3.4, then the

minimal reachable tube for that subsystem remains precisely equal to the

target set in the respective subspace.

Suppose that reachability analysis is to be performed for an unstable

system ẋ = Ax + Bu, u ∈ U with k negative and (n − k) non-negative

eigenvalues for a target set K. We apply Schur-based decomposition with

an appropriately synthesized transformation matrix T to obtain[
Ã− Ac 0

0 Ã+ B̂2

]
(3.19)

partitioned such that Ã+ and Ã− contain only non-negative and strictly-

negative eigenvalues, respectively. If Ã+ and K satisfy the conditions (i),
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Re( ) 0
Im( ) 0

λ
λ
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∧ =/

Im( ) 0
Re( ) 0

λ
λ

=/
∧ =/

jiλ λ=/

jiλ λ=
Algebraic     Geometric>multiplicity   multiplicity K

Figure 3.2: Phase-plane with various eigenvalue scenarios that would violate
conditions of Proposition 3.4 and thus causing the backward
reachable tube to grow.

(ii), and (iii), then according to Corollary 3.1 the reachable tube in the

lower subspace does not grow and thus need not be computed. Reachabil-

ity analysis is performed only for the upper subsystem resulting in further

reduction of complexity by avoiding altogether the reachable tube compu-

tation in the lower subspace. Specifically, step 3 in Algorithm 3.1 is entirely

omitted. The over-approximation of the full-order reachable tube can then

be calculated according to (3.9) with Z2
[0,τ ] = Reach[[0,τ ](ProjS2(T−1K),U) ≡

ProjS2(T−1K) and Z1
[0,τ ] = Reach][0,τ ](ProjS1(T−1K),B(‖Ac‖ζ)).

Note that linear transformation preserves convexity. Therefore the pro-

jection of the transformation of K onto the lower subspace (i.e. Z2
τ :=

ProjS2(T−1K)) is convex if K is, and contains the origin if K does.

3.5 Extension to Switched Linear Systems

The extension of our transformation-based method to switched dynami-

cal systems is fairly straightforward. Consider the hybrid automaton H =

(Q,X , f,U , E,R) with discrete modes Q = {qi}, continuous states x ∈ X ,
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3.6. Numerical Examples

continuous control inputs u ∈ U , vector fields

f : Q×X × U → X ,
(qi, x, u) 7→ Aix+Biu,

(3.20)

edges E ⊆ Q×Q, and (identity) reset maps R : E ×X → 2X .

Let K(qi) and Reach[[0,τ ](qi,K(qi),U) denote the target and the reach-

able tubes in mode qi ∈ Q, respectively. Also let Ti be the transformation

matrix for mode qi obtained from the Schur-based decomposition technique

described previously. For simplicity of presentation we assume that H has

only two modes qi and qj such that (qi, qj) ∈ E. The backward reachable

tube in mode qj can be directly expressed as

TjReach
[
[0,τ ]

(
qj , T

−1
j TiReach

[
[0,τ ]

(
qi, T

−1
i K(qi),U

)
,U
)
. (3.21)

Reachability analysis is then performed on lower-dimensional subsystems in

each mode according to Algorithm 3.1.

3.6 Numerical Examples

Although complexity reduction through Schur-based decomposition can be

used in conjunction with any reachability/viability technique that can ac-

commodate both existentially and universally quantified inputs, we demon-

strate the applicability and practicality of our method using a number of

examples (up to 8D) that employ the Level Set Toolbox (LS) [90]. While

LS has mainly been used for systems of low dimensionality [8], our complex-

ity reduction approach can facilitate the use of LS for higher dimensional

systems for which safety-preserving controller synthesis and/or handling of

non-convex, arbitrarily-shaped sets is important.

All computations are performed on a dual core Intel-based computer with

2.8 GHz CPU, 6 MB of cache and 3 GB of RAM running single-threaded

32-bit Matlab 7.5.
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3.6. Numerical Examples

Figure 3.3: The non-convex target set Zτ in the transformed coordinate
space.

3.6.1 Arbitrary 3D System

Consider an arbitrary 3D LTI system with

A =

−0.5672 −0.7588 −0.6282

3.1364 −1.1705 2.3247

1.8134 −1.7689 −2.6930

 , B =

 0.0731 −0.1639

−0.7377 −0.3578

0.1470 0.2410


and input u = [u1, u2]T ∈ R2, ‖u‖ ≤ 1.1. We choose a non-convex target

(unsafe) set K ⊂ R3 such that in the transformed coordinate space we

have Zτ = T−1K as shown in Figure 3.3. Here, T is the transformation

matrix obtained through Proposition 3.1 that decomposes the system into

two subsystems (one 2D and one 1D) with disjoint control across them:

T−1AT =


−1.6653 −3.4560 0

1.8706 −1.4653 0

0 0 −1.3000

 , T−1B =


−0.7530 0

0.0640 0

0 0.2500

 .
Hence, the decoupled subsystems are ż1 =

[−1.6653 −3.4560
1.8706 −1.4653

]
z1 +

[−0.7530
0.0640

]
u1

and ż2 = [−1.3000 ] z2 + [ 0.2500 ]u2.

We obtain an over-approximation of the actual reachable tube, as shown

in Figure 3.4. Reachability calculation is performed over a grid with 101
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3.6. Numerical Examples

(a) Comparison in z-space (b) (z1, z2) cross-section

(c) (z1, z3) cross-section (d) (z2, z3) cross-section

Figure 3.4: Schur-based over-approximation (transparent light) vs. actual
(solid dark) reachable tubes in the transformed coordinate space
for Example 3.6.1.

nodes in each dimension for τ = 2 s. The computation time for the actual

and the Schur-based reachable tubes (including decomposition and projec-

tions) were 5823.73 s and 22.87 s, respectively.
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3.6. Numerical Examples

3.6.2 4D Aircraft Dynamics

Consider longitudinal aircraft dynamics ẋ = Ax+Bδe,

A =


−0.0030 0.0390 0 −0.3220

−0.0650 −0.3190 7.7400 0

0.0200 −0.1010 −0.4290 0

0 0 1 0

 , B =


0.0100

−0.1800

−1.1600

0


with state x = [u, v, θ̇, θ]T ∈ R4 comprised of deviations in aircraft velocity

[ft/s] along and perpendicular to body axis, pitch-rate [crad/s], and pitch

angle [crad] respectively2, and with input δe ∈ [−13.3◦, 13.3◦] ⊆ R the ele-

vator deflection. These matrices represent stability derivatives of a Boeing

747 cruising at an altitude of 40 kft with speed 774 ft/s [16].

Define a non-convex target (unsafe) set K such that in the transformed

coordinate space Zτ = {z ∈ R4 | ‖z‖ > 0.15, z = T−1x, x ∈ K} where

T is the transformation matrix obtained through our method. We first de-

compose the system into two 2D subsystems. Since the control input is

non-disjoint across the resulting subsystems, we use Proposition 3.3 and

obtain unidirectionally coupled subsystems, one of which is ETUC (see Ap-

pendix A.3). The reachability calculation is performed over a grid with 41

nodes in each dimension for τ = 5 s. The computation time for the actual

and the Schur-based minimal reachable tubes (including decomposition and

projections) were 28546.80 s and 54.64 s, respectively—a significant reduc-

tion.

Since the computed sets are 4D, we plot a series of 3D snapshots of these

4D objects at specific values of z4 (Figure 3.5). The aircraft flight envelope

(safe) is represented by the area inside of the shaded regions.

3.6.3 8D Distillation Column

Consider the dynamic model of a binary distillation column obtained from

[111] with

2crad = 0.01 rad ≈ 0.57◦.
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3.6. Numerical Examples

Figure 3.5: Schur-based (solid dark) vs. actual (transparent light) finite-
horizon viability kernels (safe) in the transformed coordinate
space for Example 3.6.2. The computed minimal reachable tube
and its over-approximation are the non-convex complements of
these objects.

A =



−0.5774 3.0567 0.0073 −0.8121 0.3034 −0.3035 0.0072 −0.1542

−2.7290 −0.7147 −0.3430 1.5321 0.6643 0.2896 −0.0013 0.0926

0 0 −0.3891 −0.9956 0.0182 0.0235 0.0049 0.0506

0 0 1.3640 −1.3363 −0.9037 −0.4686 −0.0009 −0.1887

0 0 0 0 −0.7357 −0.2275 −0.0082 −0.0021

0 0 0 0 0 −0.2259 0.0021 −0.0457

0 0 0 0 0 0 −0.0052 0.0024

0 0 0 0 0 0 0 −0.0755


B =

[
−0.0335 −0.4534 −0.8005 0.5497 1.2886 0.3132 0.7117 0.0599

−0.1228 −0.0711 −0.2612 −0.1344 −0.0504 −0.2249 −0.6994 −0.3014

]T

.

The input u = [u1, u2]T ∈ R2 with u1, u2 ∈ [0, 1] is comprised of reflux

and boilup flows, respectively. The full-order system with state vector x ∈
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3.6. Numerical Examples

R8 is first decomposed into two (unidirectionally coupled) 4D subsystems

using Proposition 3.3, since the control vector is non-disjoint across the two

candidate subsystems. Similarly, each of these 4D subsystems is decomposed

into two 2D subsystems. Since the upper 4D subsystem is made ETUC

through (3.6), its decomposition is disjoint and therefore Proposition 3.1 is

used to obtain the 1st and 2nd (decoupled) 2D subsystems. On the other

hand, for the lower 4D subsystem the decomposition results in non-disjoint

control input. Therefore Proposition 3.3 is employed and the 3rd and 4th

(unidirectionally coupled) 2D subsystems are obtained (see Appendix A.3).

Reachability is first performed on the 3rd and 4th subsystems while

taking the effect of unidirectional coupling into account. Next, the reachable

tubes of the 1st and 2nd subsystems are computed while treating the effect

of the 3rd and 4th subsystems as disturbance. We label the 2D transformed

state subspaces as w̃1 = [w1, w2]T, w̃2 = [w3, w4]T, q̃1 = [q1, q2]T, and q̃2 =

[q3, q4]T. Notice that R4 3 q = [q̃T1 , q̃
T
2 ]T = T−1

3 z̃2, R4 3 w = [w̃T
1 , w̃

T
2 ]T =

T−1
2 z̃1, and R8 3 z = [z̃T1 , z̃

T
2 ]T = T−1

1 x with z̃1, z̃2 ∈ R4.

We assume that the target (unsafe) set K ⊂ R8 is chosen such that

the transformations T−1
1 ∈ R8×8, T−1

2 ∈ R4×4, and T−1
3 ∈ R4×4 result in

Wτ := {w ∈ R4 | ‖w‖ > 20} and Qτ := {q ∈ R4 | ‖q‖ > 20}. The target

sets for the 2D subsystems is simply the projection ofWτ and Qτ onto their

corresponding subspaces.

Lower dimensional reachability is performed over a grid with 101 nodes

in each dimension for τ = 6 s. The overall computation time (including

decomposition and projections) was 94.31 s. The complement of the shaded

regions in Figure 3.6 over-approximate the reachable (unsafe) set in each

of the 2D subspaces. The full 8D reachable tube is the intersection of the

back-projection of the 2D reachable tubes.

The actual (minimal) reachable tube is not shown since it is prohibitively

computationally expensive to compute using any Eulerian method including

LS.
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Figure 3.6: The Schur-based viability kernel (safe) of Example 3.6.3 in trans-
formed 2D subspaces.

3.6.4 4D Unstable System (An Example for Section 3.4)

Consider an unstable system [51, Ex. 2.2.1] with

A =


0 1 0 0

0.1023 0 −0.0085 0

0 0 0 1

−0.0153 ε 0.0993 0

 , B = 10−3×


0

−0.8696

0

0.1304

.

Let the eigenvalues of the system be slightly perturbed as determined by

parameter ε ∈ R. With ε = 0.0491 the real anti-stable eigenvalues coincide.

We apply the method described in Section 3.4 and obtain two 2D sub-

systems (with separated stable and anti-stable eigenvalues) across which the
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3.7. Summary and Further Discussions

input is disjoint. The system matrices in the transformed coordinates are

T−1AT=


−0.3426 0.0354 −0.6988 0.1399

−0.0000 −0.2912 0.9481 −0.0000

0 0 0.3150 −0.0135

0 0 0.0003 0.3188

 , T−1B=10−3×


0

0

−0.7621

0.3426

.

A target (unsafe) set K is chosen such that Zτ = {z ∈ R4 |
√
zTz ≤

0.2, z = T−1x, x ∈ K}, i.e. a small Euclidean ball of radius 0.2 around the

origin. The magnitude of the input is bounded by |u| ≤ 1. Using reachability

analysis we attempt to identify the set of initial states that reach Zτ in τ = 3

seconds, regardless of the input applied.

Since all conditions in Proposition 3.4 are satisfied for the lower sub-

system, to obtain an over-approximation of the full-order system, we only

compute the over-approximation of the reachable tube in its stable sub-

space. The minimal reachable tube and its over-approximation are shown

in Figure 3.7. Reachability was performed over a grid with 41 nodes in

each dimension. The overall computation time (including decomposition

and projections) was 2.8 s. In comparison, computing the reachable tube of

the full-order system would require 1741.6 s.

3.7 Summary and Further Discussions

In this chapter we presented our first decomposition technique, Schur-based

decomposition, to facilitate a comparatively more scalable computation of

the minimal reachable tube (and by duality the viability kernel) for LTI

systems using Eulerian methods.

The decomposition was evaluated in terms of whether the resulting sub-

systems had disjoint or non-disjoint control inputs. In the event that a

Sylvester equation can be solved, the decomposition yields two decoupled

subsystems. When the Sylvester equation cannot be solved, its infinity norm

minimization yields two weakly coupled subsystems. Additional constraints

are considered for the case in which the control input is non-disjoint across
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3.7. Summary and Further Discussions

Figure 3.7: 3D snapshots of the actual (solid dark) unsafe reachable tube vs.
its over-approximation (transparent light) in the transformed
coordinate space for Example 3.6.4. The over-approximation
was computed using Schur-based decomposition in conjunction
with Proposition 3.4 for only one of the subsystems.

decomposed subsystems. Reachability analysis is then performed on the re-

sulting subsystems independently. We applied this technique to a variety of

examples computed with the Level-Set Toolbox, and found computational

time significantly reduced when our method was employed. Furthermore,

we presented conditions under which the minimal reachable tube and the

target set coincide. We then showed that the proposed Schur-based decom-

position can be used together with these conditions in order to significantly

reduce the computational complexity of reachability analysis for a class of

unstable systems.

The introduced conservatism in the over-approximation of the minimal

reachable tube can be mitigated to some degree by considering a time-

dependent formulation of the disturbance to the upper subsystem and per-

forming reachability in sub-intervals of [0, τ ]. This procedure is described
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towards the end of the next chapter for our second decomposition technique.
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Chapter 4

Riccati-Based Structure

Decomposition1

Our second proposed decomposition technique that aims to address Prob-

lem 2.1 draws upon the so-called Riccati transformation—a two-stage coor-

dinate transformation based on the solutions of a nonsymmetric algebraic

Riccati equation (NARE) and a Sylvester equation. This transformation,

originally introduced in [19] for decoupling of singularly perturbed systems,

was later generalized in [62] to larger classes of autonomous LTI systems.

An in-depth overview of the application of this transformation in optimal

control theory, singular perturbation theory, and asymptotic approximation

theory can be found in [112], while more recent advances are given in [32]

and [107].

Outline When the transformation results in input that is disjoint across

the candidate subsystems, the standard Riccati transformation can be used

to decompose the system into two decoupled subsystems. For the case in

which the control input is non-disjoint across the decomposed subsystems,

we propose a modified Riccati transformation (an extension to the stan-

dard Riccati transformation) which, in addition to parameterizing the uni-

directional coupling between the subsystems, makes one of the subsystems

ETUC. In the new coordinate space reachability analysis can then be per-

formed in lower dimensions for each subsystem separately. The intersection

of back projections of the lower dimensional reachable tubes is an over-

approximation of the actual reachable tube in the transformed coordinate

1A version of this chapter has been published in [56].
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space.

In the following analysis we assume a partitioning of (2.13) that results in

exactly two subsystems. However, the proposed method can be generalized

to N subsystems by applying the same decomposition algorithm iteratively

(see Section 4.3).

Let (2.13) be partitioned as

S =

[
A11 A12 B1

A21 A22 B2

]
(4.1)

with A11 ∈ Rk×k, A12 ∈ Rk×(n−k), A21 ∈ R(n−k)×k, A22 ∈ R(n−k)×(n−k),

B1 ∈ Rk×p, and B2 ∈ R(n−k)×p, for some k < n. Now consider the nonsin-

gular transformation matrices

T1 =

[
Ik 0

−L In−k

]
∈ Rn×n, (4.2)

T2 =

[
Ik M

0 In−k

]
∈ Rn×n. (4.3)

With L ∈ R(n−k)×k and M ∈ Rk×(n−k) that satisfy

(NARE:) R(L) := LA11 −A22L− LA12L+A21 = 0, (4.4)

(Sylvester:) S (M) :=
(
A11 −A12L

)
M −M

(
A22 + LA12

)
+A12 = 0,

(4.5)

the transformed system is

S ′ = T−1
1 (S) =

 A11 −A12L A12 B1

��
��*0

R(L) A22 + LA12 LB1 +B2

 , (4.6)

S ′′ = T−1
2 (S ′) =

[
A11 −A12L ���

�:0
S (M) (I −ML)B1 −MB2

0 A22 + LA12 LB1 +B2

]
.

(4.7)

52



4.1. Disjoint Control Input

Solutions to (4.4) and (4.5) may not always exist.

4.1 Disjoint Control Input

Consider the resulting subsystems

S ′′1 =
[
A11 −A12L (I −ML)B1 −MB2

]
, (4.8)

S ′′2 =
[
A22 + LA12 LB1 +B2

]
. (4.9)

Suppose the control input is disjoint across these dynamically decoupled can-

didate subsystems (that is, no common input occurs in both subsystems).

If the following assumption regarding the input set is satisfied, reachability

analysis for each subsystem can be performed independently. Paralleliza-

tion of reachability calculations in each subspace could further reduce the

computational time.

Assumption 4.1. U =
∏2
i=1 Ui where Ui is the subset of Rp from which the

portion of the input vector u acting on subsystem i draws its values.

Assumption 4.1 enures that the inputs acting on the two subsystems

are independent of one another. Note that this condition is satisfied for

most physical systems where actuators are commonly uncorrelated. In the

general case, however, we can under-approximate U by a hyper-rectangle

formed by the direct product of p one-dimensional intervals. The resulting

reachable tube in each subspace will be a conservative over-approximation

of the actual reachable tube in that subspace since for any given system, a

smaller input authority yields a larger (minimal) reachable tube.

4.2 Non-Disjoint Control Input

When the control input across the candidate subsystems is non-disjoint,

even if the states of the subsystems are completely decoupled, their evo-

lution is tightly paired through common input. Difficulty arises, for ex-

ample, when in the reachability computation a control value deemed op-
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4.2. Non-Disjoint Control Input

timal for one subsystem is in fact non-optimal for the full-order system.

Blindly performing reachability for each subsystem separately may result in

an under-approximation, so appropriate measures must be taken to ensure

over-approximation of the actual (unsafe) reachable tube.

One way to remedy this issue is by ensuring that at least one of the

subsystems in the transformed coordinate space is ETUC. It is clear that

in such a case the (otherwise non-disjoint) control action does not affect

the evolution of the ETUC subsystem. Therefore, an optimal input for the

subsystem with nonzero input matrix is also optimal for the full-order sys-

tem. We propose a modified Riccati transformation that ensures that one of

the subsystems in the transformed coordinates is ETUC, hence reachability

analysis can be performed separately for each subsystem in its corresponding

lower dimensional subspace.

Remark 4.1. With an ETUC subsystem, Assumption 4.1 on the shape of

the input set is lifted: The input u acts only on one of the subsystems,

therefore the shape of U becomes irrelevant.

4.2.1 Transformation 1 (ETUC Subsystem)

Consider a transformation through which the lower subsystem can be made

ETUC. That is, in (4.6) for the transformation matrix T1 we seek an L in

R(L) that is also a solution of LB1 +B2 = 0.

Assumption 4.2. C (BT
2 ) ⊆ C (BT

1 ) with C (·) the column-space operator.

Lemma 4.1. Under Assumption 4.2, the class of solutions of LB1 = −B2

w.r.t. L ∈ R(n−k)×k can be characterized by

L :=
{
−B2B

†
1 + Z − ZB1B

†
1, Z ∈ R(n−k)×k

}
, (4.10)

where † denotes the Moore-Penrose pseudoinverse.

Proof. cf. [103] and [45]. Assumption 4.2 is the necessary and sufficient

condition for solvability of LB1 = −B2. (See Appendix A.1.)
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4.2. Non-Disjoint Control Input

Substituting (4.10) for L in R(L) we obtain

R̂(Z) := ZΠ + Γ + Z
(
A12 −B1B

†
1A12

)
Z(B1B

†
1 − I)

+
(
A22 −B2B

†
1A12

)
Z(B1B

†
1 − I),

(4.11)

where

Π = −(B1B
†
1 − I)

(
A11 +A12B2B

†
1

)
, (4.12)

Γ =
(
A22B2B

†
1 +A21

)
−B2B

†
1

(
A12B2B

†
1 +A11

)
. (4.13)

To eliminate the non-invertible term (B1B
†
1−I) from the right-hand side

of (4.11) we equate R̂(Z) to some rank correcting term δF (Z) with

F (Z) := Z
(
A12 −B1B

†
1A12

)
Z +

(
A22 −B2B

†
1A12

)
Z (4.14)

and δ ∈ R\{−1, 0} a finite (but possibly large) parameter such that
(
B1B

†
1−

(δ + 1)I
)

is nonsingular:

R̂(Z) = ZΠ + Γ + Z
(
A12 −B1B

†
1A12

)
Z(B1B

†
1 − I)

+
(
A22 −B2B

†
1A12

)
Z(B1B

†
1 − I) (4.15)

= ZΠ + Γ + F (Z)(B1B
†
1 − I)

.
= δF (Z). (4.16)

Simple algebraic manipulation and post-multiplication of R̂(Z)−δF (Z) = 0

by
(
B1B

†
1 − (δ + 1)I

)−1
then results in a NARE in the variable Z:

R1(Z) := ZÃ11 − Ã22Z − ZÃ12Z + Ã21 = 0 (4.17)

with Ã11 = Π
(
B1B

†
1 − (δ + 1)I

)−1
, Ã21 = Γ

(
B1B

†
1 − (δ + 1)I

)−1
, Ã12 =(

B1B
†
1A12 −A12

)
, and Ã22 =

(
B2B

†
1A12 −A22

)
.

Proposition 4.1. If a root Z ∈ R(n−k)×k of the NARE (4.17) exists, it

55



4.2. Non-Disjoint Control Input

constitutes an L ∈ L that simultaneously satisfies

LB1 +B2 = 0, (4.18a)

R(L) = LA11 −A22L− LA12L+A21 = δF (Z). (4.18b)

Proof. By virtue of (4.16), a matrix Z that satisfies (4.17) also satisfies

(4.18) via (4.10).

Remark 4.2. If p ≥ k in partitioning of (4.1), the set L reduces to the

singleton {−B2B
†
1} and the method still applies.

Theorem 4.1. The transformation (4.2) with L ∈ R(n−k)×k obtained through

Proposition 4.1 makes the lower subsystem in (4.1) ETUC. Moreover, the

coupling terms are altered such that the effect of the upper subsystem on the

evolution of the lower subsystem is parameterized by δ.

Proof.

S ′ = T−1
1 (S) =

[
A11 −A12L A12 B1

LA11 −A22L− LA12L+A21 A22 + LA12 LB1 +B2

]
(4.19)

=

[
A11 −A12L A12 B1

δF (Z) A22 + LA12 0

]
. (4.20)

Remark 4.3. Note that the imposed δ-parameterization of the off-diagonal

term δF (Z) in (4.20) provides an additional degree of freedom in adjusting

(minimizing) the coupling of the two subsystems in the new coordinates.

This will be discussed further in Section 4.2.3.

Nonsymmetric Riccati equations have long been an active area of re-

search [31]. To solve (4.17) we draw on the fixed-point algorithm described

in [62] and derive the necessary conditions for the existence and uniqueness

of a real root Z.
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Suppose
(
B2B

†
1A12 −A22

)
is invertible. Define initial values as

Z0 :=
(
B2B

†
1A12 −A22

)−1
Γ
(
B1B

†
1 − (δ + 1)I

)−1
, (4.21)

A0 := Π
(
B1B

†
1 − (δ + 1)I

)−1 −
(
B1B

†
1A12 −A12

)
Z0. (4.22)

To find Z we look for

D := Z − Z0 (4.23)

by solving

R̃1(D) := DA0 −
(
B2B

†
1A12−A22 + Z0

(
B1B

†
1A12 −A12

))
D

−D
(
B1B

†
1A12 −A12

)
D + Z0A0 = 0.

(4.24)

Lemma 4.2 ([62, Lem. 1]). Suppose
(
B2B

†
1A12 −A22

)
is nonsingular. If

∥∥(B2B
†
1A12 −A22

)−1∥∥ ≤ 1

3
(
‖A0‖+ ‖B1B

†
1A12 −A12‖‖Z0‖

) (4.25)

then (4.24) has a unique real root D that satisfies

0 ≤ ‖D‖ ≤ 2‖A0‖‖Z0‖
‖A0‖+ ‖B1B

†
1A12 −A12‖‖Z0‖

(4.26)

and is the fixed-point solution of the contraction Dk+1 = P1(Dk) given by

P1(Dk) :=
(
B2B

†
1A12 −A22

)−1
(
Z0A0 +DkA0

− Z0

(
B1B

†
1A12 −A12

)
Dk −Dk

(
B1B

†
1A12 −A12

)
Dk

)
.

(4.27)

Remark 4.4. Similarly to [62], it can be shown that the relative error ek :=

‖Dk −D‖/‖D‖ after k iterations is bounded above by

ek ≤
(

3
∥∥(B2B

†
1A12 −A22

)−1∥∥(‖A0‖+ ‖B1B
†
1A12 −A12‖‖Z0‖

))k
(4.28)
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and decreases as |δ| increases since ‖A0‖ and ‖Z0‖ are inversely related to

|δ|.

For a given δ, using D0 = 0 as initial condition we compute D iteratively.

The fixed-point solution D∗ = P1(D∗) is then used to obtain Z = D∗ + Z0

which in turn solves R1(Z) = 0 in (4.17) and results in a matrix L, through

(4.10), that satisfies both equations in (4.18).

4.2.2 Transformation 2 (Unidirectionally Coupled

Subsystems)

Consider the NARE

R2(M) =
(
A11 −A12L

)
M −M

(
A22 + LA12

)
−M

(
δF (Z)

)
M +A12 = 0.

(4.29)

For a given L, δ, and Z, if there exists a solution M that satisfies (4.29), we

obtain the following:

Theorem 4.2. The transformation (4.3) with M ∈ Rk×(n−k) satisfying

NARE (4.29) makes the subsystems in (4.20) unidirectionally coupled.

Proof.

S ′′ = T−1
2 (S ′) =

[
A11 −A12L−MδF (Z) ���

��:0
R2(M) B1

δF (Z) A22 + LA12 + δF (Z)M 0

]
.

(4.30)

Remark 4.5. In the transformed coordinates the lower subsystem remains

ETUC. Furthermore, the δ-parameterization of the unidirectional coupling

between subsystems is also preserved.

Before further analyzing the unidirectional coupling term δF (Z), let

us derive the necessary conditions for the existence and uniqueness of a
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solution M to (4.29) to be used with the same convergent iterative procedure

described previously.

For a given δ, Z, and L, let
(
A11 − A12L

)
be invertible and the initial

values be defined as

M0 := −
(
A11 −A12L

)−1
A12, (4.31)

N0 := A22 + LA12 + δF (Z)M0. (4.32)

We seek M by forming

J := M −M0 (4.33)

and solving

R̃2(J) := JN0−
(
A11−A12L−δM0F (Z)

)
J+δJF (Z)J+M0N0 = 0. (4.34)

Lemma 4.3 ([62, Lem. 1]). Suppose
(
A11 −A12L

)
is nonsingular. If

∥∥(A11 −A12L
)−1∥∥ ≤ 1

3
(
‖N0‖+ ‖δF (Z)‖‖M0‖

) (4.35)

then (4.34) has a unique real root J that satisfies

0 ≤ ‖J‖ ≤ 2‖N0‖‖M0‖
‖N0‖+ ‖δF (Z)‖‖M0‖

(4.36)

and is the fixed-point solution of the contraction Jk+1 = P2(Jk) given by

P2(Jk) :=
(
A11 −A12L

)−1
(
M0N0 + JkN0 + δM0F (Z)Jk + δJkF (Z)Jk

)
.

(4.37)

Remark 4.6. As in [62], we can show that the relative error ek := ‖Jk −
J‖/‖J‖ after k iterations is bounded above by

ek ≤
(

3
∥∥(A11 −A12L

)−1∥∥(‖N0‖+ ‖δF (Z)‖‖M0‖
))k

(4.38)

and decreases as ‖δF (Z)‖, ‖A22‖, and
∥∥(A11 − A12L

)−1∥∥ decrease. This
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occurs when the ill-conditioning of the A-matrix increases (e.g. in the case of

two-time-scale systems; see [63] and the references therein) and δ is chosen

such that ‖δF (Z)‖ is minimized.

Using J0 = 0 as initial condition we compute J iteratively. The fixed-

point solution J∗ = P2(J∗) is then used to obtain M = J∗ + M0 which in

turn solves R2(M) = 0 in (4.29).

Note that both conditions (4.25) and (4.35) are conservative and their

satisfaction ensures rapid convergence (usually within 2 or 3 iterations). In

practice, the right-hand-side of these inequalities can be relaxed up to 10

times in most cases without causing divergence.

4.2.3 The Unidirectional Coupling Term (Choosing δ)

Finally, we analyze the unidirectional coupling term δF (Z) and its behavior

with respect to the free parameter δ. Since Z is an implicit function of δ,

we adopt the extended notation δF (Z(δ)) to reflect this dependency.

First, we formalize a conservative upper-bound on ‖δF (Z(δ))‖ as an

explicit function of δ. This assures that the unidirectional coupling remains

bounded for almost all admissible values of the free parameter δ.

Proposition 4.2. The worst-case unidirectional coupling between the two

subsystems in the transformed coordinates, i.e. ‖δF (Z(δ))‖ in (4.30), is

(conservatively) bounded above such that

‖δF (Z(δ))‖ ≤ 1

|δ|

( |δ|+ 1

|δ + 1|

)2

a+

( |δ|+ 1

|δ + 1|

)
b ∀δ ∈ R\{−1, 0}, (4.39)

where the constants a and b are independent of δ and are determined by

a := α(b/β)2, b := 3‖B1B
†
1‖γβ, γ := ‖Γ‖

∥∥(A22 − B2B
†
1A12

)−1∥∥, α :=

‖A12 −B1B
†
1A12‖, and β := ‖A22 −B2B

†
1A12‖.

Proof. The proof is provided in Appendix B.1.

Now consider inequalities (4.25) and (4.35), which are dependent on δ.

Adequately chosen and sufficiently large values of δ help ensure that these
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4.2. Non-Disjoint Control Input

conditions are met. On the other hand, choosing δ exceedingly large de-

feats the purpose of δ-parameterization of the unidirectional coupling term,

since it can be shown that as δ grows, ‖δF (Z(δ))‖ approaches a problem-

dependent constant that may not necessarily be an extremum point.

Proposition 4.3. lim
δ→±∞

‖δF (Z(δ))‖ = ‖Γ‖ with Γ given by (4.13).

Proof. This proof is also provided in Appendix B.1.

It follows from Proposition 4.3 that 0 ≤ infδ‖δF (Z(δ))‖ ≤ ‖Γ‖. There-

fore naively letting |δ| → ∞ essentially removes the added flexibility as-

sociated with the δ-parameterization in the modified Riccati approach and

instead enforces a trivial solution L = −B2B
†
1. While for some systems this

solution may yield the smallest possible unidirectional coupling between the

resulting subsystems (i.e. a unidirectional coupling with the lowest infinity

norm), in most cases a carefully chosen δ not only facilitates the satisfaction

of the convergence conditions (4.25) and (4.35), but also further minimizes

the worst-case unidirectional coupling. Thus, formulated as an optimization

problem, we seek a δ that solves the following:

minimize
δ∈R\{−1,0}

f(δ) := ‖δF (Z(δ))‖

subject to (4.25) and (4.35).

Note that this is a non-convex problem, and in general, f(·) may be a

non-smooth function of δ. However, a global optimum need not be com-

puted. Any suboptimal solution can be used as long as that solution yields

a satisfactory degree of unidirectional coupling between the subsystems in

the transformed coordinates. In addition, an approximation to the optimum

point can be obtained numerically, for example by fine-griding the real line

or using the bisection algorithm.

In practice, while the exact shape of the function f(·) is problem-dependent,

we have found (but have not proven) that in most cases it exhibits a be-

havior similar to that of an absolute value proper rational function (over a
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Figure 4.1: The worst-case unidirectional coupling f(δ) = ‖δF (Z(δ))‖ (×’s)
and its approximation f̂(δ) = |−27.65

δ + 0.55| + 1.82 (dashed)
computed for Example 4.5.1. The interval (−15,+15) over
which (4.25) and (4.35) are violated is labeled as “infeasible
region”. The asymptote limδ→±∞ f(δ) = ‖Γ‖ (dash-dotted) is
also shown. The minimum of f(δ) occurs when δ ≈ +50.

discontinuous domain) of the form

f̂(δ) =
∣∣∣ c0

δk
+ c1

∣∣∣+ c2 ∀δ ∈ D, (4.40)

where D ⊂ R\ {−1, 0} is the union of the two segments of the real line

for which the magnitude of δ is large enough such that (4.25) and (4.35)

are both satisfied, k ∈ N, k : odd, c0 = −c1(δ∗)k, δ∗ = arg minδ∈Y f(δ),

c2 = minδ∈Y f(δ), and c1 =
(
limδ→±∞ f(δ)

)
− c2 = ‖Γ‖ − c2. For example,

consider the transformed system in Section 4.5.1. Figure 4.1 shows f(δ) and

its approximation f̂(δ) = |−27.65
δ + 0.55|+ 1.82 evaluated where (4.25) and

(4.35) hold.

4.3 Recursive Decomposition

To apply the described decomposition technique in a recursive fashion, con-

sider the resulting subsystems in (4.8) and (4.30). A recursive decomposition

when the standard Riccati transformation can be used is straightforward.
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Suppose that the modified Riccati transformation is used throughout the

process. In deeper level recursions, the decomposition can be applied to the

uppermost subsystem since that subsystem is controlled whereas every other

subsystem is ETUC. For example, to decompose a 6D system into three 2D

subsystems, in the first recursion level, the partitioning can be chosen such

that the resulting upper (controlled) subsystem is 4D and the lower (ETUC)

subsystem is 2D. In the second recursion level, if the solutions exist, the 4D

subsystem is then decomposed into two 2D subsystems.

Note that in the recursive application of the decomposition, when the

modified Riccati transformation is employed, all subsystems but one are

ETUC. Therefore, this iterated decomposition may result in a more conser-

vative over-approximation of the actual reachable tube.

4.4 Reachability in Lower Dimensions

We will focus mainly on over-approximating the minimal reachable tube that

can only be computed using the computationally intensive Eulerian methods

as it is these methods that stand to benefit the most from our decomposi-

tion approach. Nevertheless, complementary discussions surrounding the

computation of the maximal reachable tube are provided in Section 4.5.5.

In the new coordinates z = T−1x, T = T1T2, the subsystem dynamics

are governed by

ż1 =
(
A11 −A12L− δMF (Z)

)
z1 +B1u, (4.41)

ż2 =
(
A22 + LA12 + δF (Z)M

)
z2 +B2u+ δF (Z)z1 (4.42)

with δF (Z) = 0 when the standard Riccati transformation yields disjoint

input, and B2 = 0 when the modified Riccati transformation is employed.

Denote the two subspaces of Rn in which the subsystems evolve as

S1 := Rk and S2 := Rn−k. (4.43)

Algorithm 4.1 computes the (minimal) reachable tube in lower dimensions:
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Algorithm 4.1 Reachability in lower dimensions (Riccati-Based)

1: Zτ ← T−1K
2: Z iτ ← ProjSi(Zτ ), ∀i ∈ {1, 2} . project onto ith subspace

For upper subsystem:

3: Z1
[0,τ ] ← Reach[[0,τ ](Z1

τ ,U)

For lower subsystem:

4: Treat δF (Z)z1 as disturbance (existentially quantified)

5: ζ ← ‖z1‖ ≡ supv∈Z1
[0,τ ]
‖v‖

6: Compute upper-bound ‖δF (Z)z1‖ ≤ ‖δF (Z)‖ζ
7: Z2

[0,τ ]
consrv.←− Reach][0,τ ](Z2

τ ,B(‖δF (Z)‖ζ))

8: return(Z1
[0,τ ],Z2

[0,τ ])

When the standard Riccati transformation is used to obtain the sub-

systems, steps 4–7 of Algorithm 4.1 are simply replaced with Z2
[0,τ ] ←

Reach[[0,τ ](Z2
τ ,U).

Notice that if the error due to projections can be ignored, reachability in

the upper subspace is “exact” in the sense that Z1
[0,τ ] ≡ ProjS1(T−1Reach[[0,τ ](K,U)).

This is generally not true in the lower subspace. The unidirectional cou-

pling between the two subsystems is treated as a disturbance to the lower

subsystem, resulting in a conservative reachability computation in that sub-

space. The computed reachable tube in the lower subspace is a guaranteed

over-approximation of the projection of the actual reachable tube in that

subspace; Reach][0,τ ](Z2
τ ,B(‖δF (Z)‖ζ)) ⊇ ProjS2(T−1Reach[[0,τ ](K,U)).

The parameter δ = δ∗ is precomputed so as to minimize ‖δF (Z)‖. How-

ever, when the reachability horizon in Step 3 of Algorithm 4.1 is large, the

magnitude of the input to the lower subsystem (whose upper-bound is di-

rectly proportional to supv∈Z1
[0,τ ]
‖v‖) may become so large as to warrant

reachability in that subspace over sub-intervals of [0, τ ] in a similar fashion

to [36]. For N := τ/q, N ∈ N time steps each of length q ∈ R+, we have

Z2
[0,τ ] =

N−1⋃
i=0

Z2
[iq, (i+1)q] (4.44)
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and, by the semi-group property,

Z2
[iq, (i+1)q] = Reach][0,q]

(
Z2

[(i+1)q, (i+2)q],B(‖δF (Z)‖ζN−1−i)
)
, (4.45)

where Z2
[τ,+∞)

.
= Z2

τ and ζi is the supremum of the reachable tube in the

upper subspace at intermediate time steps. This holds since the input to the

lower subsystem is a disturbance and therefore all quantifiers in reachability

analysis of this subsystem are existential. Recording ζi at each time step

(rather than at the end of the reachability horizon) allows for a gradual

incrementing of the disturbance to the lower subsystem. Thus, using the

sequence {ζi}N−1
i=0 and executing Algorithm 4.1 with sub-intervals according

to (4.44)–(4.45), we can compute a less conservative reachable tube in the

lower subspace.

A guaranteed over-approximation of the actual reachable tube of the full-

order system in X can be obtained using Lemma 3.1 as in the Schur-based

case, i.e. via

T
(

(Z1
[0,τ ] × S2) ∩ (S1 ×Z2

[0,τ ])
)
⊇ Reach[[0,τ ](K,U). (4.46)

4.4.1 Formulating an Upper-Bound on Conservatism of

Z2
[0,τ ]

Consider the computed reachable tube Z2
[0,τ ] := Reach][0,τ ](Z2

τ ,B(‖δF (Z)‖ζ))

in the lower subspace. Take z̄2 ∈ Z2
τ and suppose D[0,τ ] is the set of mea-

surable functions from [0, τ ] to B(‖δF (Z)‖ζ). There exists an admissible

input ϑ(·) ∈ D[0,τ ] such that in positive time using time-reversed dynamics

we have

z2 := e−τΩz̄2 −
∫ τ

0
e−(τ−r)Ωϑ(r)dr, (4.47)

z2 ∈ Z2
[0,τ ] (4.48)
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with Ω := A22 + LA12 + δF (Z)M . Therefore, as in [36],

‖z2 − e−τΩz̄2‖ ≤
∫ τ

0
e(τ−r)‖Ω‖‖δF (Z)‖ζdr (4.49)

=
eτ‖Ω‖ − 1

‖Ω‖ ‖δF (Z)‖ζ. (4.50)

Notice that,

eτ‖Ω‖ − 1

‖Ω‖ ‖δF (Z)‖ζ =

(
lim
M→∞

M∑
i=1

τ i‖Ω‖i−1

i!

)
‖δF (Z)‖ζ (4.51)

≤
(

lim
M→∞

M∑
i=1

τ i
(
σ(Ω)

√
nk
)i−1

i!

)
‖δF (Z)‖ζ (4.52)

=: η[0,τ ] (4.53)

with σ(·) the largest singular value operator, and nk := n−k the dimension of

the ETUC subsystem. Due to linearity and time-invariance of the dynamics,

the (possibly non-convex) backward reachable tube can be expressed as

Z2
[0,τ ] ⊆

 ⋃
t∈[0,τ ]

e−ΩtZ2
τ

⊕ B(η[0,τ ]). (4.54)

The right-hand side of (4.54) provides an upper-bound on how much Z2
[0,τ ]

can grow in backward time in terms of the reachability horizon τ , the choice

of nk, the magnitude of the unidirectional coupling ‖δF (Z)‖, the supremum

of the reachable tube in the upper subspace ζ = supv∈Z1
[0,τ ]
‖v‖, and the

largest singular value σ(Ω) of the lower subsystem.

When reachability is performed over sub-intervals, a tighter upper-bound

can be formulated by replacing the right-hand side of (4.54) with

Z2
[0,τ ] :=

N−1⋃
i=0

 ⋃
t∈[iq,(i+1)q]

e−ΩtZ2
[(i+1)q,(i+2)q]

⊕ B(η[iq,(i+1)q])

 . (4.55)

As in [36], it can be shown that the quality of this upper-bound is good in

66



4.4. Reachability in Lower Dimensions

the Hausdorff distance, in that limq→0 distH(Z2
[0,τ ],Z

2
[0,τ ])→ 0. Determining

whether Z2
[0,τ ] itself is a close over-approximation to ProjS2(T−1Reach[[0,τ ](K,U))

is much more involved and remains an open problem. We expect that per-

forming reachability over sub-intervals, choosing nk appropriately, and min-

imizing the disturbance (uncertainty) magnitude as much as possible could

reduce the conservatism considerably.

4.4.2 The Effect of Dimension on Magnitude of Uncertainty

Since the worst-case unidirectional coupling ‖δF (Z)‖ contributes to the

uncertainty (i.e. disturbance input) in the reachability computation for the

lower subsystem, we examine the potential affect of the system dimension

on a) the magnitude of the unidirectional coupling and b) the amount of

time consumed by the decomposition process.

Although entirely dependent on the particular system to which the mod-

ified Riccati transformation is applied, the following empirical test can serve

as a rough measure: For a given dimension n, we generated 10 randomized

systems, applied the decomposition method to each n-dimensional system

with nk = n
2 , and recorded ‖δF (Z)‖ and the computational time. We re-

peated this for n = 4, 6, 8, 10, 16, as shown in Figure 4.2. While for higher

dimensions, the computational time and the magnitude of the unidirectional

coupling show an increasing trend in their average values, there is significant

variance. In addition, the time required for the decomposition process, even

for the highest dimension, is still negligible compared to the time required

for actual reachability computations.

4.4.3 Conservatism Due to Projection

We have assumed that the target set in the transformed coordinates is (or is

close to) a direct product of the sets in the subsystems’ subspaces, meaning

that the error due to projections of the target set onto the lower dimen-

sional subspaces can be ignored. This assumption does not generally hold.

If the target set in the new coordinate space is far from being axis-aligned,

the projections contribute to the conservatism of the reachable tube over-
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Figure 4.2: The worst-case unidirectional coupling and the time required
to compute the transformed matrices for randomly generated
systems of dimension n = 4, 6, 8, 10, 16 show significant variance.
Average values are marked by ‘x’.

approximation. A similar argument holds for the back-projection of the

subsystem reachable tubes, since we attempt to reconstruct a higher di-

mensional object from lower dimensional entities. Unfortunately, loss of

information is inherent in any projection operation and, to a great extent,

cannot be avoided.

4.4.4 Implications of Computing the Riccati-Based

Reachable Tube

Safety Verification

Let I ⊂ X be the set of all possible initial states of (2.12). It follows from

Definition 2.3 that, for a given unsafe target set K, the system is safe if and

only if the backward minimal reachable tube does not intersect I:

R[0,τ ] := Reach[[0,τ ](K,U) ∩ I = ∅. (4.56)

Let R[0,τ ] and Z[0,τ ] denote the computed Riccati-based reachable tube in

the original and transformed coordinates, respectively.

Proposition 4.4. Z[0,τ ] ∩ T−1I = ∅ ⇐⇒ R[0,τ ] ∩ I = ∅ =⇒ R[0,τ ] ∩ I = ∅.
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4.4. Reachability in Lower Dimensions

Proof. ∀x ∈ R[0,τ ] ∀y ∈ I (R[0,τ ] ∩ I) = ∅ ⇐⇒ x 6= y ⇐⇒ T−1x 6=
T−1y ⇐⇒ T−1R[0,τ ]∩T−1I = ∅. By Lemma 3.1 we have thatR[0,τ ] ⊆ R[0,τ ].

Thus, R[0,τ ] ∩ I = ∅ =⇒ R[0,τ ] ∩ I = ∅.

Therefore, if the Riccati-based reachable tube does not intersect I in

either coordinates, the system is safe. A simpler (but more conservative)

sufficient condition for safety can be given as:

Proposition 4.5.
2∧
i=1

(
Z i[0,τ ] ∩ ProjSi(T

−1I) = ∅
)

=⇒ R[0,τ ] ∩ I = ∅.

Proof. (Z1
[0,τ ]∩ProjS1(T−1I) = ∅)∧(Z2

[0,τ ]∩ProjS2(T−1I) = ∅) =⇒ (Z1
[0,τ ]×

S2)∩ (S1 ×Z2
[0,τ ])∩ T−1I = ∅ ⇐⇒ Z[0,τ ] ∩ T−1I = ∅ =⇒ R[0,τ ] ∩ I = ∅.

That is, if the computed Riccati-based reachable tubes for each subsys-

tem in the new coordinates do not intersect the projections of the trans-

formed I, then the system is safe in the original coordinates. This can

be used to prove safety using the lower dimensional reachable tubes when

reconstructing and storing the full-order state space (or reachable tube) is

costly.

Safety-Preserving Control Synthesis

Given the unsafe target set K and the computed Riccati-based reachable

tube R[0,τ ], let Rc[0,τ ] denote an under-approximation of the finite-time via-

bility kernel V iab[0,τ ](Kc,U) under S. Then using the optimal control laws

precomputed during the reachability analysis (e.g. via [90]), one can con-

struct a feedback controller as in [81] on the boundaries of Rc[0,t], t ∈ [0, τ ],

that keeps the trajectories of S within Kc (i.e. within safety) over the horizon

[0, τ ]. Hence, although possibly conservative, computing the reachable tube

through the Riccati-based approach can be a powerful tool to guarantee

safety in safety-critical systems that have moderately high dimensions.
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4.5 Numerical Examples

We employ Level Set Toolbox (LS) [90] for the computation of the minimal

reachable tubes (and the viability kernels). The use of our Riccati-based

approach for maximal reachability analysis is discussed and an example is

provided that employs Ellipsoidal Toolbox (ET) [73]. All computations are

performed on a dual core Intel-based computer with 2.8 GHz CPU, 6 MB of

L2 cache and 3 GB of RAM running single-threaded 32-bit Matlab 7.5.

4.5.1 Arbitrary 4D System

Consider an LTI system ẋ = Ax+Bu with

A =


1.5072 3.3984 0.1300 −0.0884

5.0644 −2.6683 0.0227 0.1689

0.1156 −0.1863 0.5686 0.2648

−0.0808 0.0229 0.4915 0.5949

 , B =


−0.7433

−2.2528

−0.9075

0.6036


and u ∈ R, |u| ≤ 0.1. We define a target (unsafe) set K such that in the

transformed coordinate space Zτ = {z ∈ R4 | ‖z‖2 ≤ 0.2, z = T−1x, x ∈
K} where ‖·‖2 is the Euclidean norm and T is the transformation matrix

obtained through the presented modified Riccati method.

We decompose this system into two 2D subsystems. Sweeping through

the real line, a nearly optimal δ∗ ≈ +50 that minimizes the worst-case uni-

directional coupling between the subsystems is found in less than a second.

Equations (4.27) and (4.37) converge to their fixed-point solutions in less

than a dozen iterations. The system matrices in the new coordinate space

are

A′′ =


1.5362 3.4622 0 0

4.9377 −2.7030 0 0

−1.8075 −0.0193 0.5727 0.2612

1.2341 0.2918 0.4858 0.5964

 , B′′ =


−0.7433

−2.2528

0

0

 .

Reachability calculations are performed over a grid with 41 nodes in
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Figure 4.3: Series of 3D snapshots of the Riccati-based over-approximation
(transparent light) vs. actual (solid dark) minimal reachable
(unsafe) tube in the transformed coordinate space for Exam-
ple 4.5.1.

each dimension for τ = 3 s. The full-order reachable tube (10144.80 s com-

putational time) is over-approximated by the Riccati-based reachable tube

(3.98 s computational time, including calculation of δ∗, transformation ma-

trices, the decomposition, and projections) as shown in Figure 4.3.

The loss of accuracy (due to treating the unidirectional coupling as dis-

turbance to the lower subsystems and assembling the full-order reachable

tube from projections) can be quantified in terms of the Hausdorff distance

between the full-order and the Riccati-based reachable tubes: Since a set in

LS is described by a signed distance function whose magnitude at any point

in the state space is the minimum distance to the boundary of that set,

it is straightforward to compute the Hausdorff distance between any given

two sets. For this example the Hausdorff distance is 0.18. In addition, a

volumetric measure of the inaccuracy can also be quantified in terms of the
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ratio between the number of grid points contained in the difference of the

two sets and the number of grid points in the Riccati-based reachable tube.

This ratio is found to be 38.4%.

4.5.2 4D Cart with Two Inverted Pendulums

Consider the linearized model of a cart with two separately mounted inverted

pendulums from [51, Ex. 2.2.1] with l1 = 30, l2 = 35. The state vector

x ∈ R4 consists of angular displacement of each inverted pendulum from

vertical and the corresponding angular velocities; the control input u ∈ R
arises from a force applied to the cart such that |u| ≤ 10. The system

matrices are

A =


0 1 0 0

0.3920 0 −0.0327 0

0 0 0 1

0.0560 0 0.2753 0

 , B =


0

−0.0033

0

−0.0005

 .

We choose a non-convex target (unsafe) set K such that in the trans-

formed coordinates we have Zτ = {z ∈ R4 | ‖z‖ ≥ 0.5, z = T−1x, x ∈ K}.
We seek to identify the set of states for which there exists a bounded con-

trol law that keeps the system trajectories contained in Zcτ . The safety-

preserving control synthesized through LS provides a guarantee that the pen-

dulums’ angular displacement will not exceed an infinity norm ball around

their upright positions, despite control saturation. Similar “envelope protec-

tion” problems arise in other domains, including aircraft flight management

systems and anesthesia automation, among others.

We decompose this system into two 2D subsystems, with the unidirec-

tional coupling determined by the solution L = −B2B
†
1 regardless of the
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Figure 4.4: Riccati-based (solid dark) vs. actual (transparent light) viability
kernels in the transformed coordinate space for Example 4.5.2.
The minimal reachable tube and its over-approximation are the
non-convex complements of these objects.

value of δ. The system matrices in the new coordinate space become

A′′ =


0 0.9524 0 0

0.3920 0 0 0

0 0.1429 0 1.0500

0 0 0.2800 0

 , B′′ =


0

−0.0033

0

0

 .

Reachability calculations are performed over a grid with 41 nodes in

each dimension for τ = 3 s. Figure 4.4 shows the computed viability kernels

(safe) as the area inside the shaded regions. The computation time for

the actual and the transformation-based reachable tubes were 1098.48 s and

4.27 s, respectively. The Hausdorff distance between these two sets is 0.21

and the Riccati-based viability kernel covers 74% of the volume of the full-

order set.
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4.5.3 Arbitrary 6D System

Consider the system ẋ = Ax+Bu with

A =



3.3155 0.7768 2.4455 0.0028 −0.0094 −0.0097

0.6320 −1.4796 −2.3001 −0.0370 0.0322 −0.0112

−0.1047 −0.3522 0.6578 0.0282 −0.0621 −0.0214

0.0344 0.0360 0.0091 0.1885 0.0518 0.3567

−0.0140 −0.0225 −0.0012 0.2746 0.0866 0.1567

−0.0106 −0.0215 −0.0082 0.0814 0.0887 0.1182


,

B =

[
0.1469 −0.7988 −2.3854 −0.0054 1.3260 −0.1623

0.2657 2.4582 −0.3955 −0.1403 −0.1187 0.3601

]T

and u ∈ R2, ‖u‖ ≤ 0.05. We decompose this system into two 3D sub-

systems using the modified Riccati transformation with δ∗ ≈ −199 (see

Appendix B.3). A non-convex target set K is chosen such that in the trans-

formed coordinates Z iτ =
⋃3
j=1 Pj , ∀i ∈ {1, 2}, where Pj = {zi ∈ R3 |

Czi − bj ≤ 0} with

CT =

1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1

,
bT1 =

[
0.5 0.3 0.1 0.1 −0.2 0.4

]
,

bT2 =
[
−0.1 0.3 0.1 0.1 0.4 0.4

]
,

bT3 =
[
0.5 0.3 0.1 0.1 0.4 −0.2

]
,

and z = [zT1 , z
T
2 ]T = T−1x, x ∈ K.

Reachability computations are performed over a grid with 71 nodes in

each dimension for τ = 2 s, as shown in Figure 4.5. The full-order 6D

(minimal) reachable tube is the intersection of the back-projection of these

3D reachable tubes. The overall computation time was 489.89 s, whereas the

actual reachable tube is prohibitively computationally expensive to compute

with LS for any meaningful grid resolution. In addition, only 28 MB of RAM

was used in the Riccati-based calculations, whereas computation of the full-

order reachable tube would require over 4 TB of RAM (well beyond the

capabilities of today’s technology).
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(a) Upper subspace (b) Lower subspace

Figure 4.5: The Riccati-based reachable tube (unsafe) in the transformed
coordinates for Example 4.5.3.

4.5.4 Comparison With Schur-Based Decomposition

(Chapter 3)

In Chapter 3 we presented a Schur-based decomposition technique that is

applicable to almost any LTI system (subject to a mild assumption on the

input-to-state map). In contrast, the decomposition method presented here

is based on two nonsymmetric algebraic equations. The existence of so-

lutions to these algebraic equations, however, is limited by a number of

conditions on system matrices and is therefore heavily problem dependent.

Indeed, as pointed out earlier, the conditions are more likely to be satisfied

as the ill-conditioning of the original system matrices increases—e.g., for

two-time-scale systems. (Figure 4.6 shows the fraction of tests on randomly

generated systems for which a solution existed.) However, when the alge-

braic Riccati equations converge, the resulting subsystems could potentially

yield less conservative reachable tube over-approximations than in the case

of the Schur-based decomposition.

Consider a simple constrained 2D system with A =
[−2.0228 0.9732
−0.3695 0.0893

]
,

B = [ 0.9600
0.1372 ]. Applying the modified Riccati transformation results in

A′′ric =
[−1.8360 0
−0.0875 −0.0975

]
, B′′ric = [ 0.9600

0 ]. Notice that the “fast” eigenvalue

λ1 = −1.8360 is assigned to the controlled subsystem and that the mag-
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Figure 4.6: Fraction of a randomized test for which a Riccati solution
existed. Success rate is shown as a percentage of 150 ran-
domly generated two-time-scale systems for each dimension
n = 4, 6, 8, 10, 16 with nk = n

2 . The A matrix entries of each
system are drawn from a normal distribution with mean 0 and
standard deviations 2 and 0.2 for A11 and A22 blocks respec-
tively.

nitude of the unidirectional coupling is ‖δF (Z)‖ = 0.0875. To retain the

same eigen-structure (that is, the controlled subsystem be associated with

the fast eigenvalue and the uncontrolled and perturbed subsystem with the

slow eigenvalue λ2 = −0.0975) using the Schur-based decomposition yields

A′′sch =
[−0.0975 −0.1276

0 −1.8360

]
, B′′sch =

[
0

−0.7948

]
. The corresponding subsystems

are subject to a unidirectional coupling that is 46% larger in magnitude than

in the Riccati-based case.

Suppose the target set is the Euclidean unit disk. This set is reshaped

similarly under both transformations (Figure 4.7). Since the magnitude of

the input-to-state map in the Schur-based case is smaller than that in the

Riccati-based case, the optimal Hamiltonian for the reachability analysis

of its controlled subsystem is also smaller. Therefore the reachable tube

of the controlled subsystem in the Schur-based case is larger than in the

Riccati-based case. In both decomposition techniques, the supremum of

the reachable tube of the controlled subsystem as well as the unidirectional

coupling between the subsystems are treated as disturbance in reachability

computation of the ETUC subsystems. Since this disturbance has a larger

magnitude in the Schur-based case, the overall reachable tube computation

is more conservative than in the Riccati-based case. Therefore the Riccati-

based decomposition is the superior approach in this example.
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Figure 4.7: The unit disc target set under Riccati-based and Schur-based
transformations. The corresponding reachable tube using the
Riccati-based approach will be less conservative.

One should note, however, that no universal conclusions can be drawn

from this particular example: In general, it is the problem under study

(i.e. the system matrices, the shape of the target set in the transformed

coordinate space, the effect of projections, etc.) that determines which de-

composition method is the better choice.

4.5.5 The Decomposition and Maximal Reachability

Analysis

With an unsafe target set, the Riccati-based approach presented here can

also be used (in conjunction with both Eulerian and Lagrangian techniques)

to over-approximate the maximal reachable tube, where the input u to the

original system is considered as “disturbance” or “uncertainty” and is exis-

tentially quantified. This is done by replacing Step 3 in Algorithm 4.1 with

Z1
[0,τ ] ← Reach][0,τ ](Z1

τ ,U) (and Steps 4–7 with Z2
[0,τ ] ← Reach][0,τ ](Z2

τ ,U) if

the standard Riccati transformation is used to obtain the subsystems). As

expected, we have

ProjS1(T−1Reach][0,τ ](K,U)) ≡ Reach][0,τ ](Z
1
τ ,U), (4.57)

and

ProjS2(T−1Reach][0,τ ](K,U)) ⊆ Reach][0,τ ](Z
2
τ ,B(‖δF (Z)‖ζ)). (4.58)
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The over-approximation of the actual maximal reachable tube of the full-

order system can be obtained similarly to Lemma 3.1 as

T
(

(Z1
[0,τ ] × S2) ∩ (S1 ×Z2

[0,τ ])
)
⊇ Reach][0,τ ](K,U). (4.59)

While Algorithm 4.1 with the above modifications ensures that the full-

order (unsafe) maximal reachable tube is over-approximated, the results

may be too conservative. Recall that the modified Riccati transformation is

best suited to systems that are two-time-scale and ill-conditioned. The fast

eigenvalues are assigned to the upper subsystem whereas the slow eigenval-

ues to the lower subsystem. Such an eigenvalue allocation is advantageous

when computing the minimal reachable tube. In maximal reachability anal-

ysis, however, since the input is existentially quantified, the reachable tube

in the upper subspace can grow significantly. As a result, the input to the

lower subsystem, whose upper bound is directly proportional to the supre-

mum of the reachable tube in the upper subspace, may become excessively

large. Consequently, the reachable tube in the lower subspace may be overly

conservative.

Note that a conservative over-approximation may be justified when the

constraints are severely non-convex and/or cannot be adequately approx-

imated by compact convex shapes (or a union of a few such sets), and

therefore the computationally intensive Eulerian methods must be used to

compute the maximal reachable tube. With convex constraints, however,

the Lagrangian methods can be utilized to compute the full-order maximal

reachable tube with great accuracy and efficiency. This will also circumvent

the errors introduced via projections, etc. as compared to the case in which

the Riccati-based approach is employed.

Consider a 4D example ẋ = Ax+Bu, u ∈ R, |u| ≤ 0.1, with

A =


0.5990 −0.2333 −0.0244 0.0121

−0.4553 −0.2107 −0.0076 −0.0041

−0.0091 0.0128 −0.1749 −0.1768

0.0309 −0.0229 −0.0105 −0.0777

 , B =


0.6846

2.4813

0.3583

−1.5195

 .
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Figure 4.8: Projections of the full-order maximal reachable tube (dark/blue)
vs. the Riccati-based maximal reachable tube (light/red) in the
transformed coordinates, computed using ET. (The two sets are
indistinguishable in (z1, z2) subspace.)

The target set in the transformed coordinates is the Euclidean unit ball.

We use the Riccati-based method to decompose this system into two 2D

subsystems (see Appendix B.3). The computation time for this decompo-

sition (including the search for δ∗ ≈ 12.6) was 0.42 s. To over-approximate

the maximal reachable tube of this system we employ ET [73] and perform

lower dimensional reachability over sub-intervals for τ = 1 s. Figure 4.8 com-

pares the projections of the full-order reachable tube (computed in 1.08 s)

and the lower-dimensional reachable tubes (collectively computed in 4.1 s) in

the transformed coordinates. The greater computational time for the lower-

dimensional reachability may be associated with the for-loops and other

demanding computations involved in a sub-interval calculation.

4.6 Summary and Further Discussions

In this chapter we presented our second decomposition method for reach-

ability analysis of LTI systems based on the Riccati transformation. This

decomposition has considerable potential for reducing the computational

complexity in reachability calculations, particularly for Eulerian methods.
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For the case in which the input was non-disjoint across resulting subsys-

tems, a modified Riccati transformation was proposed. The extension of

this transformation-based reachability approach to switched/hybrid systems

with LTI continuous dynamics can be easily achieved following the procedure

described in Section 3.5.

Severely non-convex constraints and/or the need to compute the mini-

mal reachable tube and the viability kernel as well as their corresponding

safety-preserving control laws warrant the use of computationally intensive

Eulerian methods. Despite inevitable conservatism e.g. due to the use of

projection, our approach provides a means to compute the minimal reach-

able tube for higher dimensional systems for which these computationally

intensive reachability tools were previously not applicable.

It is possible (although uncommon) that the transformation matrix can

become poorly-conditioned due to pseudoinverses and numerical algorithms

involved, resulting in the target set in the transformed coordinates becom-

ing too severely distorted under the linear map to be of any practical use.

An upper-bound on the condition number in terms of the system matrices

and the free parameter δ is provided in Appendix B.2. We are currently

investigating possible remedies that would ensure a well-conditioned trans-

formation matrix.

Finally, it is worth emphasizing that the proposed modified Riccati trans-

formation has application beyond reachability analysis. The technique can

be used in any scenario in which decoupling of the dynamics as well as the

input-to-state map is required.
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Chapter 5

Set-Theoretic Methods:

Lagrangian Algorithms for

Viability1

In the following two chapters we will address Problem 2.2 and will present

our second approach, based on set-theoretic methods, to reduce the com-

plexity of the computation of the minimal reachable tube or the viability

kernel. We will make use of the definitions and terminologies introduced in

Section 2.5.

Consider a given constraint/target set K ⊂ X . While our main focus

in Chapters 3 and 4 was on approximating the minimal reachable tube

Reach[[0,τ ](K,U) when K was deemed unsafe, in this chapter we will turn

most of our attention to the case in which K is deemed safe and we seek to

approximate the viability kernel V iab[0,τ ](K,U) of this set. As mentioned

before, approximating the minimal reachable tube and the viability kernel

are not mutually exclusive as these constructs are duals of one another. For

example, a method that facilitates an under-approximation of the viability

kernel of K automatically provides a means for the over-approximation of

the minimal reachable tube for Kc.
Our approach is based on drawing a connection between the viability

kernel and maximal reachable sets. As mentioned extensively in previous

chapters, the Eulerian schemes normally used to compute the viability kernel

suffer from a complexity that is exponential in the dimension of the states.

In contrast, the efficient and scalable Lagrangian methods compute maximal

1A version of this chapter has been published in [55].

81



5.1. The Viability Kernel in Terms of Maximal Reach Sets

reachable sets. We will show that under certain conditions these methods

can be employed to conservatively approximate the viability kernel for pos-

sibly high-dimensional systems. Significant reduction in the computational

costs can be achieved since instead of a single calculation with exponential

complexity one can perform a series of calculations with polynomial com-

plexity.

5.1 Connection Between the Viability Kernel

and Maximal Reachable Sets

We begin the analysis by considering the continuous-time case first and then

proceed to the discrete-time case.

5.1.1 Continuous-Time Systems

Consider the case in which (2.1) is the continuous-time nonlinear system

ẋ(t) = f(x(t), u(t)), x(0) = x0, t ∈ R+. (5.1)

We will show that we can approximate V iab[0,τ ](K,U) using a nested se-

quence of sets that are reachable in small sub-intervals of [0, τ ].

Computing an Under-Approximation of the Viability Kernel

Assume that the vector field f is bounded by M in the norm ‖·‖. Consider

a partition P ∈P([0, τ ]). We begin by defining an under-approximation of

the state constraint set (Figure 5.1(a)):

K↓(P ) := {x ∈ K | dist(x,Kc) ≥M‖P‖}. (5.2)

We under-approximate K by a distance M‖P‖ so as to only consider the

system’s state at discrete times t0, t1, . . . , tn. At a time t in the interval
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[ti, ti+1], a trajectory x(·) can travel a distance of at most

‖x(t)− x(ti)‖ ≤
∫ t

ti

‖ẋ(τ)‖dτ ≤M(t− ti) ≤M‖P‖ (5.3)

from its initial location x(ti). As we shall see, formulating the subset (5.2)

will ensure that the state does not leave K at any time during [0, τ ].

The set K↓(P ) defines the first step of our recursion. We then define a

sequence of |P | sets recursively:

K|P |(P ) = K↓(P ), (5.4a)

Kk−1(P ) = K↓(P ) ∩Reach]tk−tk−1
(Kk(P ),U)

for k ∈ {1, . . . , |P |}. (5.4b)

At each time step, we calculate the set of states from which you can reach

Kk(P ), then intersect this set with the set of safe states (see Figure 5.1).

The final set K0(P ) is an approximation of V iab[0,τ ](K,U).

Note that the resulting set depends on our choice of a partition P of

the time interval [0, τ ]. We claim that for any partition P , K0(P ) is an

under-approximation.

Proposition 5.1. Suppose that the vector field f : X × U → X is bounded

on a set K ⊆ X . Then for any partition P of [0, τ ] the final set K0(P )

defined by the recurrence relation (5.4) satisfies

K0(P ) ⊆ V iab[0,τ ](K,U). (5.5)

Proof. Since f is bounded on K, there exists a norm ‖·‖ and a real number

M > 0 with ‖f(x, u)‖ ≤ M for all x ∈ K. Now, fix a partition P of [0, τ ]

and take a point x0 ∈ K0(P ). By the construction of K0(P ), this means

that for each k = 1, . . . , |P | there is some point xk ∈ Kk(P ) and an input

uk : [0, tk−tk−1]→ U such that xk can be reached from xk−1 at time tk−tk−1

using input uk. Thus, taking the concatenation of the inputs uk, we get an

input u : [0, τ ]→ U such that the solution x : [0, τ ]→ X to the initial value

problem ẋ = f(x, u), x(0) = x0, satisfies x(tk) = xk ∈ Kk(P ) ⊆ {x ∈ K |
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(a) We define the initial
under-approximation
of the safe set
K|P |(P )=K↓(P )

(b) We calculate the set of
backward reachable states
from K|P |(P )

(c) We intersect the
backward reachable set
with the initial set to get
K|P |−1(P )

(d) Next, we calculate the
set of backward reachable
states from K|P |−1(P )

(e) Again, we intersect
the backward reachable set
with the initial set to get a
new set K|P |−2(P )

(f) By repeating this pro-
cess, we reach an under-
approximation K0(P ) of
the viability kernel.

Figure 5.1: Iteratively constructing an under-approximation of
V iab[0,τ ](K,U).
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dist(x,Kc) ≥ M‖P‖}. We claim that this guarantees that x(t) ∈ K for all

t ∈ [0, τ ]. Indeed, any t ∈ [0, τ) lies in some interval [tk, tk+1). Since f is

bounded by M , we have

‖x(t)− x(tk)‖ ≤M(t− tk) < M(tk+1 − tk) ≤M‖P‖. (5.6)

Further, x(tk) ∈ Kk(P ) implies that dist(x(tk),Kc) ≥ M‖P‖. Combining

these, we see that

dist(x(t),Kc) ≥ dist(x(tk),Kc)− ‖x(t)− x(tk)‖
> M‖P‖ −M‖P‖ = 0 (5.7)

and hence x(t) ∈ K. Thus, x0 ∈ V iab[0,τ ](K,U).

Remark 5.1. For a large enough horizon τ , if Kk−1(P ) ≡ Kk(P ) for some

k ∈ {1, . . . , |P |} with tk ∈ (0, τ ], then K0(P ) = Kk(P ) approximates the

infinite-horizon viability kernel V iabR+(K,U). This set is also known as the

maximal controlled-invariant subset [12] (see Section 2.1).

Precision of the Approximation

The approximation can be made to be arbitrarily precise by choosing a

sufficiently fine partition. This is true in the sense that the union of the

approximating sets K0(P ) taken over all possible partitions P of [0, τ ] is

bounded between the viability kernels of K and its interior
◦
K.

Proposition 5.2. Suppose that the vector field f : X × U → X is bounded

on a set K ⊆ X . Then we have

V iab[0,τ ](
◦
K,U) ⊆

⋃
P∈P([0,τ ])

K0(P ) ⊆ V iab[0,τ ](K,U). (5.8)

In particular, when K is open,⋃
P∈P([0,τ ])

K0(P ) = V iab[0,τ ](K,U). (5.9)
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Kc

∂K x(·)

dM‖P‖
K̊

x0

x(τ)

Figure 5.2: Distance d > 0 from the boundary set ∂K. Partition P can be
chosen such that M‖P‖ < d.

Proof. The second inclusion in (5.8) follows directly from Proposition 5.1.

To prove the first inclusion, take a state x0 ∈ V iab[0,τ ](
◦
K,U). There exists

an input u : [0, τ ]→ U such that the solution x(·) to the initial value problem

ẋ = f(x, u), x(0) = x0, satisfies x(t) ∈
◦
K for all t ∈ [0, τ ]. Since

◦
K is open,

for any x ∈
◦
K we have dist(x,Kc) > 0. Further, x : [0, τ ]→ X is continuous

so the function t 7→ dist(x(t),Kc) is continuous on the compact set [0, τ ].

Thus, we can define d > 0 to be its minimum value. Now take a partition

P of [0, τ ] such that M‖P‖ < d (see Figure 5.2). We need to show that

x0 ∈ K0(P ).

First note that our partition P is chosen such that dist(x(t),Kc) > M‖P‖
for all t ∈ [0, τ ]. Hence x(tk) ∈ K|P |(P ) for all k = 0, . . . , |P |. To show

that x(tk−1) ∈ Reach]tk−tk−1
(Kk(P ),U) for all k = 1, . . . , |P |, consider the

tokenization2 {uk}k of the input u corresponding to P . It is easy to verify

that for all k, we can reach x(tk) from x(tk−1) at time tk − tk−1 using input

uk. Thus, in particular, we have x0 = x(t0) ∈ Reach]t1−t0(K1(P ),U). So

x0 ∈ K0(P ). Hence V iab[0,τ ](
◦
K,U) ⊆ ⋃P∈P([0,τ ])K0(P ).

2See Definition 2.11.
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5.1.2 Discrete-Time Systems

Consider the case in which (2.1) is the discrete-time nonlinear system

x(t+ 1) = f(x(t), u(t)), x(0) = x0, t ∈ Z+. (5.10)

Computing V iab[0,τ ](K,U) under this system is a particular case of the re-

sults presented in Section 5.1.1. Define a sequence of sets recursively as

Kn = K, (5.11a)

Kk−1 = K ∩Reach]1(Kk,U)

for k ∈ {1, . . . , n}, (5.11b)

where τ = n and Reach]1(·, ·) is the unit time-step maximal reachable set.

Proposition 5.3. Let K0 be the final set obtained from the recurrence re-

lation (5.11). Then,

V iab[0,τ ](K,U) = K0. (5.12)

Proof. Without loss of generality we assume that the time variable t is in-

teger valued. As a result, the tokenization of the input signal u is a discrete

sequence {uk}k with uk := u(t) with t = k − 1 for k = 1, . . . , n.

To show K0 ⊆ V iab[0,τ ](K,U), via recursion (5.11) we have that at each

step k there exists uk such that xk−1 ∈ Kk−1 reaches xk ∈ Kk. Thus,

x0 ∈ K0 implies there exists a concatenation u(·) = {uk}k ∈ U[0,τ ] such that

x(t) ∈ K for all t ∈ [0, τ ]. Therefore, x0 ∈ V iab[0,τ ](K,U).

To show V iab[0,τ ](K,U) ⊆ K0, take x0 ∈ V iab[0,τ ](K,U). There exists

u(·) = {uk}k such that x(t) ∈ K for every t. Using the tokenization of {uk}k
we can verify that for some uk we can reach xk := x(t+1) from xk−1 := x(t).

Hence, xk−1 ∈ Reach]1(Kk,U) for all k ∈ {1, . . . , n}. In particular, for k = 1

we have x0 := x(0) ∈ Reach]1(K1,U). Thus, x0 ∈ K ∩ Reach]1(K1,U) =

K0.

Remark 5.2. Note that the above iterative scheme is closely related to the

set-valued description of the discrete viability kernel presented in [18, 106]
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and the recursive construction of the controlled-invariant subset for discrete-

time systems presented in [11, 12, 61, 120].

5.2 Computational Algorithms

Any technique that is capable of computing the maximal reachable set

can now be used to compute the viability kernel. Most currently avail-

able Lagrangian methods yield an (under- and/or over-) approximation

of the maximal reachable set. The viability kernel should not be over-

approximated since an over-approximation would contain initial states for

which the viability of the system is inevitably at stake. Thus, to correctly

compute V iab[0,τ ](K,U) all approximations must be in the form of under-

approximations.

Every step of the recursions (5.4) and (5.11) involves a reachability com-

putation and an intersection operation. Ideally, the sets that are being

intersected should be drawn from classes of shapes that are closed under

such an operation, e.g. polytopes. However, the currently available reacha-

bility techniques that are based on polytopes (e.g. [76]) do not, in general,

scale well with the dimension of the state. Moreover, the scalable reacha-

bility techniques, such as the methods of zonotopes [40], ellipsoids [70, 74],

and support functions [39], generate sets that may prove to be difficult to

transform into a (under-approximating) polytope. For instance, one may

compute a polytopic under-approximation of the reachable sets using their

support functions based on the approach presented in [77]. However, that

approach requires calculation of the facet representation of the resulting

polytopes from their vertices before each intersection operation, which is

known to be computationally demanding in higher dimensions.

Recently, the authors in [54] introduced an efficient polytopic technique

with a fixed complexity called bounded vertex representation that is capable

of computing under-approximations of the maximal reachable set and the

intersection of polytopes. Unfortunately, this method assumes that the dy-

namics are affine (of the form Ax+b) which circumvents the difficulties that

arise from linear transformations and Minkowski sums in the reachability
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operation.

5.2.1 A Piecewise Ellipsoidal Approach

Here we showcase our results using an efficient algorithm, based on the

ellipsoidal techniques [70] implemented in Ellipsoidal Toolbox (ET) [73],

that sacrifices accuracy in exchange for scalability. We consider the LTI

system

L(x(t)) = Ax(t) +Bu(t) (5.13)

with A ∈ Rn×n and B ∈ Rn×m. As in (2.1), depending on whether the

system evolves in continuous time (t ∈ R+) or discrete time (t ∈ Z+), L(·)
denotes the derivative operator or the unit forward shift operator, respec-

tively.

An ellipsoid in Rn is defined as

E(q,Q) :=
{
x ∈ Rn | 〈(x− q), Q−1(x− q)〉 ≤ 1

}
(5.14)

with center q ∈ Rn and shape matrix Rn×n 3 Q = QT � 0. A piecewise

ellipsoidal set is the union of a finite number of ellipsoids.

Among many advantages, ellipsoidal techniques [70, 73] allow for an ef-

ficient computation of under-approximations of the maximal reachable sets,

making them a particularly attractive choice for the reachability computa-

tions involved in our formulation of the viability kernel.

Suppose K and U are (or can be closely under-approximated as) compact

ellipsoids with nonempty interior. Consider the continuous-time case and

the recursion (5.4). (The arguments in the discrete-time case are similar.)

Given a partition P and some k ∈ {1, . . . , |P |}, let Kk(P ) = E(xδ, Xδ) ⊂ X .

As in [71], with N := {v ∈ Rn | 〈v, v〉 = 1} and δ := tk − tk−1 we have

Reach]δ−t(Kk(P ),U) =
⋃
`δ∈N

E(xc(t), X−` (t)), ∀t ∈ [0, δ], (5.15)

where xc(t) and X−` (t) are the center and the shape matrix of the internal

approximating ellipsoid at time t that is tangent to Reach]δ−t(Kk(P ),U) in
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the direction `(t) ∈ Rn. For a fixed `(δ) = `δ ∈ N , the direction `(t) is

obtained from the adjoint equation ˙̀(t) = −AT`(t). The center xc(t) (with

xc(δ) = xδ) and the shape matrix X−` (t) (with X−` (δ) = Xδ) are determined

from differential equations described in [72]. (cf. [74] for their discrete-time

counterparts.)

In practice, only a finite number of directions is used for the maximal

reachable set computations. Let M be a finite subset of N . Then,

Reach]δ−t(Kk(P ),U) ⊇
⋃

`δ∈M
E(xc(t), X−` (t)), ∀t ∈ [0, δ]. (5.16)

Note that the under-approximation in (5.16) is in general an arbitrarily

shaped, non-convex set. Performing our desired operations on this set while

maintaining efficiency may be difficult, if not impossible.

Instead consider the final backward reachable set Reach]δ(Kk(P ),U) and

let Reach
][`δ]
δ (Kk(P ),U) denote the maximal reachable set corresponding to

a single terminal direction `δ := `(δ) ∈M. We have that

Reach
][`δ]
δ (Kk(P ),U) = E(xc(0), X−` (0))

⊆
⋃

`δ∈M
E(xc(0), X−` (0))

⊆ Reach]δ(Kk(P ),U).

(5.17)

Therefore, the reachable set computed for a single direction is an ellipsoidal

subset of the actual reachable set.

Let # : 2X → 2X denote a set-valued function that maps a set to its

maximum volume inscribed ellipsoid. Algorithms 5.1 and 5.2 compute a

piecewise ellipsoidal under-approximation of V iab[0,τ ](K,U) for continuous-

time and discrete-time systems, respectively.
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Algorithm 5.1 Piecewise ellipsoidal approximation of V iab[0,τ ](K,U)
(continuous-time)

1: Choose P ∈P([0, τ ]) . Affects precision of approximation.
2: K|P |(P )← K	 B(M‖P‖) . Find {x ∈ K | dist(x,Kc) ≥M‖P‖}.
3: K∗0 (P )← ∅
4: while M 6= ∅ do
5: l← `τ ∈M
6: k ← |P |
7: while k 6= 0 do
8: if Kk(P ) = ∅ then
9: K0(P )← ∅

10: break
11: end if
12: G ← Reach

][l]
tk−tk−1

(Kk(P ),U)
. Compute the ellipsoidal under-approximation of the max-

imal reach set along the direction l.
13: Kk−1(P )← #(K|P |(P ) ∩ G)

. Find the max volume inscribed ellipsoid in K|P |(P ) ∩ G.
14: k ← k − 1
15: end while
16: K∗0 (P )← K∗0 (P ) ∪K0(P )
17: M←M\{l}
18: end while
19: return (K∗0 (P ))

91



5.2. Computational Algorithms

Algorithm 5.2 Piecewise ellipsoidal approximation of V iab[0,τ ](K,U)
(discrete-time)

1: Kn ← K
2: K∗0 ← ∅
3: while M 6= ∅ do
4: l← `τ ∈M
5: k ← n
6: while k 6= 0 do
7: if Kk = ∅ then
8: K0 ← ∅
9: break

10: end if
11: G ← Reach

][l]
1 (Kk,U)

12: Kk−1 ← #(Kn ∩ G)
13: k ← k − 1
14: end while
15: K∗0 ← K∗0 ∪K0

16: M←M\{l}
17: end while
18: return (K∗0 )

Proposition 5.4. For a given partition P ∈P([0, τ ]), let K∗0 (P ) be the set

generated by Algorithm 5.1. Then,

K∗0 (P ) ⊆ V iab[0,τ ](K,U). (5.18)

Proof. Let K̃0(P ) denote the final set constructed recursively by (5.4). Also,

for a fixed direction l, let K
[l]
0 (P ) denote the set produced at the end of

each outer loop in Algorithm 5.1. Notice that via (5.17), for every l ∈ M,

K
[l]
0 (P ) ⊆ K̃0(P ). Therefore,

⋃
l∈MK

[l]
0 (P ) ⊆ K̃0(P ). Thus, K∗0 (P ) =⋃

l∈MK
[l]
0 (P ) ⊆ V iab[0,τ ](K,U).

Remark 5.3. A similar argument holds for the discrete-time case in Algo-

rithm 5.2, i.e. K∗0 ⊆ V iab[0,τ ](K,U).
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#(·): Computing the Maximum Volume Inscribed Ellipsoid

Notice that in the continuous-time case, the sets Y := K|P |(P ) and G :=

Reach
][l]
tk−tk−1

(Kk(P ),U) are compact ellipsoids for every l ∈M, P ∈P([0, τ ]),

and k ∈ {1, . . . , |P |}. Similarly in the discrete-time case, Y := Kn and G :=

Reach
][l]
1 (Kk,U) are compact ellipsoids for every l ∈M and k ∈ {1, . . . , n}.

Their intersection is, in general, not an ellipsoid but can be easily under-

approximated by one. The operation #(·) under-approximates this intersec-

tion by computing the maximum volume inscribed ellipsoid in Y ∩ G. The

result is an ellipsoid that, while aiming to minimize the accuracy loss, can

be used directly as the target set for the reachability computation in the

subsequent time step.

Let us rewrite the general ellipsoid as E(q,Q) = {Hx + q | ‖x‖2 ≤
1} with H = Q

1
2 . Assume Y ∩ G 6= ∅ and suppose Y = E(q1, Q1) and

G = E(q2, Q2). Following [15], the computation of the maximum volume

inscribed ellipsoid in Y ∩ G (a readily-available feature in ET) can be cast

as a convex semidefinite program (SDP):

minimize
H∈Rn×n, q∈Rn, λi∈R

log detH−1 (5.19a)

subject to λi > 0 (5.19b)1− λi 0 (q − qi)T
0 λiI H

q − qi H Qi

 � 0, i = 1, 2. (5.19c)

Using the optimal values for H and q, we will have

#(Y ∩ G) = E(q,HTH). (5.20)

Loss of Accuracy

A set generated by Algorithms 5.1 or 5.2 could be an inaccurate approxima-

tion of V iab[0,τ ](K,U), especially for large time horizons. The loss of accu-

racy is mainly attributed to the function #(·), the under-approximation of

the intersection at every iteration with its maximum volume inscribed ellip-
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soid. This approximation error propagates through the algorithms making

them subject to the “wrapping effect” (cf. [66]).

In the continuous-time case, the quality of approximation is also affected

by the choice of time interval partition (Proposition 5.2). Choosing a finer

partition increases the quality of approximation. However, doing so would

also require a larger number of intersections to be performed in the inter-

mediate steps of the recursion. As such, one would expect that the error

generated by #(·) would be amplified. Luckily, since with a finer partition

the reachable sets change very little from one time step to the next, the

intersection error at every iteration becomes smaller. The end result is a

smaller accumulated error and therefore a better approximation, at least

experimentally.

We show this using a trivial example: Consider the double integrator

ẋ(t) =

[
0 1

0 0

]
x(t) +

[
0

1

]
u(t) (5.21)

subject to ellipsoidal constraints u(t) ∈ U := [−0.25, 0.25] and x(t) ∈ K :=

E(0, [ 0.25 0
0 0.25 ]), ∀t ∈ [0, 1]. We employ eight different partitions P of the

time interval such that we have |P | = 13, 21, 34, 55, 89, 144, 233, 377 and

‖P‖ = 1/|P |. The linear vector field is bounded on K in the infinity norm by

M = ‖[ 0 1
0 0 ]‖ supx∈K‖x‖+ ‖[ 0

1 ]‖ supu∈U‖u‖ = 0.75. Thus, in Algorithm 5.1,

K|P |(P ) = K	B(0.75×‖P‖). A piecewise ellipsoidal under-approximation of

V iab[0,1](K,U) for every partition P (with |M| = 10 randomly chosen initial

directions) is shown in Figure 5.3. Notice that as |P | increases, the fidelity

of approximation improves. A plot of the error in the under-approximation

as a function of |P | is provided in Figure 5.4.

Forming the Under-Approximation K↓(P ) in the

Continuous-Time Case

While a straightforward method to construct the under-approximationK↓(P )

of the set K in Algorithm 5.1 for a fixed P ∈ P([0, τ ]) is to erode K by a

ball of radius M‖P‖ (for a given uniform bound M on f(x, u) = Ax+Bu),
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Figure 5.3: For the set K (red), K0(P ) (green/light) under-approximates
V iab[0,1](K,U) (outlined in thick black lines via [87]) using Al-
gorithm 5.1 under the double integrator dynamics. A finer time
interval partition results in better approximation.
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Figure 5.4: Convergence plot of the error as a function of |P | for the double-
integrator example. Error is quantified as the fraction of grid
points (total of 71×71) contained in the set difference between
the level set approximation of the viability kernel and its piece-
wise ellipsoidal under-approximation.
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this under-approximation may be too conservative—particularly when the

constraints K and U are nonsymmetric with respect to the origin. In such a

case we would typically have to reevaluate our time interval partitioning and

choose a P with extremely short sub-intervals so that it offsets the potential

conservatism. This is clearly not an ideal approach.

Instead consider the respective linear differential inclusion

ẋ(t) ∈ AK ⊕BU . (5.22)

Notice that the set AK ⊕ BU is a compact (closed and bounded) subset

of X since both K and U are compact. With this in mind, a possibly less

conservative approach to construct K↓(P ) may be as follows.

1. Over-approximate the set AK ⊕ BU by computing tight enclosing el-

lipsoids over a finite subset of directionsM⊂ {l ∈ Rn | 〈l, l〉 = 1} and

choose the one with the smallest volume:

E(σ,Σ) := minvol
l∈M

(
AK

E+l⊕ BU
)
. (5.23)

Here we have used
E+l⊕ to denote the tight enclosing ellipsoidal approx-

imation of the Minkowski sum in the direction l.

2. Multiply this set by a factor of ‖P‖:

‖P‖E(σ,Σ) = E(‖P‖σ, ‖P‖2Σ). (5.24)

3. Under-approximate the set K 	 E(‖P‖σ, ‖P‖2Σ) by computing tight

enclosed ellipsoids over directions in M and choose the one with the

largest volume to obtain K↓(P ):

K↓(P ) = maxvol
l∈M

(
K
E−l	 E(‖P‖σ, ‖P‖2Σ)

)
. (5.25)

Here the operator
E−l	 returns the tight enclosed ellipsoidal approxi-
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mation of the Pontryagin difference (or the erosion operator) between

its operands in the direction l.

All of the above steps can be easily and efficiently performed in ET.

5.3 Practical Examples

All computations are performed on a dual core Intel-based computer with

2.8 GHz CPU, 6 MB of L2 cache and 3 GB of RAM running single-threaded

32-bit Matlab 7.5.

5.3.1 Flight Envelope Protection (Continuous-Time)

Consider the linearized longitudinal aircraft dynamics ẋ(t) = Ax(t)+Bδe(t),

A =


−0.003 0.039 0 −0.322

−0.065 −0.319 7.740 0

0.020 −0.101 −0.429 0

0 0 1 0

 , B =


0.010

−0.180

−1.160

0


with state x = [u, v, θ̇, θ]T ∈ R4 comprised of deviations in aircraft velocity

[ft/s] along and perpendicular to body axis, pitch-rate [crad/s],3 and pitch

angle [crad] respectively, and with input δe ∈ [−13.3◦, 13.3◦] ⊆ R the elevator

deflection. These matrices represent stability derivatives of a Boeing 747

cruising at an altitude of 40 kft with speed 774 ft/s [16]. The state constraint

set

K = E




0

0

2.18

0

 ,


1075.84 0 0 0

0 67.24 0 0

0 0 42.7716 0

0 0 0 76.0384




represents an ellipsoidal (under-)approximation of the flight envelope. We

require x(t) ∈ K ∀t ∈ [0, 2].

3crad = 0.01 rad ≈ 0.57◦.
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Figure 5.5: 3D projections of the under-approximation of V iab[0,2](K,U) for
Example 5.3.1. The flight envelope K is the red/light trans-
parent region. The green/dark piecewise ellipsoidal sets under-
approximate the viability kernel.

A uniform partition P is chosen such that |P | = 400. Algorithm 5.1 (with

|M| = 8 consisting of the standard basis vectors in R4 and four additional

randomly generated vectors) computes via ET a piecewise ellipsoidal under-

approximation of the viability kernel V iab[0,2](K,U) as shown in Figures 5.5

and 5.6. Note that for any state belonging to this set, there exists an input

that can protect the flight envelope over the specified time horizon. The

overall computation time was roughly 10 mins. In comparison, the level set

approximation of the viability kernel (also shown in Figure 5.6) is computed

in 5.4 hrs with significantly larger memory footprint over a grid with 45

nodes in each dimension (still a rather coarse grid) using the Level Set

Toolbox [87]. Since the computed sets are 4D, we plot a series of 3D and

2D projections of these 4D objects.
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Figure 5.6: 2D projections of the under-approximation of V iab[0,2](K,U)
for Example 5.3.1. The constraint set K (red/dark) and a
piecewise ellipsoidal under-approximation of the viability ker-
nel (green/light) are shown. The level set approximation of the
viability kernel, computed via [87], is outlined in thick black
lines.
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5.3.2 Safety in Anesthesia Automation (Discrete-Time)

To improve patient recovery, lessen anesthetic drug usage, and reduce time

spent at drug saturation levels, a variety of approaches to controlling depth

of anesthesia have been proposed e.g. in [10, 26, 52, 85, 97, 109, 115].

Over the past few years, an interdisciplinary team of researchers at the

University of British Columbia has been developing an automated drug de-

livery system for anesthesia. As part of this effort, an open-loop bolus-based

neuromuscular blockade system was developed and clinically validated in

[34]. Discrete-time Laguerre-based LTI models of the dynamic response to

rocuronium were identified using data collected from more than 80 patients

via clinical trials.4 To obtain regulatory certificates to fully close the loop

while employing an infusion-based administration of the drugs, mathemati-

cal guarantees of safety of the system are likely to be required. The viability

kernel can provide such guarantees. Let us consider the problem of comput-

ing the viability kernel for a constrained dynamical system that represents

the pharmacological response of a patient under anesthesia subject to ther-

apeutic bounds.

Patient Model and Constraints

Consider the following discrete-time LTI system describing the Laguerre

dynamics of a patient [34, 35]:

x(t+ 1) = Ax(t) +Bu(t), (5.26)

y(t) = Cx(t) (5.27)

with time step t ∈ Z+, state vector x(t) ∈ R6, input (rocuronium infusion

rate [mg/kg/min]) u(t) ∈ R, and output (pseudo-occupancy, a metric related

to the patient’s plasma concentration of anesthetic e.g. rocuronium) y(t) ∈
4The states of such a model correspond to Laguerre polynomials whose weighted sum

attempts to closely rebuild the shape of the actual impulse (bolus) response of the patient;
See [122] for more details on the Laguerre modeling framework.
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R. The sampling interval is 20 s and the system matrices are:

A =



0.9960 0 0 0 0 0

0.0080 0.9960 0 0 0 0

−0.0080 0.0080 0.9960 0 0 0

0.0079 −0.0080 0.0080 0.9960 0 0

−0.0079 0.0079 −0.0080 0.0080 0.9960 0

0.0079 −0.0079 0.0079 −0.0080 0.0080 0.9960


,

B =
[

0.0894 −0.0890 0.0886 −0.0883 0.0879 −0.0876
]T
,

C =
[

18.5000 8.2300 3.5300 4.3400 3.7000 3.0700
]
.

The constraint set (desired clinical effect) is specified in terms of the pseudo-

occupancy level and the input is bounded above and below by hard physical

constraints: y(t) ∈ K0 := [0.1, 1],

u(t) ∈ U0 := [0, 0.8].
(5.28)

Reformulating the Problem

Note that the therapeutic constraint is specified in the output space (as

opposed to the state space) and the output signal y should track a reference

setpoint that lies within K0. To perform our desired analysis on this system,

we reformulate the problem by projecting the output bounds onto the state

space while making the control action regulatory. For brevity we drop the

time argument from the state, input, and output notations.

Projection of Bounds onto the State Space Consider the (nonsingu-

lar) linear transformation[
C

05×1 I5

] [
x1 x2 · · · x6

]T
=:
[
w1 w2 · · · w6

]T
.

The states w2, . . . , w6 are the Laguerre states x2, . . . , x6. In the new co-

ordinate space, the bounds are state space constraints on the first state
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w1 := Cx = y.

Tracking vs. Regulating We perform an affine change of coordinates

and shift the equilibrium point to the origin. This is done by augmenting

the state vector in the w-space with the reference output signal y∗ and

applying a basis translation so that in the new coordinates the first state

w1 := y becomes z1 := y − y∗:

1 0 · · · 0 −1

0 1
. . . 0

...
. . .

. . .
. . .

...
...

. . . 1 0

0 · · · · · · 0 1





y

w2

...

w6

y∗


=



y − y∗
w2

...

w6

y∗


=:



z1

z2

...

z6

z7


. (5.29)

Let u(t) = uss be the steady state control input needed for tracking a con-

stant setpoint y∗(t) = y∗ = 0.9. This value can be easily calculated using a

standard state-feedback procedure from[
xss

uss

]
=

[
A− I B

C 0

]−1 [
0

y∗

]
, (5.30)

where xss denotes the steady state equilibrium. To complete the reformula-

tion, we deduct uss from the control set of the transformed system.

The new constraints for the transformed, extended system z(t + 1) =

Ãz(t) + B̃u(t), y(t) = C̃z(t), with Ã ∈ R7×7, B̃ ∈ R7×1, C̃ ∈ R1×7, are as

follows: z(t) ∈ K := (K0 − y∗)× R6,

u(t) ∈ U := U0 − uss.
(5.31)

In this new seven-dimensional state space the first state z1 represents

the drug pseudo-occupancy minus its setpoint value of 0.9 units, the next

five states are the second to sixth Laguerre states transformed from the

original coordinates, and the last state z7 is a constant corresponding to

the pseudo-occupancy setpoint. The states are assumed to be constrained
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5.4. Summary and Further Discussions

by a slab in R7 that is only bounded in the z1 direction. Note that with

this formulation, the last state z7 is allowed to take on values that are not

needed; of actual interest is the behavior of the remaining states when z7

equals the pseudo-occupancy setpoint y∗.

The input constraint set is a one-dimensional ellipsoid. To under-approx-

imate the state constraint with a non-degenerate ellipsoid we use a priori

knowledge about the typical values of the (Laguerre) states z2, . . . , z6 and

bound them by an ellipsoid with a large spectral radius of λmax = 30 in those

directions. (This imposed constraint can be further relaxed if necessary.)

Guaranteeing that this ellipsoidal target set K, which is our desired clinical

effect, is not violated during the surgery provides a certificate of safety of the

closed-loop system. Therefore, for a 30 min surgery for instance, we require

z(t) ∈ K ∀t ∈ [0, 90] despite bounded input authority. Using appropriately

synthesized infusion policies, the states belonging to the viability kernel of

K under the extended system will never leave the desired clinical effect for

the duration of the surgery.

We under-approximate V iab[0,90](K,U) in 986 s using Algorithm 5.2 with

|M| = 30. Of the 30 randomly chosen initial directions used in the ellipsoidal

computations, 15 resulted in nonempty ellipsoids that make up the piecewise

ellipsoidal under-approximation of the viability kernel (Figure 5.7). Note

that no similar computations are currently possible in such high dimensions

using Eulerian methods directly.

5.4 Summary and Further Discussions

In this chapter we presented a new connection between the viability kernel

(and by duality, the minimal reachable tube) and the maximal reachable

sets of possibly nonlinear systems. Owing to this connection, the efficient

and scalable Lagrangian techniques that were traditionally developed for the

approximation of the maximal reachability constructs can now be used to ap-

proximate the viability kernel. Motivated by a high-dimensional problem of

guaranteed safety in control of anesthesia, we proposed a scalable algorithm

that computes a piecewise ellipsoidal under-approximation of the viability
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Figure 5.7: 2D projections of the under-approximation of V iab[0,90](K,U)
for Example 5.3.2 for the first six states when z7 equals the
setpoint value. The constraint set K (blue/dark) and a piece-
wise ellipsoidal under-approximation of the provably safe regions
(green/light) are shown.
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5.4. Summary and Further Discussions

kernel for LTI systems based on ellipsoidal techniques for reachability.

Empirically quantifying the computational complexity of the piecewise

ellipsoidal algorithm is a work under way for which we expect a polynomial

complexity in the order of |M||P | (O(Rδ) +O(S)) where O(Rδ) is the com-

plexity of computing the maximal reachable set along a given direction over

the time interval δ and O(S) is the complexity of solving the SDP (5.19).

Our preliminary tests for a chain of double integrators using a single direc-

tion (yielding one ellipsoid in Rn) show that the technique scales relatively

well up to about 35 dimensions, which is computed in less than 200 s.

The presented connection between the viability kernel and the maximal

reachable sets paves the way to synthesizing safety-preserving optimal con-

trol laws in a more efficient and scalable manner. This scalable synthesis

methodology as well as an extension of the results of this chapter to the dif-

ferential games setting and the approximation of the discriminating kernel

are presented in the following chapter.
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Chapter 6

Robust Approximation and

Scalable Safety-Preserving

Control Synthesis

In this chapter we will first extend the results presented in the previous

chapter to the differential games setting—the case in which the system is

perturbed by an unknown but bounded disturbance input or uncertainty in

the model. We will then propose a safety-preserving control strategy based

on the piecewise ellipsoidal algorithm discussed in Section 5.2. Although the

synthesis of safety-preserving controllers is by no means a new research di-

rection (cf. e.g. [5, 11, 81, 116]), the results presented here provide a scalable

synthesis of such controllers for a class of constrained systems.

We will make use of the definitions and preliminaries in Sections 2.5 and

2.6. We focus only on the continuous-time case. In the discrete-time case the

Isaac’s condition does not in general hold and consequently the discussion

is more involved.

6.1 The Discriminating Kernel in Terms of

Robust Maximal Reachable Sets

For the constrained system (2.29), i.e.

ẋ(t) = f(x(t), u(t), v(t)), x(0) = x0 (6.1)
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6.1. Discriminating Kernel vs. Robust Maximal Reach Sets

with control input u(t) ∈ U and disturbance input v(t) ∈ V, we show that

we can approximate Disc[0,τ ](K,U ,V) by considering a nested sequence of

sets that are robustly reachable in small sub-intervals of [0, τ ].

Similar to before, we say that the vector field f is bounded on K if there

exists a norm ‖·‖ : X → R+ and a real number M > 0 such that for all

x ∈ K, u ∈ U , and v ∈ V we have ‖f(x, u, v)‖ ≤ M . If K is compact, every

continuous vector field f is bounded on K.

6.1.1 Under-Approximating the Discriminating Kernel

The discriminating kernel can be under-approximated via the recursion

K|P |(P ) = K↓(P ), (6.2a)

Kk−1(P ) = K↓(P ) ∩Reach]tk−tk−1
(Kk(P ),U ,V)

for k ∈ {1, . . . , |P |} (6.2b)

where K↓(P ) := {x ∈ K | dist(x,Kc) ≥M‖P‖} is a subset of K deliberately

chosen at a distance of M‖P‖ from its boundary.

Proposition 6.1. For any partition P ∈ P([0, τ ]) the final set K0(P ) de-

fined by the recurrence relation (6.2) satisfies

K0(P ) ⊆ Disc[0,τ ](K,U ,V). (6.3)

Proof. The proof is a straightforward extension of the proof of Proposi-

tion 5.1: Since f is bounded on K, there exists a norm ‖·‖ and a real num-

ber M > 0 such that ‖f(x, u, v)‖ ≤ M ∀(x, u, v) ∈ K × U × V. Now,

fix a partition P of [0, τ ] and take a point x0 ∈ K0(P ). By the con-

struction of K0(P ), this means that for each k = 1, . . . , |P | there is some

point xk ∈ Kk(P ) and a control uk : [0, tk − tk−1] → U for any (non-

anticipative) disturbance vk = ρ[uk] : [0, tk − tk−1] → V such that xk can

be reached from xk−1 at time tk − tk−1 using uk. Thus, taking the con-

catenation of the inputs uk and vk, we get a control input u : [0, τ ] → U
for every disturbance input v = ρ[u] : [0, τ ] → V such that the solution
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x : [0, τ ]→ X to the initial value problem ẋ = f(x, u, v), x(0) = x0, satisfies

x(tk) = xk ∈ Kk(P ) ⊆ {x ∈ K | dist(x,Kc) ≥ M‖P‖}. We claim that this

guarantees that x(t) ∈ K ∀t ∈ [0, τ ]. Indeed, any t ∈ [0, τ) lies in some

interval [tk, tk+1). Since f is bounded by M , we have

‖x(t)− x(tk)‖ ≤
∫ t

tk

‖ẋ(s)‖ds ≤M(t− tk)

< M(tk+1 − tk) ≤M‖P‖.
(6.4)

Further, x(tk) ∈ Kk(P ) implies dist(x(tk),Kc) ≥ M‖P‖. Combining these,

we see that

dist(x(t),Kc) ≥ dist(x(tk),Kc)− ‖x(t)− x(tk)‖
> M‖P‖ −M‖P‖ = 0

(6.5)

and hence x(t) ∈ K. Thus, x0 ∈ Disc[0,τ ](K,U ,V).

Corollary 6.1 (Intermediate Discriminating Kernels). For any partition

P ∈ P([0, τ ]) and every k ∈ {1, . . . , |P |} the sets Kk−1(P ) defined by the

recurrence relation (6.2) satisfy

Kk−1(P ) ⊆ Disc[0,τ−tk−1](K,U ,V) (6.6)

with K|P |(P ) ⊆ Disc[0,0](K,U ,V) = K.

Similar to the viability kernel case, the approximation here can be made

to be arbitrarily precise by choosing a sufficiently fine partition.

Proposition 6.2. Suppose that the vector field f : X×U×V → X is bounded

on a set K ⊆ X . Then we have

Disc[0,τ ](
◦
K,U ,V) ⊆

⋃
P∈P([0,τ ])

K0(P ) ⊆ Disc[0,τ ](K,U ,V). (6.7)
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In particular, when K is open,⋃
P∈P([0,τ ])

K0(P ) = Disc[0,τ ](K,U ,V). (6.8)

Proof. The proof is a straightforward extension of the proof of Proposi-

tion 5.2: The second inclusion in (6.7) follows directly from Proposition 6.1.

To prove the first inclusion, take a state x0 ∈ Disc[0,τ ](
◦
K,U ,V). There

exists a control u : [0, τ ] → U for every disturbance v = ρ[u] : [0, τ ] → V
such that the trajectory x(·) satisfies x(t) ∈

◦
K ∀t ∈ [0, τ ]. Since

◦
K is open,

∀x ∈
◦
K dist(x,Kc) > 0. Further, x : [0, τ ] → X is continuous so the func-

tion t 7→ dist(x(t),Kc) is continuous on the compact set [0, τ ]. Thus, we can

define d > 0 to be its minimum value. Take a partition P of [0, τ ] such that

‖P‖ < d/M . We need to show that x0 ∈ K0(P ).

First note that our partition P is chosen such that dist(x(t),Kc) > M‖P‖
∀t ∈ [0, τ ]. Hence x(tk) ∈ K|P |(P ) for all k = 0, . . . , |P |. To show that

x(tk−1) ∈ Reach]tk−tk−1
(Kk(P ),U ,V) for all k = 1, . . . , |P |, consider the to-

kenizations {uk}k and {vk}k of the control u and the disturbance v, respec-

tively, corresponding to P . It is easy to verify that for all k we can reach x(tk)

from x(tk−1) at time tk−tk−1 using the control input uk for every vk = ρ[uk].

Thus, in particular, we have x0 = x(t0) ∈ Reach]t1−t0(K1(P ),U ,V). So

x0 ∈ K0(P ). Hence Disc[0,τ ](
◦
K,U ,V) ⊆ ⋃P∈P([0,τ ])K0(P ).

By approximatingDisc[0,τ ](K,U ,V) using the sub-interval maximal reach-

able sets via recursion (6.2) we enable the use of scalable Lagrangian tech-

niques for the computation of the discriminating kernel for high-dimensional

systems. As we shall see, this will also allow us to compute the safety-

preserving control laws more efficiently.

6.2 Computational Algorithm &

Safety-Preserving Control Strategy

The following corollary forms the basis of our safety-preserving feedback

strategy. It follows directly from Proposition 6.1, its proof, and the recur-
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sion (6.2).

Corollary 6.2. For a fixed time partition P ∈P([0, τ ]) suppose K0(P ) 6= ∅.
For any initial condition x0 ∈ K0(P ) the concatenation u of sub-interval

control inputs uk : [0, tk− tk−1]→ U corresponding to robust maximal reach-

able sets Reach]tk−tk−1
(Kk(P ),U ,V) for k = 1, . . . , |P | is a safety-preserving

control law that keeps the trajectory x(·) of the system (6.1) with x(0) = x0

contained in K for every v(t) = ρ[u](t) ∈ V for all time t ∈ [0, τ ].

Notice that via Corollary 6.2 any Lagrangian method that facilitates

the synthesis of maximal reachability controllers can be employed to form

a safety-preserving policy. One such Lagrangian method is the ellipsoidal

techniques [70] implemented in Ellipsoidal Toolbox (ET) [73].

Consider the case in which (2.1) is a linear time-invariant system

ẋ(t) = Ax(t) +Bu(t) +Gv(t) (6.9)

with A ∈ Rn×n, B ∈ Rn×mu , and G ∈ Rn×mv . We will further assume that

the constraints K, U , and V are (or can be closely under-approximated by)

nonempty compact ellipsoids.

In Chapter 5 we introduced a scalable piecewise ellipsoidal algorithm (Al-

gorithm 5.1) based on the ellipsoidal techniques for under-approximating the

viability kernel V iab[0,τ ](K,U). That result can easily be extended so that

the generated set approximates the discriminating kernel Disc[0,τ ](K,U ,V)

instead by simply computing the intermediate maximal reachable sets for

adversarial inputs in line with the analysis in Proposition 6.1. Before we

describe the corresponding safety-preserving feedback strategy, let us sum-

marize the aforementioned algorithm used to under-approximate the dis-

criminating kernel.

6.2.1 Piecewise Ellipsoidal Approximation of the

Discriminating Kernel

Similar to the discussions of Section 5.2.1, the robust maximal reachable

set computed using the ellipsoidal techniques for a single direction is an
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ellipsoidal subset of the actual robust maximal reachable set. With this

in mind, and recalling that the function #(·) maps a set to its maximum

volume inscribed ellipsoid, we can state the following.

Proposition 6.3. For a fixed partition P ∈P([0, τ ]) and a terminal direc-

tion `τ ∈M, the recursion

K
∗[`τ ]
k−1 = #(K|P |(P ) ∩Reach][`τ ]

tk−tk−1
(K
∗[`τ ]
k (P ),U ,V))

for k ∈ {1, . . . , |P |}
(6.10)

with K
∗[`τ ]
|P | (P ) = K|P |(P ) defined as in (6.2a) generates an ellipsoidal set

K
∗[`τ ]
0 (P ) such that⋃

`τ∈M
K
∗[`τ ]
0 (P ) := K∗0 (P ) ⊆ Disc[0,τ ](K,U ,V). (6.11)

Proof. The proof is similar to that of Proposition 5.4 which discusses the

case in which V = {0}.

The set K∗0 (P ) is therefore a piecewise ellipsoidal under-approximation

of the discriminating kernel. Notice however that the final #(·) operation

when k = 1 is not necessary if a closed-form piecewise ellipsoidal expression

is not needed. Indeed, one can easily verify that

K∗0 (P ) ⊆ K|P |(P ) ∩
⋃

`τ∈M
Reach

][`τ ]
t1

(K
∗[`τ ]
1 (P ),U ,V)

⊆ Disc[0,τ ](K,U ,V).

(6.12)

Finally, note that similar to (6.6) the intermediate discriminating kernels

are under-approximated via⋃
`τ∈M

K
∗[`τ ]
k−1 (P ) := K∗k−1(P ) ⊆ Disc[0,τ−tk−1](K,U ,V). (6.13)

Remark 6.1. The under-approximation K|P |(P ) = K↓(P ) may be con-

structed by either eroding the set K by a ball of radius M‖P‖ (for a given
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uniform bound M), or alternatively, by using the method described on page

94 with the difference that the right-hand side of (5.23) is now replaced by

minvol
l∈M

( E+l⊕
{AK, BU , GV}

)
. (6.14)

6.2.2 Safety-Preserving Feedback Policy

Suppose

U := E(µ,U) (6.15)

with center µ ∈ Rmu and shape matrix U ∈ Rmu×mu . Based on the piecewise

ellipsoidal algorithm described above, we can form a control policy taking

values pointwise on U that keeps the trajectory of the system in K over the

entire time horizon (despite the actions of the disturbance) by concatenat-

ing the sub-interval robust maximal reachability control laws according to

Corollary 6.2.

Suppose that in computing the reachable setReach
][`τ ]
tk−tk−1

(K
∗[`τ ]
k (P ),U ,V)

we can also compute

Reach
][`τ ]
tk−t(K

∗[`τ ]
k (P ),U ,V) ∀t ∈ (tk−1, tk). (6.16)

That is, we compute the entire reachable tube over the kth sub-interval. For

fixed `τ ∈M and k ∈ {1, . . . , |P |} let x
c[`τ ]
k (t−tk−1) and X

−[`τ ]
`,k (t−tk−1) de-

note the center and the shape matrix of the ellipsoidReach
][`τ ]
tk−t(K

∗[`τ ]
k (P ),U ,V)

at time t ∈ [tk−1, tk] with K
∗[`τ ]
k (P ) = E(x

c[`τ ]
k (tk − tk−1), X

−[`τ ]
`,k (tk − tk−1))

and the terminal direction `τ . Define a shorthand notation

R(t, k) :=
⋃

`τ∈M
R[`τ ](t, k)

:=
⋃

`τ∈M
Reach

][`τ ]
tk−t(K

∗[`τ ]
k (P ),U ,V)

=
⋃

`τ∈M
E(x

c[`τ ]
k (t− tk−1), X

−[`τ ]
`,k (t− tk−1)),

(6.17)

and suppose R(0, 1) 6= ∅.

112



6.2. Computational Algorithm & Control Synthesis

qperf qsafe

û(x(t), t) ∈ U û(x(t), t)

x(t) ∈
◦
R[γ](t, k) x(t) 6∈

◦
R[γ](t, k)

x(t) 6∈
◦
R(t, k)

x(t) ∈
◦
R[γ](t, k)

x(t) ∈
◦
R[¯̀τ ](t, k)

∃ ¯̀
τ 6= γ s.t.

γ := ¯̀
τ

γ := ¯̀
τ

x(t) ∈
◦
R[¯̀τ ](t, k)

∃ ¯̀
τ 6= γ s.t. γ := `τ

x0 ∈ R[`τ ](0, 1)
∃`τ ∈M s.t.

= ψBU(l[γ])

Figure 6.1: The graph of the hybrid automaton H representing the safety-
preserving controller.

Now, consider a controller described by the hybrid automaton

H = (Q,Σe,Σi, Init,Dom,E,G,R,Ufb) (6.18)

where Q = {qperf, qsafe} is the set of discrete states with qperf representing

the case in which the controller is free to choose any value in U (“per-

formance” mode) and with qsafe representing the case in which the con-

troller is required to return the optimal safety-preserving law (“safety”

mode); See Figure 6.1. The inputs to the controller are drawn from the

sets Σe ⊆ X × [0, τ ] (external input) and Σi ⊆ M (internal input). The

external input is the pair (x(t), t) ∈ Σe and the internal input is the direc-

tion vector γ ∈ Σi. The initial state of the automaton Init ⊆ Q× Σe × Σi

is assumed to be Init = (qperf, x0, 0, {γ | ∃`τ ∈ M, x0 ∈ R[`τ ](0, 1), γ =

`τ}). The domains Dom(·, γ, t) : Q → 2X of the automaton for every γ ∈
Σi and t ∈ [0, τ ] are Dom(qperf, γ, t) =

◦
R[γ](t, k) and Dom(qsafe, γ, t) =

(Dom(qperf, γ, t))
c. The domains specify (γ, t)-varying invariants for every

(x(t), t) ∈ Σe that must be satisfied in each mode. The edges E ⊆ Q×Q are
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E = {(qperf, qperf), (qperf, qsafe), (qsafe, qperf)1, (qsafe, qperf)2} where subscripts

are used when necessary in order to distinguish between the two edges of

the automaton that enable transitions from qsafe to qperf that possess dif-

ferent properties (e.g. guards and reset rules). The guards G(·, γ, t) : E →
2X for every γ ∈ Σi and t ∈ [0, τ ] are conditions on (x(t), t) ∈ Σe de-

fined as: G(qperf, qsafe, γ, t) = (
◦
R(t, k))c, G((qsafe, qperf)1, γ, t) =

◦
R[γ](t, k),

and G((qsafe, qperf)2, γ, t) = G(qperf, qperf, γ, t) = {
◦
R[¯̀τ ](t, k) for some ¯̀

τ ∈
Σi, ¯̀

τ 6= γ}. The domains and the guards are chosen in terms of the in-

terior of the set R[γ](t, k) to ensure that the automaton H is non-blocking

and that transitions over E can take place when necessary. A transition

corresponding to an edge is enabled for every t if x(t) satisfies its guard.

For example, the automaton can make a transition from qsafe to qperf over

the edge (qsafe, qperf)2 ∈ E for a fixed (γ, x(t), t) ∈ Σi × Σe if ∃¯̀
τ 6= γ

s.t. x(t) ∈ R[¯̀τ ](t, k). The map R : E × Σi → Σi resets the internal input

via R((qsafe, qperf)2, γ) = ¯̀
τ , R(qperf, qperf, γ) = ¯̀

τ , and R((qsafe, qperf)1, γ) =

R(qperf, qsafe, γ) = γ. Finally, the output of H is a set-valued map Ufb : Q×
Σi × Σe → 2U given byUfb(qperf, γ, x(t), t) = U ;

Ufb(qsafe, γ, x(t), t) = ψBU (l[γ]),
(6.19)

where

ψBU : Rn → U ,
l[γ] 7→ µ− UBTl[γ]

〈
l[γ], BUBTl[γ]

〉−1/2
(6.20)

is chosen so thatBψBU (l[γ]) is the support vector of the setBU = E(Bµ,BUBT) ⊆
X in the direction −l[γ] ∈ Rn with

l[γ] = l[γ](x(t), t)

= (X
−[γ]
`,k (t− tk−1))−1(x(t)− xc[γ]

k (t− tk−1)).
(6.21)

(This strategy is based on the optimal control design presented in [69] and
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[75].)

Notice that we allow non-determinism in the mode transitions of the

hybrid automaton to formulate a non-restrictive policy (in the sense of [116]);

q = qsafe only when safety is at stake, and q = qperf otherwise. As we

shall see, the primary objective of the controller, i.e. preserving safety, is

achievable regardless of this behavior.

Theorem 6.1 (Safety-Preserving Controller). For a given partition P ∈
P([0, τ ]) for any x0 ∈ K∗0 (P ) where K∗0 (P ) is the piecewise ellipsoidal set

obtained through (6.10)–(6.11), the feedback policy

u(t) = û(x(t), t) ∈ Ufb (6.22)

generated by the hybrid automaton H keeps the trajectory x of the system

(6.9) with initial condition x(0) = x0 contained in K for any disturbance

v(t) = ρ[u](t) ∈ V for all time t ∈ [0, τ ].

Proof (Adapted from [69]). Let k ∈ {1, . . . , |P |} be the unique integer such

that t ∈ [tk−1, tk) =: Tk. We prove that safety is preserved in each mode for

any given (γ, x(t), t) ∈M×X × Tk for all v(t) ∈ V.

First, note that if for every k, x(tk−1) ∈ K∗k−1(P ) (which, as we shall see,

is indeed the case) then x(tk−1) ∈ R(tk−1, k) since K∗k−1(P ) ⊆ R(tk−1, k).

Fix γ = `τ ∈M and k and let x(tk−1) ∈ R[γ](tk−1, k). Define a continuously

differentiable value function V
[γ]
k : X × Tk → R such that

V
[γ]
k (x(t), t) = dist2(x(t),R[γ](t, k)). (6.23)

Notice that V
[γ]
k (x(t), t) = 0 for x(t) ∈

◦
R[γ](t, k) and V

[γ]
k (x(t), t) ≥ 0 for

x(t) 6∈
◦
R[γ](t, k). We use the convention

R[γ](tk−1, k) ≡
{
x ∈ X | V [γ]

k (x, tk−1) ≤ 0
}
. (6.24)

and assume without loss of generality that the disturbance plays a worst-case

game against the control.

Consider the case in which x(t) 6∈
◦
R[γ](t, k) and the active mode of
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the automaton is qsafe. Clearly, we have that dist(x(t),R[γ](t, k)) ≥ 0. As

shown in [69], computing the Lie derivative of V
[γ]
k (x, t) along the system

(6.9) yields

d

dt
V

[γ]
k (x(t), t) = 2 dist(x(t),R[γ](t, k))

× d

dt
dist(x(t),R[γ](t, k)) (6.25)

with

d

dt
dist(x(t),R[γ](t, k)) =

∂

∂t
dist(x(t),R[γ](t, k))

+
〈 ∂
∂x

dist(x(t),R[γ](t, k)), ẋ(t)
〉

(6.26)

=
〈
l[γ], Bu(t) +Gv(t)

〉
+ ρBU (−l[γ])

−
〈
l[γ], Gv(t)

〉
(6.27)

where ρBU (l) := supz∈BU 〈l, z〉 is the support function of the set BU in the

direction l ∈ Rn and l[γ] is the unique direction vector given by (6.21) [75].

We refer the reader to [69, Sections 1.4 and 1.8] for additional details on how

(6.27) is obtained from (6.26). Notice that the right-hand side simplifies to〈
l[γ], Bu(t)

〉
+ ρBU (−l[γ])

=
〈
l[γ], Bu(t)

〉
+ sup
z∈BU

〈
− l[γ], z

〉
=
〈
l[γ], Bu(t)

〉
− inf
z∈BU

〈
l[γ], z

〉
. (6.28)

Recalling the fact that the set BU is a compact ellipsoid and invoking (6.20),

one can verify that

d

dt
dist(x(t),R[γ](t, k)) = 0 for u(t) = ψBU (l[γ]); (6.29)

d

dt
dist(x(t),R[γ](t, k)) ≥ 0 for any u(t) ∈ U . (6.30)

When the disturbance does not play a worst-case game, (6.27) is replaced

by d
dt dist(x(t),R[γ](t, k)) ≤ 〈l[γ], Bu(t) + Gv(t)〉 + ρBU (−l[γ]) − ρGV(l[γ])
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which would imply d
dt dist(x(t),R[γ](t, k)) ≤ 0 for u(t) = ψBU (l[γ]) and

∀v(t) = ρ[u](t) ∈ V.

On the other hand, when x(t) ∈
◦
R[γ](t, k) and the active mode of the

controller is qperf we have that dist(x(t),R[γ](t, k)) = 0. Thus the derivative

of the distance function need not be examined as the Lie derivative of the

value function (6.25) is automatically zero regardless of the value of u(t).

Combining the above we see that with u(t) = û(x(t), t) ∈ Ufb(q, γ, x(t), t)

we have

d

dt
V

[γ]
k (x, t)

∣∣∣
(6.9)
≤ 0 ∀(q, γ, x, t, v) ∈ Q×M×X × Tk × V. (6.31)

This yields∫ t

tk−1

d

ds
V

[γ]
k (x(s), s)ds

= V
[γ]
k (x(t), t)− V [γ]

k (x(tk−1), tk−1) ≤ 0 (6.32)

which in turn implies (via (6.24))

V
[γ]
k (x(t), t) ≤ V [γ]

k (x(tk−1), tk−1) ≤ 0 ∀t ∈ Tk. (6.33)

Therefore, for every solution x of the differential inclusion ẋ(t) ∈ Ax(t) ⊕
BUfb(q, γ, x(t), t)⊕GV we will have

x(t) ∈ R[γ](t, k) = Reach
][γ]
tk−t(K

∗[γ]
k (P ),U ,V) ∀t ∈ Tk, (6.34)

x(tk) ∈ K∗[γ]
k (P ). (6.35)

Notice that according to (6.13)

K
∗[γ]
k (P ) ⊆

⋃
γ∈M

K
∗[γ]
k (P ) := K∗k(P )

⊆ Disc[0,τ−tk](K,U ,V) ⊆ K.
(6.36)

Therefore, x(tk) ∈ K, for every k ∈ {1, . . . , |P |} granted that the feedback

control law (6.22) is applied.
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It remains to show that x(t) ∈ K for all t ∈ (tk−1, tk). Indeed, by

construction of the recursion (6.10) via Proposition 6.1 we have that for all

t ∈ Tk and k ∈ {1, . . . , |P |}

Reach
][γ]
tk−t(K

∗[γ]
k (P ),U ,V) ⊆ {x ∈ K | dist(x,Kc) ≥M‖P‖}. (6.37)

Therefore combining all this we conclude that with u(t) ∈ Ufb and x0 ∈
R(0, 1) we have x

u,ρ[u]
x0 (t) ∈ K ∀t ∈ [0, τ ] for every v(t) = ρ[u](t) ∈ V.

6.2.3 Remarks and Practical Considerations

Respecting the Intermediate Kernels

The strategy (6.22) will ensure that the trajectories of the closed-loop system

evolve in the interior or else on the boundary of R(t, k) for all t ∈ [0, τ ] and

k ∈ {1, . . . , |P |}. Thus as we have seen in (6.35) and (6.36), for a given

P ∈ P([0, τ ]) even if the disturbance always plays a worst-case game the

trajectories satisfy x(tk) ∈ K∗k(P ) ⊆ Disc[0,τ−tk](K,U ,V) for all k.

Shared Boundary Points

In practice for common points that are on the boundaries of two or more el-

lipsoids Reach
][`τ ]
tk−t(K

∗[`τ ]
k (P ),U ,V) at every time instant t, any one of these

ellipsoids can be used for the computation of l[`τ ](x(t), t) in (6.21) and its

corresponding optimal control law ψBU (l[`τ ](x(t), t)) in mode qsafe. Any such

control will ensure that the trajectory remains within the corresponding ro-

bust maximal reachable tube while being steered towards K
∗[`τ ]
k (P ) (which,

as we have seen, will ultimately ensure constraint satisfaction and safety).

To allow a more permissive control policy, the automaton H could be

modified by adding a self-loop in mode qsafe (i.e. an edge (qsafe, qsafe)) so that

among all possible safe control laws corresponding to those ellipsoids that

share the common boundary point, one that simultaneously better satisfies

a given performance criterion is selected.
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Conservatism of K∗0 (P ): Synthesis for x0 6∈ K∗0 (P )

When the initial condition x0 lies inside of the true discriminating ker-

nel but outside of its piecewise ellipsoidal under-approximation, i.e. x0 ∈
Disc[0,τ ](K,U ,V)\K∗0 (P ) for a given P ∈P([0, τ ]), the control policy (6.22)

will not in general guarantee that the constraint K is respected for all

t ∈ [0, τ ]. However, with the following modification the feedback law will

attempt to keep the trajectory within K: For every t ∈ [0, s], s ∈ (0, τ ],

with s being the first instant such that x(s) ∈ R(s, k′) for some k′ ∈
{1, . . . , |P |}, for every k ≤ k′ the direction vector l[`τ ](x(t), t) in (6.21) is

modified to be the direction that corresponds to any `τ ∈ M for which

dist(x(t), Reach
][`τ ]
tk−t(K

∗[`τ ]
k (P ),U ,V)) = min. We will demonstrate this us-

ing an example in Section 6.3.

Finally, note that for x0 6∈ Disc[0,τ ](K,U ,V) the modified control law

described above may still be able to keep x in K over [0, τ ], only if the

disturbance does not play optimally against the control. (In formulation

of Disc[0,τ ](K,U ,V) we always assume that the disturbance plays its worst-

case game.) On the other hand, in the deterministic case (V = {0}), for

x0 6∈ V iab[0,τ ](K,U) there does not exist a control law that can keep the

trajectory within K over [0, τ ]. Therefore any safety-preserving strategy

ultimately fails.

Smooth Transition Between Safety and Performance

When the mode qperf of the controller is active, the strategy Ufb(qperf, γ, x(t), t) =

U for some (γ, x(t), t) ∈ Σi×Σe is returned and any performance-satisfying

control input in U can be chosen and applied to the system; denote this

input as uperf(t). On the other hand, when the mode qsafe is active, the con-

troller returns Ufb(qsafe, γ, x(t), t) = ψBU (l[γ]) and only this specific safety-

preserving control law must be applied to the system to ensure safety; we

denote this input as usafe(t).

Choosing uperf arbitrarily without considering the main objective of the

closed-loop system (preserving safety) may result in excessive switching be-

tween the two modes of the controller (whose main priority is to preserve

119



6.2. Computational Algorithm & Control Synthesis

safety). Thus the resulting control policy could have a high switching fre-

quency and the controller could end up spending a significant amount of

time at the extremum points of the input constraint set. Such a policy,

among other shortcomings, may be hard on actuators in a practical setting.

An ideal control policy in mode qperf should be a combination of both

uperf and usafe (even though technically the safety component usafe is not

needed when the controller is in mode qperf). One solution is a simple convex

combination of these two inputs. That is, for every (γ, x(t), t) ∈ Σi × Σe

and a given domain
◦
R[γ](t, k) =

◦
E(x

c[γ]
k (t− tk−1), X

−[γ]
`,k (t− tk−1)) in qperf we

shall choose an input such that

u(t) = (1− βα[φ[γ]](x(t), t))uperf(t) + βα[φ[γ]](x(t), t)usafe(t), (6.38)

with

βα[φ[γ]](x(t), t) :=


1 if φ[γ](x(t), t) ≥ 1;

1
1−α(φ[γ](x(t), t)− α) if α ≤ φ[γ](x(t), t) ≤ 1;

0 if φ[γ](x(t), t) ≤ α,
(6.39)

where α ∈ [0, 1) is a design parameter (Figure 6.2) and

φ[γ] : Σe → R+, (6.40)

(x(t), t) 7→
〈
(x(t)− xc[γ]

k (t− tk−1)),

(X
−[γ]
`,k (t− tk−1))−1(x(t)− xc[γ]

k (t− tk−1))
〉
.

(6.41)

Note that in qperf for fixed γ and t we have that dom(φ[γ](·, t)) =
◦
R[γ](t, k).

Therefore, range(φ[γ](·, t)) = [0, 1). This is true simply because the set

R[γ](t, k) is an ellipsoid, and therefore by definition, the one sub-level sets

of the function φ[γ](·, t) in qperf form the interior of R[γ](t, k). That is,
◦
R[γ](t, k) := {x ∈ X | φ[γ](x, t) < 1}.

Notice that φ[γ](x(t), t) determines how “deep” inside the domain of qperf

the trajectory is at time t by evaluating the one sub-level sets of the ellipsoid
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α 1

1

0 φ

β

Figure 6.2: βα as a function of φ for a given design parameter α ∈ [0, 1).

R[γ](t, k) (the closure of the domain of qperf) at x(t). The closer the trajec-

tory is to the boundary of R[γ](t, k) the greater the value of βα[φ[γ]](x(t), t)

and therefore the more pronounced the safety component usafe(t) of the in-

put will be. On the other hand, if the trajectory is deep inside the domain of

qperf, φ
[γ](x(t), t) tends to α, and therefore βα[φ[γ]](x(t), t) goes to zero. As

a result, a greater emphasis is given to the performance component uperf(t)

of the input. As such, the parameter α determines where within the domain

of qperf the safety component usafe(t) should kick in. Clearly, larger values of

α imply more emphasis on performance, while smaller values yield smoother

transition between qperf and qsafe. Note that the limit of the control law u(t)

in (6.38) as x(t)→ ∂R[γ](t, k) is usafe(t). Therefore the control is continuous

across the automaton’s transition to qsafe.

Such a policy will ensure a gradual change of the effective component

of the control law from one form to the other, resulting in less switching

frequency between performance and safety. We will show this policy using

a number of examples in Section 6.3.

Intermediate Maximal Reachable Sets vs. Tubes

Notice that while in the approximation of the discriminating/viability ker-

nel via recursion (6.10) only the final intermediate maximal reachable sets

Reach
][`τ ]
tk−tk−1

(K
∗[`τ ]
k (P ),U ,V) are used, in the control synthesis scheme de-

scribed above (which is based on the ellipsoidal techniques [69]) to form a

121



6.3. Numerical Examples

proper state-feedback law all intermediate reachable tubes⋃
t∈Tk

Reach
][`τ ]
tk−t(K

∗[`τ ]
k (P ),U ,V) (6.42)

are required and must be recorded.

Chattering and Zeno Executions

In theory, the continuous-time evolution of the dynamics in each mode of H

and the particular formulation of the automaton may cause chattering (fre-

quent switches between the two modes) or Zeno behavior (infinite switches in

finite time). While such undesirable phenomena may be avoided by impos-

ing certain conditions such as dwell-time [92] (requiring that the automaton

remains in each mode for a non-zero amount of time) or other techniques

as discussed in e.g. [2, 29, 53], in practice for a machine implementation

of our control algorithm a finite number of sets can be used to form the

intermediate maximal reachable tubes due to the discrete nature of numer-

ical evaluations of the integration of the differential equations. This, in

principle, imposes a constant dwell-time (which equals to the integration

time-step) and thus ensures that the automaton is well-behaved. In addi-

tion, the previously presented scheme for smooth transition between safety

and performance (page 119) can also prevent chattering to a great extent;

See Section 6.3.1.

6.3 Numerical Examples

We start with a number of toy examples to demonstrate the results and then

proceed with more realistic and practical examples.

6.3.1 2D System Without Uncertainty

Consider the system

ẋ =

[
1 1

−1 0

]
x+

[
1

1

]
u
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with u(t) ∈ U := [−0.15, 0.15] and a constraint set K defined to be a

disc of radius 0.5 about the origin. We approximate the viability ker-

nel V iab[0,2](K,U) (using |M| = 2 directions and uniform partition with

|P | = 80) and synthesize safety-preserving control laws that ensure x(t) ∈ K
∀t ∈ [0, 2]. Since u in qperf can be chosen arbitrarily in U , we simply ap-

ply u = 0. The simulation results for a few initial conditions are given in

Figures 6.3 and 6.4.

Smooth Transition Between Safety and Performance

Here we will apply the mildly varying control law described by (6.38)–(6.41)

(with α = 0) to obtain less switching frequency for the controller. Fig-

ure 6.5 shows the closed-loop trajectories generated by such a policy, while

Figure 6.6 shows the corresponding feedback strategies.

6.3.2 2D System With Uncertainty

Consider the system

ẋ =

[
1 1

−1 0

]
x+

[
1

1

]
u+

[
0

1

]
v

subject to unknown but bounded disturbance v(t) ∈ V := [−0.1, 0.1], bounded

control input u(t) ∈ U := [−0.15, 0.15], and state constraint x(t) ∈ K :=

{x ∈ R2 | ‖x‖2 ≤ 0.5} for all t ∈ [0, 2]. We approximate the (finite-horizon)

discriminating kernel Disc[0,2](K,U ,V) (using |M| = 4 directions and uni-

form partition with |P | = 80) and synthesize safety-preserving control laws

that ensure x(t) ∈ K ∀t ∈ [0, 2] despite the action of the unknown distur-

bance. As before, since u in qperf can be chosen arbitrarily in U , we simply

apply u = 0. The simulation results for a few initial conditions are given

in Figures 6.7, 6.8, and 6.9, where we have assumed that for each initial

condition the disturbance is a random signal with uniform distribution on

V, i.e. v(t) ∈ U([−0.1, 0.1]). Safety is preserved despite this (unknown)

disturbance.
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Figure 6.3: Closed-loop trajectories in the phase-plane for four sample ini-
tial conditions x0,i for Example 6.3.1. The constraint set K
(red/dark) and a piecewise ellipsoidal under-approximation of
the viability kernel (green/light) are shown. The level set ap-
proximation of the viability kernel is outlined in thick black lines.
The feedback law is chosen such that u = 0 when q = qperf

and u = usafe when q = qsafe. Safety is preserved over the fi-
nite horizon for x0,i ∈ V iab[0,2](K,U). While x0,3 is not in the
under-approximation of the viability kernel, the designed control
policy still maintains safety (see page 119). Note that the tra-
jectories can leave the kernel since it is finite-horizon and hence
not invariant; however, they do not violate the constraints. For
x0,4 6∈ V iab[0,2](K,U), even though the control is always at its
extremum points (see the bottom plot in Figure 6.4), the tra-
jectory eventually leaves K.
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Figure 6.4: The corresponding safety-preserving feedback policy for Exam-
ple 6.3.1 for each initial condition x0,i (in Figure 6.3). The
dashed lines (red) indicate the hard bounds on the input.
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Figure 6.5: Closed-loop trajectories with smooth transition (via (6.38)–
(6.41) with α = 0) between qperf and qsafe for Example 6.3.1.
Safety is maintained.
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Figure 6.6: The corresponding safety-preserving feedback policy with less
switching frequency for Example 6.3.1 for x0,i, i = 1, . . . , 3 (in
Figure 6.5). Note that for x0,4 the controller is never in qperf.
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Figure 6.7: Closed-loop trajectories in the phase-plane for three sample ini-
tial conditions x0,i for Example 6.3.2. The constraint set K
(red/dark) and a piecewise ellipsoidal under-approximation of
the discriminating kernel (green/light) are shown. The level set
approximation of the kernel is outlined in thick black lines. The
feedback law is chosen such that u = 0 when q = qperf and
u = usafe when q = qsafe. Safety is preserved despite the distur-
bance.

128



6.3. Numerical Examples

0 0.5 1 1.5 2
−0.2

0

0.2

0 0.5 1 1.5 2
−0.2

0

0.2

0 0.5 1 1.5 2
−0.2

0

0.2

t

u
u

u
(x0,1)

(x0,2)

(x0,3)

Figure 6.8: The corresponding safety-preserving feedback policy for Exam-
ple 6.3.2 for each initial condition x0,i.
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Figure 6.9: The simulated disturbance signal for Example 6.3.2 for each ini-
tial condition x0,i.
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k10 k12 k13 k21 k31 V1

0.4436 0.1140 0.0419 0.0550 0.0033 16.044

Table 6.1: Model parameters for the patient (11 years old, 35 kg); cf. [1]

6.3.3 3D Control of Anesthesia

Consider the problem of safety in control of anesthesia as described in Sec-

tion 5.3.2. Instead of the discrete-time Laguerre model of the patient, here

we use a three-dimensional continuous-time pharmacokinetic/pharmacody-

namic (PKPD) compartmental model whose state variables describe the

concentration of propofol in each compartment of the body:

ẋ =

−(k10 + k12 + k13) k12 k13

k21 −k21 0

k31 0 −k31

x+

1/V1

0

0

u.
The model parameters, taken from [1], are given in Table 6.1. Suppose that

the patient is to undergo a 30 min surgery and that the input (propofol

infusion rate [mg/min]) is hard bounded above and below such that u(t) ∈
U := [0, 20]. To keep the plasma drug concentration within therapeutic

range, we require

x(t) ∈ K := E


3.5

5

5

 ,
6.25 0 0

0 25 0

0 0 25


 ∀t ∈ [0, 30]. (6.43)

We approximate the viability kernel V iab[0,30](K,U) via Algorithm 5.1

using |M| = 15 directions and uniform partition with |P | = 600. Consider

the initial condition x0 =
[
4 5 8

]T
and assume that no drug is being ad-

ministered, i.e. u = min(U) = 0. When the safety-preserving controller is not

engaged, the therapeutic constraint K is eventually violated (Figure 6.10)

putting the patient at risk of intra- and post-operative complications. When

the safety-preserving controller is engaged (using the same input u = 0 in

qperf and enforcing the optimal safety control law in qsafe) the constraint

K is satisfied for the entire duration of surgery (Figure 6.11). To ensure
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Figure 6.10: 2D projections of the closed-loop trajectories with u = 0 and
no safety control for Example 6.3.3. The initial condition x0

is marked by ‘×’. The constraint set K (red/dark) and a
piecewise ellipsoidal under-approximation of the viability ker-
nel (green/light) are also shown. The constraint set K (safety
of the patient) is violated.

a slowly varying safety-preserving infusion policy the modified strategy in

(6.38)–(6.41) (with α = 0) is employed: Figure 6.12 shows this feedback

policy, while Figures 6.13–6.16 discuss various behaviors and characteristics

of the hybrid controller using such a strategy. In comparison, a direct appli-

cation of the safety-preserving controller without the modified strategy in

(6.38)–(6.41), while still capable of maintaining safety, results in significant

chattering and an aggressive infusion policy as shown in Figures 6.17–6.21.

6.3.4 6D Flight Envelope Protection

Consider the problem of aerodynamic flight envelope protection for NASA’s

Highly Maneuverable Aircraft Technology (HiMAT) [105]. The longitudinal

dynamics of the HiMAT aircraft trimmed at 25 kft and 0.9 Mach are given
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Figure 6.11: 2D projections of the closed-loop trajectories with u = usafe in
qsafe and uperf = 0 in qperf using the modified policy (6.38)–
(6.41) with α = 0 for Example 6.3.3. The initial condition
x0 is marked by ‘×’. The constraint set K (red/dark) and a
piecewise ellipsoidal under-approximation of the viability ker-
nel (green/light) are also shown. Safety is preserved.
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Figure 6.12: The safety-preserving feedback policy via (6.38)–(6.41) with
α = 0 for Figure 6.11 for Example 6.3.3. The bounds on the
input are shown as dashed lines.
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Figure 6.13: uperf(t) as a percentage of u(t) in qperf for the modified policy
(6.38)–(6.41) with α = 0 for Example 6.3.3. The safety com-
ponent of the input becomes more dominant as the trajectory
gets closer to the boundary of the ellipsoid that is the domain
of qperf as shown in Figure 6.16. A value of 0% would corre-
spond to when the automaton has switched to qsafe, while a
value of 100% would correspond to when x(t) is at the center
of the domain of qperf. Increasing α would further emphasize
the uperf component, at the cost of a more aggressive control
policy and possibly more frequent switchings between the two
modes of the automaton.
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Figure 6.14: The active mode of the hybrid automaton H at time t using
the modified policy (6.38)–(6.41) with α = 0 for Example 6.3.3.
The safety component usafe of the input in qperf seems to be
sufficient to maintain safety in this case, and thus the controller
does not switch to qsafe.
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Figure 6.15: The index of the ellipsoid being used by the automaton (i.e.
the internal input γ ∈ Σi of H) at time t when using the
modified policy (6.38)–(6.41) with α = 0 for Example 6.3.3.
The ellipsoid does not change.
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Figure 6.16: The location of x(t) within the domain of qperf, i.e. φ[γ](x(t), t),
when using the modified policy (6.38)–(6.41) with α = 0 for
Example 6.3.3. The boundary of the corresponding ellipsoid is
marked by the dashed line at 1. The center of the ellipsoid is
at 0.
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Figure 6.17: 2D projections of the closed-loop trajectories with u = uperf = 0
in qperf and u = usafe in qsafe for Example 6.3.3. While safety
is still preserved, the corresponding feedback policy chatters
significantly (Figure 6.18) as compared to the slowly varying
policy in Figure 6.12.
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Figure 6.18: The safety-preserving feedback policy for Figure 6.17 for Ex-
ample 6.3.3. The bounds on the input are shown as dashed
lines. The controller chatters between qperf and qsafe as shown
in Figure 6.19.
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Figure 6.19: The active mode of the hybrid automaton H at time t for Ex-
ample 6.3.3 when the modified policy (6.38)–(6.41) is not em-
ployed.
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Figure 6.20: The index of the ellipsoid being used by the automaton (i.e. the
internal input γ ∈ Σi of H) at time t for Example 6.3.3. Note
that the ability to switch ellipsoids in H is not the cause of the
chatter (as evidenced by the fact that the ellipsoid appears to
only switch twice).
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Figure 6.21: The location of x(t) within the domains of qperf and qsafe, i.e.
φ[γ](x(t), t), for Example 6.3.3. For φ[γ](x(t), t) < 1 the active
mode is qperf (whose domain is an ellipsoid whose index is shown
in Figure 6.20). On the other hand, for φ[γ](x(t), t) ≥ 1 the
active mode is qsafe. At time t = 1.71 the automaton takes a
transition on (qperf, qperf) ∈ E while resetting γ to correspond
to a new direction vector (ellipsoid). This ensures that the
active mode remains qperf. The change of ellipsoid causes a
change in the definition of φ and hence a discontinuous jump
in the plot. At t = 4.1 the automaton is forced to switch to
qsafe to maintain safety, but progresses by chattering between
qsafe and qperf as indicated by the values of φ[γ](x(t), t).
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by ẋ = Ax+Bu with

A =



−0.0226 −36.6170 −18.8970 −32.0900 3.2509 −0.7626

0.0001 −1.8997 0.9831 −0.0007 −0.1708 −0.0050

0.0123 11.7200 −2.6316 0.0009 −31.6040 22.3960

0 0 1.0000 0 0 0

0 0 0 0 −30.0000 0

0 0 0 0 0 −30.0000


,

B =

[
0 0 0 0 30 0

0 0 0 0 0 30

]T

and state vector x =
[
α̇ α θ̇ θ xδe xδc

]T
in which the first four states

represent angle of attack and attitude angle and their rates of change, and

the last two states represent elevon and canard control actuator dynamics.

The control input u =
[
δe δc

]T
is comprised of elevon and canard actuators.

For all t ∈ [0, 1] we assume that u(t) ∈ U , a disc of radius 0.5236 rad (≈ 30◦)

about the origin in R2, and require x(t) ∈ K := {x ∈ R6 | ‖x‖2 ≤ 5}.1
Suppose that a pre-designed Linear Quadratic Regulator (LQR) con-

troller is to be used that satisfies the performance functional

J(u) =

∫ ∞
0

(xTQx+ uTRu)dt (6.44)

with Q = I6 and R = 102 × I2 subject to the system dynamics. The

corresponding state-feedback control law that minimizes J(u) is ulqr := −Kx
with

K =

[
0.0823 −0.8209 −0.3457 −0.5247 0.3119 −0.2107

−0.0552 0.5619 0.2367 0.3588 −0.2107 0.1497

]
.

Since the control authority is constrained by the ellipsoid U =: E(ω,Ω),

1These assumptions are purely for the algorithmic convenience of dealing with ellip-
soids. The input constraint set, for instance, may be better described by a rectangle in
R2 as the actuators are in fact dynamically independent, and the state constraint set is
entirely fictitious.
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6.4. Summary and Further Discussions

applying the above LQR control law may result in saturation such that u =

sat(ulqr) is effectively applied to the system. Here the saturation function

sat : R2 → U is determined by the support vector of the set U in the direction

of ulqr/‖ulqr‖ and is defined as

sat(ulqr) :=

ulqr if ulqr ∈ U ;

ω + Ωulqr

〈
ulqr, Ωulqr

〉−1/2
if ulqr 6∈ U .

(6.45)

We approximate the viability kernel V iab[0,1](K,U) via Algorithm 5.1

using |M| = 15 directions and uniform partition with |P | = 300. Consider

the initial condition

x0 =
[
−1.7064 1.7769 −1.8770 −1.1272 1.5994 1.7680

]T
.

Applying the LQR controller without a safety-preserving strategy in place

results in violation of the aerodynamic envelope K as shown in Figure 6.22

due to unaccounted actuator saturations. On the other hand, when the

safety-preserving controller is employed (with u = sat(ulqr) in mode qperf

and the optimal safety control law in qsafe) the flight envelope is protected

over the horizon [0, 1] despite the unaccounted actuator saturations in the

LQR action (Figure 6.23).

6.4 Summary and Further Discussions

In this chapter we first extended the results of Chapter 5 to the differential

games setting in which the system is subject to unknown but bounded dis-

turbance/uncertainty. Consequently, the discriminating kernel is expressed

in terms of robust maximal reachable sets. Owing to this new connec-

tion, scalable and efficient Lagrangian methods can now be used to cor-

rectly approximate the discriminating kernel. We also presented an exten-

sion of the piecewise ellipsoidal algorithm from Section 5.2.1 that facilitates

the under-approximation of the discriminating kernel for high-dimensional

LTI systems. Based on this algorithm (and its underlying ellipsoidal tech-
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Figure 6.22: 2D projections of the closed-loop trajectories with saturated
LQR and no safety control for the first four states for Ex-
ample 6.3.4. The initial condition x0 is marked by ‘×’. The
constraint set K (red/dark) and a piecewise ellipsoidal under-
approximation of the viability kernel (green/light) are also
shown. The constraint set K is violated due to unaccounted
actuator saturations.
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Figure 6.23: 2D projections of the closed-loop trajectories with safety-
preserving controller for the first four states for Example 6.3.4.
The initial condition x0 is marked by ‘×’. The feedback law
is chosen such that u = sat(ulqr) when q = qperf and u = usafe

when q = qsafe. The constraint set K (red/dark) and a piece-
wise ellipsoidal under-approximation of the viability kernel
(green/light) are shown. Safety is preserved in spite of the
actuator saturations in the LQR controller.
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6.4. Summary and Further Discussions

niques for reachability [72]), we then proposed a scalable, non-restrictive,

safety-preserving, hybrid state-feedback control strategy for continuous-time

LTI systems that ensures that the state constraint is not violated despite

bounded control authority and, if present, unknown disturbances. We demon-

strated the results on several examples including a realistic problem of safety

in anesthesia and a 6D problem of aerodynamic flight envelope protection.
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Chapter 7

Conclusions and Future

Work

We considered the problem of guaranteed safety and constraint satisfaction

in high-dimensional, safety-critical, controlled dynamic systems. Reacha-

bility analysis and viability theory provide an appropriate framework for

set-valued analysis of constrained dynamical systems. To guarantee safety

of such systems and to synthesize controllers that are capable of preserving

this safety despite bounded control authority (and possibly disturbances or

uncertainties), the computation of the minimal reachable tube or by duality,

the viability kernel is required. Historically, the algorithms that approxi-

mate these sets—known as Eulerian methods—are based on gridding the

state space. While powerful and versatile, their computational complexity

increases exponentially with the dimension of the state. This renders them

impractical for systems of dimensions higher than three or four.

We presented two separate approaches for reduction of complexity in

computing the minimal reachable tube or the viability kernel for higher-

dimensional systems. The first approach, based on structure decomposi-

tion, aims to facilitate the use of Eulerian methods on higher-dimensional,

continuous-time, continuously-valued LTI systems (and by extension, hy-

brid systems with LTI continuous dynamics). It does so by constructing an

appropriate similarity transformation that not only results in decoupling (or

weak unidirectional coupling) of the dynamics, but also yields disjoint input.

This imposed structure is then exploited for decomposition of the system

for the purpose of computing the minimal reachable tube and the viability

kernel in lower dimensions. A number of algorithms are then presented that
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7.1. Summary of Contributions

enable a sound approximation of these constructs in lower-dimensional sub-

spaces. It is shown that the reverse transformation of the intersection of the

back-projection of these resulting sets correctly approximates the actual con-

structs. Within the framework of structure decomposition, we proposed two

techniques: the Schur-based decomposition and the Riccati-based decompo-

sition, each with its own merits. While the Schur-based decomposition is

quite generic and applicable to most systems, the Riccati-based decomposi-

tion may yield less conservative reachability computations for two-time-scale

or ill-conditioned systems as was shown with an example in Chapter 4.

The second complexity reduction approach, based on set-theoretic meth-

ods, draws a connection between the viability kernel and the maximal reach-

able sets for continuous- and discrete-time systems. Since the maximal

reachable sets can be computed using efficient and scalable techniques—

known as Lagrangian methods—that employ compact set representations

and follow the flow of the dynamics, the viability kernel can now be under-

approximated with polynomial complexity. Using the well-established el-

lipsoidal techniques for maximal reachability we then proposed a scalable

algorithm that facilitates the computation of the viability kernel for high-

dimensional LTI systems. This approach also enabled us to formulate a

scalable safety-preserving static feedback control strategy. We also provided

extensions of this approach to systems with unknown but bounded distur-

bances or uncertainties.

We demonstrated our techniques on several examples (up to 8D) includ-

ing a problem of safety in control of anesthesia and flight envelope protection

for longitudinal aircraft dynamics. We mention, however, that the second

approach is much more scalable: The algorithm can likely be applied to

systems with several dozens of state variables.

7.1 Summary of Contributions

We summarize our contributions as follows:

• We proposed two structure decomposition techniques that enable the
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7.2. Future Research Directions

computation of the minimal reachable tube and the viability kernel for

higher-dimensional LTI systems using Eulerian methods. The decom-

position techniques that are available in the literature, while generally

applicable to nonlinear systems, assume a certain structure on the

system that can be exploited. Our techniques, on the other hand, are

designed to impose this structure.

• We presented a novel connection between the viability kernel and max-

imal reachable sets. Owing to this connection efficient and scalable

Lagrangian methods can now be used to approximate the viability

kernel for high-dimensional systems. Our piecewise ellipsoidal algo-

rithm which was proposed based on this new connection using the

ellipsoidal techniques for maximal reachability is capable of comput-

ing a guaranteed under-approximation of the viability (discriminating)

kernel for high-dimensional (uncertain) LTI systems.

• We showed that the presented connection can also be employed to

synthesize safety-preserving control laws. We then proposed a scal-

able safety-preserving control strategy (again based on the ellipsoidal

techniques for maximal reachability and the corresponding optimal

control laws) that ensures safety of high-dimensional safety-critical,

possibly uncertain LTI systems.

7.2 Future Research Directions

There are several possibilities for future work and further developments.

Structure Decomposition

For both of our decomposition techniques—i.e. Schur-based decomposition

(Chapters 3) and Riccati-based decomposition (Chapter 4)—future work

includes efforts to reduce potential conservatism in the over-approximation

of the minimal reachable tube (or the under-approximation of the viability

kernel). One direction is to incorporate the geometric information about the
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shape of the target set into the decomposition process so that the projection

of the set onto the subspaces of the transformed coordinates does not result

in excessive loss of detail. A second direction is an alternative transformation

that produces subsystems that may both be manipulated to some degree

while still preserving the disjoint property of the input.

Set-Theoretic Methods

While the presented piecewise ellipsoidal algorithm in Chapter 5 has proven

to be effective and efficient, it may be subject to excessive conservatism par-

ticularly for large time horizons. Quantifying the accuracy of the algorithm

is an important future research direction. We are also currently developing

alternative approaches that yield a more accurate under-approximation of

the viability kernel while still preserving the scalability property. In fact

our hope is that the presented connection between the viability kernel and

maximal reachable sets encourages the development of scalable and accurate

algorithms for the computation of the viability kernel for nonlinear systems.

Finally, as our algorithm is already heavily based on intersections, a natu-

ral (and straightforward) extension would be to consider hybrid dynamical

systems.

Safety-Preserving Control Synthesis

Any Lagrangian technique that can accommodate the synthesis of maximal

reachability control laws (and can handle adversarial inputs for the discrim-

inating kernel case) may be used to formulate a safety-preserving controller

based on the framework described in Chapter 6. Our proposed control al-

gorithm in that chapter is at early stages of development. Many future

research directions are possible:

• We have assumed that safety is only to be preserved over the given

finite interval [0, τ ]—beyond this point the trajectories may leave the

constraint set regardless of what the control input does. We are cur-

rently developing a variation of the hybrid controller (6.18) that em-
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ploys a pseudo-time variable with varying rates of change and can

potentially ensure safety over a horizon larger than τ .

• Suppose that the infinite-horizon discriminating kernel is nonempty,

and Disc[0,τ−tk](K,U ,V) ≡ DiscR+(K,U ,V) for some k ∈ {0, . . . , |P |}.
Due to propagation of the approximation error, the set generated by

the piecewise ellipsoidal algorithm is not in general guaranteed to con-

verge to the infinite-horizon kernel. However, if the algorithm does

converge for at least one terminal direction, then the current formula-

tion of the hybrid controller can be used to synthesize infinite-horizon

safety-preserving control laws. We intend to prove this point in the

future.

• Another avenue is the extension of the safety-preserving controller to

the discrete-time case. While this is certainly possible, the discussions

become more involved in the presence of disturbance/uncertainty as

the Isaac’s condition no longer holds.

• The presented safety-preserving controller is non-restrictive/permissive.

That is, the optimal safety control law must be applied only when

safety is at stake. Otherwise, any desired/performance-satisfying con-

trol law in U can be chosen. A future research direction would be

to determine the “distance” of this controller (in an ordered space of

all safety-preserving controllers) to the least restrictive controller as

defined by [81].
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[69] A. B. Kurzhanski and I. Vályi. Ellipsoidal Calculus for Estimation
and Control. Birkhäuser, Boston, MA, 1996.

[70] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reacha-
bility analysis. In N. Lynch and B. Krogh, editors, Hybrid Systems:
Computation and Control, LNCS 1790, pages 202–214, Berlin Heidel-
berg, 2000. Springer-Verlag.

[71] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reacha-
bility analysis: internal approximation. Systems & Control Letters,
41:201–211, 2000.

[72] A. B. Kurzhanski and P. Varaiya. On reachability under uncertainty.
SIAM Journal on Control and Optimization, 41(1):181–216, 2002.

[73] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal Toolbox (ET). In
Proc. IEEE Conference on Decision and Control, pages 1498–1503,
San Diego, CA, December 2006.

[74] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal techniques for reacha-
bility analysis of discrete-time linear systems. IEEE Transactions on
Automatic Control, 52(1):26–38, 2007.

154



Bibliography

[75] A. A. Kurzhanskiy and P. Varaiya. Computation of reach sets for
dynamical systems. In Chapter for Control Handbook. 2 edition, 2008.

[76] M. Kvasnica, P. Grieder, M. Baotić, and M. Morari. Multi-Parametric
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Appendix A

Supplementary Materials for

Schur-Based Decomposition

A.1 On Assumption 3.1 (and 4.2)

Proposition A.1. With A ∈ Rn×p and B ∈ Rm×p, the equation XA = B

has a solution w.r.t. X ∈ Rm×n if and only if C (BT) ⊆ C (AT).

Proof. By taking the transpose of both sides we have ATXT = BT. Let

Y := XT. The equation ATY = BT is known to have at least one solution

w.r.t. Y if and only if the column space of BT is in the image (or range) of

the linear operator AT, i.e. C (BT) ⊆ C (AT).

To check if the condition holds, we can check if

span{~b1, . . . ,~bm} ⊆ span{~a1, . . . ,~an}, (A.1)

where ~bi and ~ai denote the ith row of the matrices B and A, respectively.

Or equivalently, we can check if the following rank condition holds:

rank
([
AT|BT

])
= rank

(
AT
)
. (A.2)

A.2 Proof of Proposition 3.4

To prove Proposition 3.4 let us first state a simple lemma.

Lemma A.1. Consider the backward reachable tube Reach[[0,t](K,U) of (2.12)

over the interval [0, t], t ∈ [0, τ ], for a fixed τ ∈ R+. Denote by Reach[A[0,t](K)
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the backward reachable tube of its corresponding autonomous system

ẋ = Ax. (A.3)

The following inclusions hold:

K ⊆ Reach[[0,t](K,U) ⊆ Reach[A[0,t](K) ∀t ∈ [0, τ ]. (A.4)

Proof. Assume, without loss of generality, that U is a compact hyper-rectangular

subset of Rp such that U =
∏p
i=1 Ui, ui ∈ Ui = [U i,U i], 0 ∈ Ui. Notice that

the trajectories of the autonomous system (A.3) approach those of the con-

trolled system (2.12) as

ξ := sup{‖u‖ : u ∈ U} (A.5)

tends to zero. As such, we draw on the level set formulation of the backward

reachable tube of system (2.12) and treat (A.3) as a particular form of (2.12)

in which the control input u is diminished.

It is well-known [89] that if K is represented as the zero sub-level set of

some bounded and Lipschitz continuous implicit surface function g : Rn →
R, i.e. K = {x | g(x) ≤ 0}, then the backward reachable tubeReach[[0,t](K,U)

can be obtained as the zero sub-level set of the viscosity solution φ : Rn ×
[0, τ ]→ R of the modified terminal value HJB PDE

∇tφ(x, t) = −min {0, H (x,∇xφ(x, t))} , φ(x, τ) = g(x) (A.6)

H(x, `) = sup
u∈U
〈`, Ax+Bu〉 (A.7)

with the Hamiltonian H(·, ·) and the costate vector `. Here, 〈·, ·〉 denotes

the inner product. Thus, Reach[[0,t](K,U) = {x | φ(x, τ − t) ≤ 0}. The

optimal Hamiltonian, in this case, can be determined analytically as

H∗(x, `) = `TAx+ `TBu∗, u∗ = [u∗1 · · ·u∗p]T (A.8)

161



A.2. Proof of Proposition 3.4

with

u∗i =


U i if `Tbi < 0;

[U i,U i] if `Tbi = 0;

U i if `Tbi > 0

, i = 1, . . . , p (A.9)

where bi is the i-th column vector of matrix B. Notice that the second term

on the right hand side of (A.8) is always non-negative, i.e. `TBu∗ ≥ 0.

Therefore we have

∇tφ(x, t) =

0 if `TAx ≥ −`TBu∗;
|`TAx| − `TBu∗ otherwise.

(A.10)

When ξ = 0, the controlled system (2.12) is equivalent to the autonomous

system (A.3) and the Hamiltonian (A.7) becomes H(x, `) = H∗(x, `) =

`TAx. Consequently, (A.10) reduces to

∇tφ(x, t)

∣∣∣∣
ξ=0

=: ∇tφA(x, t) =

0 if `TAx ≥ 0;

|`TAx| otherwise
(A.11)

where φA(·, ·) is to denote the implicit surface function whose zero sub-level

set determines the backward reachable tube Reach[A[0,t](K) of (A.3). That is,

Reach[A[0,t](K) = {x | φA(x, τ − t) ≤ 0}.
Comparing (A.10) and (A.11) one can observe that not only the interval

over which ∇tφ (the rate of surface change in time) is zero is shortened (i.e.

`TAx ≥ 0 as opposed to `TAx ≥ −`TBu∗), but also its maximum (positive)

value is increased (i.e. |`TAx| as opposed to |`TAx| − `TBu∗). Therefore,

for all (x, t) ∈ Rn × [0, τ ] we have

∇tφA(x, τ − t) ≥ ∇tφ(x, τ − t) (A.12)

=⇒ φA(x, τ − t) ≤ φ(x, τ − t) ≤ φ(x, τ) ≤ 0 (A.13)

⇐⇒ Reach[A[0,t](K) ⊇ Reach[[0,t](K,U) ⊇ K. (A.14)
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A.2. Proof of Proposition 3.4

Notice that this result agrees with the intuitive interpretation that larger

control authority (i.e. ξ 6= 0) implies a smaller unsafe minimal reachable

tube. We are now ready to prove Proposition 3.4.

Proof of Proposition 3.4. Using Lemma A.1 we have

Reach[A[0,t](K) ⊇ Reach[[0,t](K,U) ∀t (A.15)

where Reach[A[0,t](K) denotes the backward reachable tube of the autonomous

system (A.3). Therefore, to prove Reach[[0,t](K,U) = K, ∀t ∈ [0, τ ], it is

sufficient to show that Reach[A[0,t](K) = K, ∀t ∈ [0, τ ].

Let SΛS−1 be the eigen-decomposition of A. Conditions (ii) and (iii)

imply Λ = λIn, λ ≥ 0. Rewriting the Hamiltonian of the HJB PDE (A.6)

for the autonomous system (A.3) and using condition (i) we have

H(x,∇xφA(x, t)) = 〈∇xφA(x, t), Ax〉 (A.16)

= 〈∇xφA(x, t), SΛS−1x〉 (A.17)

= λ〈∇xφA(x, t), x〉 ≥ 0 ∀(x, t) ∈ Rn × [0, τ ]. (A.18)

The non-negativity of the Hamiltonian is due to the fact that K is convex and

0 ∈ K. Thus, the costate vector ∇xφA(x, t) at every point on the boundary

constitutes an acute (hyper-) angle with respect to the trajectory x initiating

from that point in forward time. This is schematically illustrated for a trivial

planar system in Figure A.1. As a result, for all (x, t) ∈ Rn× [0, τ ] we have

H(x,∇xφA(x, t)) ≥ 0⇐⇒ ∇tφA(x, t) = 0 (A.19)

⇐⇒ Reach[A[0,t](K) = K. (A.20)

This concludes the proof.
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A.3. Decomposed System Matrices for Examples 3.6.2 and 3.6.3

2

2x 1x 1

3

3x
K

Figure A.1: Three sample costate vectors (`i) and trajectories (xi) initiating
from the boundary of an arbitrarily-shaped convex target set K
in the phase-plane of a simple planar system in forward time.
Notice the non-negativity of 〈`i, xi〉 as shown in forward time. In
backward time the trajectories are reversed and the eigenvalues
are negated, hence the Hamiltonian is still non-negative.

A.3 Decomposed System Matrices for Examples

3.6.2 and 3.6.3

A.3.1 4D Aircraft Dynamics (Example 3.6.2)

The decomposed system matrices are:

Ad =


0.1527 −0.1511 0.0312 0

0.1853 −0.1536 −0.0247 0.0065

0 0 −0.3169 −7.5973

0 0 0.1028 −0.4331

 , Bd =


0

0

−0.1785

1.1598

 .
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A.3. Decomposed System Matrices for Examples 3.6.2 and 3.6.3

A.3.2 8D Distillation Column (Example 3.6.3)

The system matrices after the first decomposition are:

Ad =



−0.6460 −2.7152 0.9186 −1.0340 −1.5499 0.0128 0.3436 0.0404

3.0705 −0.6461 −0.8642 0.6817 1.5878 −0.0215 −0.0567 −0.0336

0 0 −0.8627 1.6880 2.0531 0 0.0135 0

0 0 −0.6716 −0.8627 −0.5888 0 −0.2143 1.2635

0 0 0 0 −0.7357 −0.2275 −0.0082 −0.0021

0 0 0 0 0 −0.2259 0.0021 −0.0457

0 0 0 0 0 0 −0.0052 0.0024

0 0 0 0 0 0 0 −0.0755



Bd =



0 0

0 0

0 0

0 0

1.2886 −0.0504

0.3132 −0.2249

0.7117 −0.6994

0.0599 −0.3014


.

The unidirectional coupling term in Ad is treated as a disturbance to

the upper subsystem. The second level decomposition applied to each 4D

subsystem results in

Ad1 =


−1.3594 −1.2819 0 0

1.0769 −0.3660 0 0

0 0 −0.9978 −2.8164

0 0 3.0041 −0.2943

 , Bd1 =


0 0

0 0

0 0

0 0

 ,

Ad2 =


−0.0052 0.0026 0.0215 0.5192

0 −0.0755 −0.1334 0.1262

0 0 −0.7479 −0.1877

0 0 0.0339 −0.2137

 , Bd2 =


0 0

0 0

1.3130 −0.0574

0.2260 −0.2934

 .
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Appendix B

Supplementary Materials for

Riccati-Based Decomposition

B.1 Proofs of Propositions 4.2 and 4.3

Proof of Proposition 4.2. From the matrix inversion lemma, (Y+UCV )−1 =

Y −1−Y −1U(C−1 +V Y −1U)−1V Y −1, with Y = −(δ+ 1)I, U = B1, C = I,

and V = B†1 we have

(
B1B

†
1 − (δ + 1)I

)−1
= − 1

δ + 1

(
I +

1

δ
B1B

†
1

)
. (B.1)

Using this, (4.14), (4.21), (4.23), (4.26), multiplicative and triangular in-

equalities, and the fact that ‖B1B
†
1‖ ≥ 1 we obtain

‖δF (Z(δ))‖ ≤ |δ|
(
α(‖Z0‖+ ‖D‖)2 + β(‖Z0‖+ ‖D‖)

)
≤ |δ|

(
α

(
‖Z0‖+

2‖A0‖‖Z0‖
‖A0‖+ α‖Z0‖

)2

+ β

(
‖Z0‖+

2‖A0‖‖Z0‖
‖A0‖+ α‖Z0‖

))
≤ |δ|

(
9α‖Z0‖2 + 3β‖Z0‖

)
≤ |δ|

(
9αγ2

∥∥(B1B
†
1 − (δ + 1)I

)−1∥∥2

+ 3βγ
∥∥(B1B

†
1 − (δ + 1)I

)−1∥∥)
≤ |δ|

(
9αγ2

∣∣∣ 1

δ + 1

∣∣∣2(1 +
∣∣∣1
δ

∣∣∣)2
‖B1B

†
1‖2

+ 3βγ
∣∣∣ 1

δ + 1

∣∣∣(1 +
∣∣∣1
δ

∣∣∣)‖B1B
†
1‖
)
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B.2. Condition Number of the Modified Riccati Transformation

=
1

|δ|

( |δ|+ 1

|δ + 1|

)2

a+

( |δ|+ 1

|δ + 1|

)
b ∀δ ∈ R\{−1, 0}.

Proof of Proposition 4.3. Notice from (4.25) and (4.28) that for large values

of δ, Z can be closely approximated by its initial value Z0. Using (B.1),

lim
δ→±∞

‖δF (Z(δ))‖ = lim
δ→±∞

∥∥∥ δ

(δ + 1)2
Q1(I +

1

δ
B1B

†
1)P1Q1

× (I +
1

δ
B1B

†
1) +

δ

δ + 1
P2Q1(I +

1

δ
B1B

†
1)
∥∥∥ (B.2)

= ‖0 + P2Q1‖ = ‖Γ‖ (B.3)

with Q1 :=
(
B2B

†
1A12 − A22

)−1
Γ, P1 := (A12 − B1B

†
1A12), and P2 :=

(B2B
†
1A12 −A22).

B.2 Formulating an Upper-Bound on the

Condition Number of the Modified Riccati

Transformation

Lemma B.1. The condition number κ(T ) of the Riccati transformation

matrix T = T1T2 is bounded by

κ(T ) ≤ max
{

1 + µ, 1 + ν(1 + µ)
}
·max

{
1 + ν, 1 + µ(1 + ν)

}
(B.4)

with constants

µ :=
2‖N0‖‖M0‖

‖N0‖+ ‖δF (Z)‖‖M0‖
+ ‖M0‖,

ν := ‖B2B
†
1‖+ (1 + ‖B1B

†
1‖)
[

2‖A0‖‖Z0‖
‖A0‖+ ‖B1B

†
1A12 −A12‖‖Z0‖

+ ‖Z0‖
]
.

Proof. Let A = [Aij ] be any partitioned matrix. Then ‖A‖ ≤
∥∥[‖Aij‖]∥∥.
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B.3. Decomposed System Matrices for Example 4.5.3 and Section 4.5.5

Since T =
[
I M
−L I−LM

]
and T−1 =

[
I−ML −M

L I

]
, we have

κ(T ) = ‖T‖‖T−1‖ ≤
∥∥∥[ 1 ‖M‖
‖L‖ 1+‖L‖‖M‖

]∥∥∥ ∥∥∥[ 1+‖M‖‖L‖ ‖M‖
‖L‖ 1

]∥∥∥ . (B.5)

From (4.10) we find ‖L‖ ≤ ‖B2B
†
1‖ + ‖Z‖

(
1 + ‖B1B

†
1‖
)
. But from (4.23)

and (4.26) we know that ‖Z‖ is bounded above by 2‖A0‖‖Z0‖
‖A0‖+‖B1B

†
1A12−A12‖‖Z0‖

+

‖Z0‖, and similarly from (4.33) and (4.36), ‖M‖ is bounded above by
2‖N0‖‖M0‖

‖N0‖+‖δF (Z)‖‖M0‖ + ‖M0‖. Therefore, ‖L‖ ≤ ν and ‖M‖ ≤ µ and con-

sequently, κ(T ) ≤ max{1 + µ, 1 + ν(1 + µ)} ·max{1 + ν, 1 + µ(1 + ν)}.

B.3 Decomposed System Matrices for Example

4.5.3 and Section 4.5.5

B.3.1 Arbitrary 6D System (Example 4.5.3)

The decomposed system matrices are:

A′′ =



3.3126 0.7676 2.4511 0 0 0

0.6223 −1.5072 −2.3105 0 0 0

−0.0989 −0.3285 0.6852 0 0 0

0.0944 0.0042 −0.1299 0.1880 0.0445 0.3528

−0.0540 −0.4170 −0.0461 0.2802 0.0888 0.1593

−0.1474 0.1949 0.2443 0.0848 0.0888 0.1197


,

B′′ =



0.1469 0.2657

−0.7988 2.4582

−2.3854 −0.3955

0 0

0 0

0 0


.
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B.3. Decomposed System Matrices for Example 4.5.3 and Section 4.5.5

B.3.2 Maximal Reachability Example (Section 4.5.5)

The decomposed system matrices are:

A′′ =


0.5912 −0.2477 0 0

−0.4583 −0.2017 0 0

0.0197 0.1351 −0.1905 −0.1878

−0.0825 −0.1479 0.0012 −0.0633

 , B′′ =


0.6846

2.4813

0

0

 .
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Appendix C

Other Backward

Reachability Constructs1

Some additional backward constructs formed under the constrained dynam-

ical system (2.1), their connections to one another and to the constructs

used within this thesis (see Chapter 2) are presented here, aiming to help

the reader attain a more complete picture.

C.1 Definitions and Connections

Definition C.1 (Minimal Reachable Set). The minimal reachable set at

time t is the set of initial states such that, for every input u(·), the trajecto-

ries emanating from those states reach K exactly at time t:

Reach[t(K,U) :=
{
x0 ∈ X | ∀u(·) ∈ U[0,t], x

u
x0(t) ∈ K

}
. (C.1)

Definition C.2 (Invariance Kernel). The (finite-horizon) invariance kernel

of K is the set of initial states in K such that the trajectories emanating

from those states remain within K for all time t ∈ [0, τ ] for all input u(·):

Inv[0,τ ](K,U) :=
{
x0 ∈ X | ∀u(·) ∈ U[0,τ ], ∀t ∈ [0, τ ], xux0(t) ∈ K

}
. (C.2)

Definition C.3 (Continual Reachable Set [59, 60]). The continual reach-

able set defined over the time horizon [0, τ ] is the set of initial states in K
for which, for any given time t ∈ [0, τ ], there exists a u(·) such that the

1A part of this chapter is based on [59, 60]. The main results of these papers, however,
have not been presented in this thesis.
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C.1. Definitions and Connections

trajectories emanating from those states reach K at t:

Reachγ[0,τ ](K,U) :=
{
x0 ∈ X | ∀t ∈ [0, τ ], ∃u(·) ∈ U[0,t], x

u
x0(t) ∈ K

}
.

(C.3)

The following inclusions are complementary to V iab[0,τ ](K,U) ⊆ K ⊆
Reach[[0,τ ](K,U) ⊆ Reach][0,τ ](K,U) described in Proposition 2.1.

Proposition C.1.

Inv[0,τ ](K,U) ⊆ V iab[0,τ ](K,U) ⊆ Reachγ[0,τ ](K,U) ⊆ K. (C.4)

Proof. That Inv[0,τ ](K,U) ⊆ V iab[0,τ ](K,U) is well-known [5]. To show

V iab[0,τ ](K,U) ⊆ Reachγ[0,τ ](K,U), take x0 ∈ V iab[0,τ ](K,U). Therefore,

∃u(·) ∈ U[0,τ ] ∀t ∈ [0, τ ] xux0(t) ∈ K =⇒ ∀t ∈ [0, τ ] ∃u(·) ∈ U[0,t] xux0(t) ∈
K ⇐⇒ x0 ∈ Reachγ[0,τ ](K,U). To show Reachγ[0,τ ](K,U) ⊆ K, take x0 ∈
Reachγ[0,τ ](K,U) and let τ = 0. x0 must also belong to K.

The maximal reachable tube and the invariance kernel are duals of one

another as mentioned in Section 1.2:

Proposition C.2 ([18], [79]).

Reach][0,τ ](K
c,U) = (Inv[0,τ ](K,U))c. (C.5)

Unlike the maximal reachable tube and sets, the minimal reachable tube

cannot be constructed from the union of the minimal reachable sets as men-

tioned in Section 2.2:

Proposition C.3 ([86]).

Reach[[0,τ ](K,U) ⊇
⋃

t∈[0,τ ]

Reach[t(K,U). (C.6)

Among Lagrangian methods, the technique in [72] has been extended

to handle universally quantified inputs. Therefore, it is also capable of

computing the minimal reachable sets. As a by-product of this feature, the

same technique can also be used to directly compute the invariance kernel.
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C.1. Definitions and Connections

Proposition C.4 ([59, 79]).

Inv[0,τ ](K,U) =
⋂

t∈[0,τ ]

Reach[t(K,U). (C.7)

Proof. x0 ∈
⋂
t∈[0,τ ]Reach

[
t(K,U) ⇐⇒ ∀t ∈ [0, τ ] ∀u(·) ∈ U[0,τ ] xux0(t) ∈

K ⇐⇒ ∀u(·) ∈ U[0,τ ] ∀t ∈ [0, τ ] xux0(t) ∈ K ⇐⇒ x0 ∈ Inv[0,τ ](K,U).

This can also be verified from (C.5) and (2.9) and the simple fact that

Reach[t(K,U) = (Reach]t(Kc,U))c.

Finally, the continual reachable set can be expressed in terms of the

maximal reachable sets as:

Proposition C.5 ([59]).

Reachγ[0,τ ](K,U) =
⋂

t∈[0,τ ]

Reach]t(K,U). (C.8)

Proof. x0 ∈ Reachγ[0,τ ](K,U) ⇐⇒ ∀t ∈ [0, τ ] ∃u(·) ∈ U[0,t] xux0(t) ∈ K ⇐⇒
∀t ∈ [0, τ ] x0 ∈ Reach]t(K,U)⇐⇒ x0 ∈

⋂
t∈[0,τ ]Reach

]
t(K,U).
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