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This paper presents a method for complexity reduction in reachability analysis and safety-preserving con-
troller synthesis via Schur-based decomposition. The decomposition results in either decoupled or weakly-
coupled (lower dimensional) subsystems. Reachable sets, computed independently for each subsystem, are
back-projected and intersected to yield an overapproximation of the actual reachable set. Moreover, applying
this technique to a class of unstable LTI systems we show that when certain eigenvalue and state-constraint
conditions are satisfied, further reduction of complexity is possible. Evaluating our method for a variety of ex-
amples we demonstrate that significant reduction in the computational costs can be achieved. This technique
has considerable potential utility for use in conjunction with computationally intensive reachability tools.
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1 Introduction

Reachability analysis is key for safety verification and controller synthesis of continuous and
hybrid dynamical systems, yet a major obstacle in employing reachability analysis is the “curse
of dimensionality” (Asarin et al. 2006). The computational complexity of reachability techniques
increases with the dimension of the continuous state space, often rendering them impractical for
complex real-life applications.

Efficient reachability techniques have been developed recently. The algorithms in Girard et al.
(2006) and Girard and Le Guernic (2008) are designed to deal with systems with a single input
that is existentially quantified, while the method by Kurzhanski and Varaiya (2002) is also
capable of handling systems with competing inputs. The utility of these techniques, however, is
restricted to problems with constraints that can either be described by specific classes of shapes
(e.g. ellipsoids and zonotopes) that are simple to represent and are convex, or in the more general
case of Girard and Le Guernic (2008) and Varaiya (1998), can be arbitrarily-shaped but still
meet the convexity requirement. Moreover, all these techniques construct the reachable set1 by
first quantifying the time variable, computing the reachable set for that time instant, and then
taking the union of these sets over the finite time horizon.

For safety analysis, on the other hand, it is shown in Mitchell (2007) that not only is the
control input required to be universally quantified, but also the time variable must be quantified
after all other variables have been quantified. In addition, for many safety-critical systems the
ability to synthesize safety-preserving controllers (control inputs that if applied, would keep
the system trajectories away from a given “unsafe” target set (see Lygeros et al. 1999)), and
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1We use the term “set” to imply what is sometimes referred to as a “tube” (Mitchell 2007, Kurzhanski and Varaiya 2000):
the set of states traversed by the trajectories over the time horizon.
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handling of non-convex constraints may be of critical importance. These features are offered
almost exclusively by more computationally intensive reachability tools (e.g. Mitchell 2007) that
suffer from a complexity that is exponential in the dimension of the states. In this case, the
backward reachable set (or in short, reachable set) for a given “unsafe” target set is the set of
initial states that can reach the target in finite time, regardless of the bounded control input
applied. The complement of this set is known as the largest controlled-invariant set and is
defined as the set of all initial states for which there exist a bounded control law that keeps
the trajectories emanating from those states contained within the complement of the target set
(and thus safe) over the entire time horizon. Reachability in this context is closely related to
the viability kernels (or discriminating kernels in the case of competing inputs) from viability
theory (Aubin 1991).

With a focus on continuous linear time-invariant (LTI) systems (and by extension, hybrid
systems with LTI continuous dynamics), we aim to broaden the range of applicable reachability
tools for LTI systems of higher dimensionality, to enable the use of tools that would otherwise
be too computationally complex to employ (e.g., Mitchell (2007), Cardaliaguet et al. (1999),
Saint-Pierre (2002), Gao et al. (2006)).

We accomplish this through transformation of the system into a coordinate space in which
reachability could be performed in lower-dimensional subspaces and is guaranteed to yield an
overapproximation of the actual reachable set in that space. Performing reachability in lower
dimensions, we obtain significant reduction in the computational costs—albeit at the expense
of overapproximation. As such, we propose the use of a Schur-based decomposition, inspired by
a model reduction algorithm for systems with unstable modes (Siret et al. 1977, Mahmoud and
Singh 1981).

Our method decomposes LTI systems into either completely decoupled or weakly-coupled
subsystems. Reachability analysis can be performed on each resulting subsystem independently.
Back projecting and intersecting each of the lower-dimensional reachable sets provides an over-
approximation of the actual reachable set. A Sylvester equation (or an optimization problem)
is solved in order to eliminate (or minimize) the coupling between the subsystems. Additional
constraints are imposed when the control input is non-disjoint across subsystems, to prevent
underapproximation of the unsafe reachable set. In addition, we also provide conditions under
which a subspace reachable set remains unchanged for all time and show how this can be used
in conjunction with the proposed Schur-based decomposition technique to yield an even further
reduction of complexity for a class of systems.

Complexity reduction for reachability analysis has been addressed by a number of researchers.
In general, methods to compute reachable sets for higher dimensional systems can be divided
into three categories. First are techniques that take advantage of certain representations of sets
(Shishido and Tomlin 2000, Kurzhanski and Varaiya 2000, Kurzhanskiy and Varaiya 2007, Girard
et al. 2006, Kvasnica et al. 2004, Krogh and Stursberg 2003). Second are techniques that make
use of model reduction and approximation (Han and Krogh 2004, Girard and Pappas 2007),
hybridization (Asarin and Dang 2004), projection (Mitchell and Tomlin 2003) and structure
decomposition (Stipanović et al. 2003, Yazarel and Pappas 2004, Han and Krogh 2005). Finally,
third are methods that combine the approaches from the first two categories. For instance, Han
and Krogh (2006) employs Krylov subspace projection combined with low-dimensional polytopes
to perform reachability for very large-scale systems with affine dynamics.

In Mitchell and Tomlin (2003), a projection scheme based on Hamilton-Jacobi-Bellman-Isaacs
(HJBI) PDEs is considered in which the projection of the actual reachable set is overapproxi-
mated in lower dimensional subspaces where the unmodeled dimensions are treated as distur-
bance. Similarly, Stipanović et al. (2003) decomposes a full-order nonlinear system to either
disjoint or overlapping subsystems and solves multiple HJBI PDEs in lower dimensions. The
computed reachable set for each subsystem is an overapproximation of the projection of the
full-order reachable set onto the subsystem’s subspace. In Han and Krogh (2005), using an
ε-decomposition procedure, affine systems are decomposed into multiple subsystems and reach-
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ability is performed on each lower-dimensional subsystem.
Our main contribution is to provide an additional method, within the framework of structure

decomposition, to reduce the complexity of reachability analysis for higher dimensional LTI sys-
tems. In Section 2 we formulate the decomposition problem and provide necessary preliminaries.
Section 3 presents the decomposition method for two cases: decomposition that results in a)
decoupled subsystems, or in b) weakly-coupled subsystems. Further reduction of complexity for
a class of unstable systems is discussed and an extension of our technique to hybrid systems is
also given. Section 4 demonstrates our method on several numerical examples, in 3D, 4D, and
8D. Lastly, we provide concluding remarks in Section 5.

1.1 Common Notation

An n×n identity matrix is denoted by In. The quantifiers ∃ and ∀ are existential and universal,
respectively. For brevity, ‖·‖ denotes an infinity norm. In particular, for a matrix A = [aij ] ∈
Rm×n this norm is an induced norm defined by ‖A‖ := supv 6=0

‖Av‖
‖v‖ , v ∈ Rn, and can be

computed as max1≤j≤n
∑m

i=1|aij |. For a Lebesgue measurable function x : R→ Rn defined over
an interval [t0, tf ], we denote ‖x(t)‖ := ‖x(t)‖L∞[t0,tf ] = supt∈[t0,tf ]|x(t)| <∞.

2 Problem Formulation and Mathematical Preliminaries

Consider the dynamical system

ẋ = f(x, u, d) (1)

with state vector x(t) ∈ Rn, control input u(t) ∈ U , and disturbance input d(t) ∈ D, where U and
D are compact subsets of Rp and Rq, respectively. The vector field f : Rn×U×D → Rn is assumed
to be Lipschitz in x and continuous in u and d. Denote by U[t0,tf ] and D[t0,tf ] the sets of Lebesgue
measurable functions u(·) and d(·) from [t0, tf ] to U and D, respectively. For every x ∈ Rn,
u(·) ∈ U[t0,tf ], and d(·) ∈ D[t0,tf ], there exists a unique trajectory ξx,t0,u(·),d(·) : [t0, tf ] → Rn
that satisfies the initial condition ξx,t0,u(·),d(·)(t0) = x and the differential equation (1) almost
everywhere.

Let the disturbance input assume non-anticipative strategies ϑ : U[t0,tf ] → D[t0,tf ].
1

Definition 2.1 (Reachable Set (Tomlin et al. 2000, 2003, Mitchell et al. 2005)): Given a
compact target “unsafe” set of states X0 ⊂ Rn, the backward reachable set over a finite horizon
[−τ, 0], τ > 0 is denoted by X[−τ,0] := Reachτ (X0) ⊆ Rn and is the set of all initial states for
which there exists a disturbance input such that the trajectories emanating from those states
reach the target, regardless of the control input applied, at some time during the horizon:

X[−τ,0] :=
{
x ∈ Rn | ∃ϑ(·), ∀u(·) ∈ U[−τ,0], ∃s ∈ [−τ, 0], ξx,−τ,u(·),d(·)(s) ∈ X0

}
. (2)

Notice that, with the complement of the target set marking the safe region of the state space,
the complement of the reachable set as defined above is the largest controlled-invariant set : a
subset of the safe region for which there exists a control law that, if applied, renders it invariant.
The Level Set Toolbox (Mitchell 2007) implementing the level-set methods (Mitchell et al. 2005)
can numerically compute the reachable set (or, by duality, the largest controlled-invariant set)
as well as the corresponding safety-preserving optimal control law.

1A map ϑ : U[t0,tf ]
→ D[t0,tf ]

is non-anticipative if for every s ∈ [t0, tf ] and u(·), u′(·) ∈ U[t0,tf ]
, u(s) = u′(s) for a.e.

s ∈ [t0, tf ] implies ϑ[u](s) = ϑ[u′](s) for a.e. s ∈ [t0, tf ]. (Evans and Souganidis 1984)
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Now consider the case in which (1) is an LTI system of the form

ẋ = Ax+Bu (3)

described by matrix notation [
A B

]
(4)

with A ∈ Rn×n, B ∈ Rn×p.

Problem 2.2 : Find an appropriate basis transformation for (3) such that in the new coor-
dinate space the system can be decomposed into lower-dimensional (decoupled/weakly-coupled)
subsystems for which reachable sets can be computed independently and thus more efficiently.

A linear transformation of (4) using a non-singular matrix T ∈ Rn×n is defined as[
T−1AT T−1B

]
. (5)

Now consider the following definitions.

Definition 2.3: The LTI system that consists of two subsystems

ẋ1 = A1x1 + ∆cx2 (6)

ẋ2 = A2x2 (7)

with A1 ∈ Rk×k, A2 ∈ R(n−k)×(n−k), ∆c ∈ Rk×(n−k), x1(t) ∈ Rk, and x2(t) ∈ R(n−k), is said to
be unidirectionally coupled since the trajectories of (6) are affected by those of (7), while (7)
evolves independently from (6).

Definition 2.4: Let there be a non-singular transformation matrix T ∈ Rn×n, such that
[zT1 , z

T
2 ]T = T−1[xT1 , x

T
2 ]T, and

ż1 = A1z1 + ∆̃cz2 (8)

ż2 = A2z2. (9)

Then (8) and (9) are said to be unidirectionally weakly-coupled (in comparison to (6) and (7)) if

‖∆̃c‖ ≤ ‖∆c‖. (10)

Definition 2.5: Let there be a non-singular transformation matrix T ∈ Rn×n and a coordinate
space w = T−1x in which (3) can be partitioned into N subsystems as

ẇi = Ãiwi + B̃iui, i = 1, . . . , N. (11)

The input u(t) ∈ U ⊂ Rp is disjoint across these subsystems if

ui(t) ∈ Ui ⊂ Rpi , p =

N∑
i=1

pi (12)

so that the partitioning of U is mutually exclusive and exhaustive.

Definition 2.6: A subsystem i in (11) is said to be trivially-uncontrollable if it possesses a

null input matrix, i.e. B̃i = 0.
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Next, consider the following two lemmas.

Lemma 2.7: The Sylvester equation

EX +XF +H = 0, (13)

with E ∈ Rk×k, F ∈ Rm×m, and H ∈ Rk×m, has a solution X ∈ Rk×m if and only if
rank

[
(FT ⊗ Ik) + (Im ⊗ E) − vec(H)

]
= rank

[
(FT ⊗ Ik) + (Im ⊗ E)

]
where ⊗ denotes the

Kronecker product and vec(H) is a vector formed by stacking the columns of H below one an-
other. This solution is unique if and only if the eigenvalue sum λi(E)+λj(F ) 6= 0, ∀i ∈ {1, ..., k},
∀j ∈ {1, ...,m}.

Proof cf. e.g. (Zhou et al. 1996, Lem. 2.7). �

Lemma 2.8 (Real Schur form): For any real matrix M ∈ Rn×n there exists an orthogonal

matrix U ∈ Rn×n such that UTMU = M̃ is real upper quasi-triangular, and the eigenvalues of

M are the eigenvalues of the block diagonals (each of dimension 2 or less) of M̃ . Furthermore,
the matrix U can be chosen to order the eigenvalues arbitrarily.

Proof cf. (Golub and Loan 1996, Thm’s 7.1.3 and 7.4.1) and (Strang 1988, 5R). �

Remark 1 : There always exists a partitioning of M̃ such that M̃ =
[
M̃11 M̃12

0 M̃22

]
. The size of the

partitions can be chosen as desired, so long as each block diagonal entry (maximum size 2×2) of

M̃ is completely covered by exactly one of the blocks on the diagonal of the partitioned matrix.

Finally, a linear transformation of a set X ⊆ Rn using an invertible transformation matrix
T ∈ Rn×n is V := {v ∈ Rn | v = T−1x, x ∈ X}, written with an abuse of notation as V = T−1X .

3 Methodology

The outline of the approach is as follows: Via Lemma 2.8, as in Safonov and Chiang (1989),
we obtain an upper block triangular A-matrix for (4). We then perform a second similarity
transformation and obtain a decoupled (or weakly-coupled) block diagonal matrix by solving
a Sylvester equation (or an optimization problem). Therefore, we effectively decompose the
system into two either completely decoupled or unidirectionally weakly-coupled subsystems. In
the case where the decomposition is decoupled, the reachable set is computed separately for each
isolated subsystem. When the decomposed subsystems are unidirectionally weakly-coupled, the
reachable set is computed independently for the isolated subsystem, whereas for the remaining
subsystem, the effect of coupling is accounted for by treating the coupling terms as disturbance
and performing reachability with competing inputs. For both decoupled and unidirectionally
weakly-coupled decompositions, the intersection of back projections of the lower dimensional
reachable sets is an overapproximation of the actual reachable set in the transformed coordinate
space. When the control input across the decomposed subsystems is non-disjoint, a constrained
optimization problem is solved in order to make one of the subsystems trivially-uncontrollable.

In the following analysis, we assume a partitioning of (4) that results in exactly two subsys-
tems. However, the proposed method is generalizable to N subsystems by applying the same
decomposition algorithm to each subsystem iteratively. A higher number of subsystems (i.e. iter-
ated decomposition) may result in a more conservative overapproximation of the actual reachable
set.

For k < n, we now apply Lemma 2.8 with transformation matrix U ∈ Rn×n to (4) to obtain[
Ã11 Ã12 B̃1

0 Ã22 B̃2

]
(14)
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with Ã11 ∈ Rk×k, Ã12 ∈ Rk×(n−k), Ã22 ∈ R(n−k)×(n−k), B̃1 ∈ Rk×p, and B̃2 ∈ R(n−k)×p.

3.1 Disjoint Control Input

Consider the case in which the control input is disjoint across candidate subsystems.

Proposition 3.1: If there exists a solution X ∈ Rk×(n−k) to the Sylvester equation

Ã11X −XÃ22 + Ã12 = 0 (15)

then a transformation

W =

[
Ik X
0 I(n−k)

]
∈ Rn×n (16)

makes (14) completely decoupled.

Proof cf. Siret et al. (1977), Mahmoud and Singh (1981), Safonov and Chiang (1989). Applying
the transformation W to (14), we obtain[

Ã11 Ã11X−XÃ22+Ã12 B̂1

0 Ã22 B̂2

]
=

[
Ã11 0 B̂1

0 Ã22 B̂2

]
. (17)

�

Notice that the resulting subsystems
[
Ã11 B̂1

]
and

[
Ã22 B̂2

]
have been effectively decoupled

through the coordinate transformation z = T−1x, T = UW . Reachability analysis (in this
transformed coordinate space) can then be performed on each lower-dimensional subsystem
separately.

Now consider the case in which there is no solution to the Sylvester equation (15).

Proposition 3.2: If (15) does not have a solution, then the transformation (16) with

X = arg min
Q∈Rk×(n−k)

‖Ã11Q−QÃ22 + Ã12‖ (18)

results in unidirectionally weakly-coupled subsystems w.r.t. (14).

Proof Consider Ac := Ã11X − XÃ22 + Ã12 6= 0 in (17). It is clear that in the transformed
coordinate space characterized by z = (UW )−1x, z2 ∈ R(n−k) evolves independently of z1 ∈ Rk
since ż2 = Ã22z2 + B̂2u2. However, z1 is affected by z2 through Ac. That is, we have ż1 =
Ã11z1 + B̂1u1 +Acz2. Note that ui, i = 1, 2, is the effective portion of the input vector u for the
i-th subsystem. Minimization of the infinity norm of Ac, therefore, translates into minimizing
(i.e. weakening) the worst-case unidirectional coupling of z1 with z2. To see this, let X∗ =

arg min‖Ã11Q − QÃ22 + Ã12‖. Then the hypothesis ‖Ã12‖ < ‖Ã11X
∗ − X∗Ã22 + Ã12‖ would

imply that X∗ = 0 can never be a solution. Since there are no constraints in (18) imposing

this restriction, by contradiction we conclude that ‖Ã11X
∗−X∗Ã22 + Ã12‖ ≤ ‖Ã12‖. Therefore,

according to Definition 2.4, the resulting subsystems are unidirectionally weakly-coupled. �

Remark 2 : The objective function of (18) is convex and therefore a solution always exists.

Remark 3 : The main rationale behind minimizing the infinity norm of the unidirectional
coupling term (and thus, obtaining unidirectionally-weakly coupled subsystems) is that for the
purpose of reachability analysis, the infinity norm of this term will be used to formulate an
upper-bound on the magnitude of the disturbance to the upper subsystem. This will be discussed
further in Section 3.3.
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3.2 Non-Disjoint Control Input

Now consider a decomposition in which the control input is non-disjoint. In this case even if the
dynamics of the subsystems are completely decoupled, their evolution is tightly paired through a
common input. The difficulty arises, for example, when in the reachability computation a control
value deemed optimal for one subsystem is in fact non-optimal for the full-order system. Blindly
performing reachability for each subsystem separately may result in an underapproximation and
additional measures have to be taken to ensure the overapproximation of the actual (unsafe)
reachable set.

One way to remedy this issue is by ensuring that at least one of the subsystems in the trans-
formed coordinate space is trivially-uncontrollable. It is clear that in such a case the (otherwise
non-disjoint) control action does not affect the evolution of the reachable set of the trivially-
uncontrollable subsystem. Therefore, an optimal control input for the subsystem with nonzero
input matrix is also optimal for the full-order system.

More formally, if either the pair (Ã22, B̂2) or the pair (Ã11, B̂1) in (17) is made trivially-
uncontrollable, reachability analysis can be performed as in the disjoint control input case,
separately for each subsystem.

Assumption 3.3: C (B̃T
1 ) ⊆ C (B̃T

2 ), where C (·) is the column-space operator.

Proposition 3.4: The transformation (16) with

X = arg min
Q∈Rk×(n−k)

‖Ã11Q−QÃ22 + Ã12‖ (19)

subject to QB̃2 = B̃1

results in unidirectionally coupled subsystems. Moreover, (Ã11, B̂1) is trivially-uncontrollable.

Proof Assumption 3.3 is the necessary and sufficient condition for solvability of the overde-
termined equality constraint in (19). To see the trivial-uncontrollability of (Ã11, B̂1) consider

B̂ := W−1B̃ in (17). We have[
B̂1

B̂2

]
:=

[
Ik −X
0 I(n−k)

] [
B̃1

B̃2

]
=

[
B̃1 −XB̃2

B̃2

]
. (20)

Constraining the optimizer in (19) to choose from the class of solutions
{
X ∈ Rk×(n−k) | XB̃2 =

B̃1

}
simply enforces B̂1 = 0. �

The resulting subsystems can now be treated as in the disjoint control input case, and hence
an overapproximation of the reachable set in each subspace can be computed.

3.3 Reachability in Lower Dimensions

In the new coordinate space z = T−1x, T := UW reachability analysis can be performed on
each lower-dimensional subsystem separately:

Algorithm 1:

1: Z0 ← T−1X0

2: for i← 1, 2 do
3: Z i0 ← proj(Z0, i) . project onto i-th subspace
4: end for
5: For lower subsystem:
6: Z2

[−τ,0] ← Reachτ (Z2
0 )

7: For upper subsystem:
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8: Treat Acz2 as disturbance . Ac := Ã11X −XÃ22 + Ã12

9: ξ ← supz2∈Z2
[−τ,0]
‖z2‖

10: Compute upper-bound ‖Acz2‖ ≤ ‖Ac‖ξ
11: Z1

[−τ,0]

consrv.←− Reachτ (Z1
0 )

12: return(Z1
[−τ,0],Z

2
[−τ,0])

Note that steps 8 through 10 of Algorithm 1 may or may not be needed depending on whether
the subsystems are obtained from Propositions 3.1, 3.2, or 3.4. The following scenarios describe
how the input(s) are quantified to construct the subsystem reachable sets:

S1 (Proposition 3.1 is used): For both Z1
[−τ,0] and Z2

[−τ,0], the single input is control and it

is universally quantified.
S2 (Proposition 3.2 is used): For Z1

[−τ,0] the control input is universally quantified while

the disturbance input (unidirectional coupling) is existentially quantified. For Z2
[−τ,0] the

single input is control and it is universally quantified.
S3 (Proposition 3.4 is used): For Z1

[−τ,0] the single input is disturbance (unidirectional cou-

pling) and it is existentially quantified. For Z2
[−τ,0] the single input is control and it is

universally quantified.

The overapproximation of the actual reachable set of the full-order system in Rn can be
obtained using the following lemma.

Lemma 3.5: Let Z i[−τ,0], i = 1, 2, be the computed lower-dimensional overapproximative reach-

able set of subsystem i. Then the transformation of the intersection of the back-projection of these
sets onto Rn overapproximates the actual full-order reachable set X[−τ,0] of system (4). That is,

X [−τ,0] := T
(

(Z1
[−τ,0] × R(n−k)) ∩ (Rk ×Z2

[−τ,0])
)
⊇ X[−τ,0]. (21)

Proof cf. Mitchell and Tomlin (2003), Stipanović et al. (2003). �

3.3.1 Formulating an Upper-Bound on the Growth of Z1
[−τ,0] in Scenario S3

When the subsystems are obtained via Proposition 3.4, the reachable set in the subspace of the
trivially-uncontrollable subsystem is computed without the need for solving a differential game.
In fact, for this subsystem the unidirectional coupling is treated as disturbance and, therefore, it
is existentially quantified. Consequently, this disturbance together with the dynamics strive to
enlarge the reachable (unsafe) set as much as possible. This allows us to formulate an analytic
upper-bound on the overapproximation of the reachable set in this subspace in terms of system
and design parameters:

Let B(0, α) denote an infinity norm ball of radius α ∈ R+ centred around the origin in Rk.
Let z1,0 ∈ Z1

0 and suppose D̃[−τ,0] is the set of measurable functions from [−τ, 0] to B(0, ‖Ac‖ξ).
There exists an admissible input d̃(·) ∈ D̃[−τ,0] such that in positive time using time-reversed
dynamics we have

z1 := exp(−Ã11τ)z1,0 −
∫ τ

0
exp(−Ã11(τ − r))d̃(r)dr, z1 ∈ Z1

[−τ,0]. (22)
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Bounding the effect of the input on the evolution of the trajectories we obtain

‖z1 − exp(−Ã11τ)z1,0‖ ≤
∫ τ

0
exp(‖Ã11‖(τ − r))‖Ac‖ξdr (23)

=
exp(‖Ã11‖τ)− 1

‖Ã11‖
‖Ac‖ξ (24)

≤

(
lim
M→∞

M∑
i=1

τ i
(√
k σ(Ã11)

)i−1

i!

)
‖Ac‖ξ =: µ[−τ,0] (25)

where σ(·) is the largest singular value operator, and k is the dimension of the trivially-
uncontrollable subsystem. Therefore, an upper-bound for how much Z1

[−τ,0] can grow in backward

time can be written as

Z1
[−τ,0] ⊆

( ⋃
s∈[−τ,0]

exp(Ã11s)Z1
0

)
⊕ B(0, µ[−τ,0]) (26)

in which ⊕ denotes the Minkowski sum.1 In particular, the choice of k, the magnitude of the
unidirectional coupling ‖Ac‖, the supremum of the reachable set in the lower subspace ξ =

supz2∈Z2
[−τ,0]
‖z2‖, and the largest singular value of the upper subsystem σ(Ã11) can all affect the

conservatism of the reachable set Z1
[−τ,0]. Moreover, given k and τ , the flexibility of the Schur

form in placing the eigenvalues in any order along the block-diagonals of Ã can be exploited
to make this subsystem evolve with slower dynamics. Through various tests we were able to
confirm that doing so could potentially prevent the excessive growth of Z1

[−τ,0] by influencing

both exp(Ã11s) and µ[−τ,0].

3.4 Further Reduction of Complexity in Reachability for a Class of Unstable Systems

We now demonstrate that for a specific class of unstable LTI systems, the Schur-based decom-
position can be used to further reduce the computational burden associated with reachability
analysis.

Particularly, we decompose any full-order unstable system into stable and anti-stable subsys-
tems with disjoint input across them. To do this, we employ the presented Schur-based decom-
position while rearranging the order of eigenvalues such that the lower (controlled) subsystem
contains only the non-negative eigenvalues and the upper (uncontrolled and possibly perturbed)
subsystem contains the strictly-negative ones. As we will show in Proposition 3.6, under certain
conditions, reachability analysis in the anti-stable subspace need not be performed since the
target and the reachable sets coincide for all time.

Proposition 3.6: Suppose that for a controlled linear system (3) the following conditions are
satisfied.

(i) X0 is convex (but possibly arbitrarily shaped) and contains the origin in its interior;
(ii) the A-matrix is anti-stable (analytic in the open left-half complex plane) with repeated and

real eigenvalues λ1 = · · · = λn ≥ 0;
(iii) the algebraic and geometric multiplicities of λi(A) are equal.

Then, for any τ > 0,

X[t, 0] = X0 ∀t ∈ [−τ, 0]. (27)

1The Minkowski sum of any two sets X and Y in Rn is defined as X ⊕ Y = {x+ y | x ∈ X , y ∈ Y}.
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nonconvex set

λ λ= ji

Figure 1. Phase-plane of a planar system with a non-
convex target set X0. Even though conditions (ii) and (iii)
are satisfied, the target set X0 will grow in backward time.
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Figure 2. Phase-plane with various eigenvalue scenarios
that would violate conditions of Proposition 3.6 and thus
causing the target set X0 to grow in backward time.

Proof The proof is provided in Appendix A. �

Remark 4 : Condition (i) is easily generalizable to star-convex sets for which the origin is the
convergence point (any line segment from the origin to x ∈ X0 is contained in X0). An example
of this is when the states are constrained to lp-space with 0 < p < 1.

An intuitive 2-dimensional illustration of various cases that would violate conditions in Propo-
sition 3.6 is given in Figures 1 and 2 where the trajectories are shown in backward time.

Note that although Proposition 3.6 is stated in terms of a general full-order system (and as
such, may seem too restrictive), it makes the following assertion: If any isolated subsystem of any
given unstable system in any coordinate space satisfies the conditions in Proposition 3.6, then
the reachable set for that subsystem remains precisely equal to the target set in the respective
subspace. Suppose that reachability analysis is to be performed for an unstable system ẋ =
Ax + Bu, u(t) ∈ U with k negative and (n − k) non-negative eigenvalues for a target set X0.
We apply Schur-based decomposition with an appropriately synthesized transformation matrix
T to obtain [

Ã− Ac 0

0 Ã+ B̂2

]
(28)

partitioned such that Ã+ and Ã− contain only non-negative and strictly-negative eigenvalues,

respectively. If Ã+ and X0 satisfy the conditions (i), (ii), and (iii), then according to Proposi-
tion 3.6 the reachable set in the lower subspace does not grow and thus need not be computed.
Reachability analysis is performed only for the upper subsystem resulting in further reduc-
tion of complexity by avoiding altogether the reachable set computation in the lower subspace.
Specifically, step 6 in Algorithm 1 is entirely omitted. The overapproximation of the full-order
reachable set can then be calculated according to (21) with Z1

[−τ,0] = Reachτ (proj(T−1X0, 1))

and Z2
[−τ,0] = proj(T−1X0, 2).

Note that linear transformation preserves convexity. Therefore the projection of the transfor-
mation of X0 onto the lower subspace, i.e. Z2

0 := proj(T−1X0, 2), is also convex if X0 is and
contains the origin if X0 does.

3.5 Extension to Hybrid Systems

The extension of our transformation-based method to hybrid dynamical systems is fairly straight
forward. Consider the hybrid automaton (Q,X, f,U ,Σ, R) with discrete modes Q = {qi}, con-
tinuous states x ∈ X, continuous control inputs u ∈ U , discrete control inputs σ ∈ Σ, vector field
f : Q×X×U → X, (qi, x, u) 7→ Aix+Biu, and transition function R : Q×X×U ×Σ→ Q×X.

Let X0(qi) (a set of continuous states in mode qi) be the target set and W(qi) the reachable
set. Also, let Ti be the transformation matrix for mode qi obtained from the Schur-based de-
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Figure 3. Z0: The non-convex target set in the transformed coordinate space.

composition technique described previously. As in Tomlin et al. (2003), reachability calculations
proceed in each mode in parallel such that for mode qi the reach-avoid operation becomes

TiReachτ
(
T−1
i X0(qi), T

−1
i W(qi)

)
. (29)

In case of a switched system with two modes qi and qj and an identity reset map, the backward
reachable set X[−τ,0] can be directly calculated as

X[−τ,0] = TjReachτ

(
qj , T

−1
j TiReachτ

(
qi, T

−1
i X0(qi)

))
(30)

where Ti and Tj are the transformation matrices for modes qi and qj respectively. Reachability
analysis is then performed on lower-dimensional subsystems in each mode according to Algo-
rithm 1.

4 Numerical Examples

Although complexity reduction through Schur-based decomposition can be used in conjunction
with any reachability/viability technique that can accommodate both existentially and univer-
sally quantified inputs, we demonstrate the applicability and practicality of our method using a
number of examples (up to 8D) that employ the Level Set Toolbox (LS) (Mitchell 2007). While
LS has mainly been used for systems of low dimensionality (Bayen et al. 2007), our complex-
ity reduction approach can facilitate the use of LS for higher dimensional systems for which
safety-preserving controller synthesis and/or handling of non-convex, arbitrarily-shaped sets is
important.

All computations are performed on a dual core Intel-based computer with 2.8 GHz CPU, 6
MB of cache and 3 GB of RAM running single-threaded 32-bit Matlab 7.5.

4.1 Arbitrary 3D System

Consider an arbitrary 3D LTI system with

A =

−0.5672 −0.7588 −0.6282
3.1364 −1.1705 2.3247
1.8134 −1.7689 −2.6930

 , B =

 0.0731 −0.1639
−0.7377 −0.3578

0.1470 0.2410


and input u = [u1, u2]T ∈ R2, ‖u‖ ≤ 1.1. We choose a non-convex target (unsafe) set X0 ⊂ R3

such that in the transformed coordinate space we have Z0 = T−1X0 as shown in Figure 3. Here,
T is the transformation matrix obtained through Proposition 3.1 that decomposes the system
into two subsystems (one 2D and one 1D) with disjoint control across them:
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(a) Comparison in z-space (b) z1–z2 cross-section

(c) z1–z3 cross-section (d) z2–z3 cross-section

Figure 4. Schur-based overapproximation (transparent light) vs. actual (solid dark) reachable sets in the transformed
coordinate space for Example 4.1.

T−1AT =

 −1.6653 −3.4560 0

1.8706 −1.4653 0

0 0 −1.3000

 , T−1B =

 −0.7530 0

0.0640 0

0 0.2500

 .
Hence, the decoupled subsystems are ż1 =

[−1.6653 −3.4560
1.8706 −1.4653

]
z1 +

[−0.7530
0.0640

]
u1 and ż2 =

[−1.3000 ] z2 + [ 0.2500 ]u2.
We obtain an overapproximation of the actual reachable set, as shown in Figure 4. Reacha-

bility calculation is performed over a grid with 101 nodes in each dimension for τ = 2 s. The
computation time for the actual and the Schur-based reachable sets (including decomposition
and projections) were 5823.73 s and 22.87 s, respectively.

4.2 4D Aircraft Dynamics

Consider longitudinal aircraft dynamics ẋ = Ax+Bδe,

A =

−0.0030 0.0390 0 −0.3220
−0.0650 −0.3190 7.7400 0

0.0200 −0.1010 −0.4290 0
0 0 1 0

 , B =

 0.0100
−0.1800
−1.1600

0


with state x = [u, α, θ̇, θ]T ∈ R4 comprised of deviations in aircraft speed, angle of attack, pitch-
rate, and pitch angle respectively, and with input δe ∈ [−13.3◦, 13.3◦] ∈ R the elevator deflection.
These matrices represent stability derivatives of a Boeing 747 aircraft cruising at an altitude of
40 kft with speed 774 ft/sec (Bryson 1994). We define a non-convex target (unsafe) set X0 such
that in the transformed coordinate space Z0 = {z ∈ R4 | ‖z‖ > 0.15, z = T−1x, x ∈ X0} where
T is the transformation matrix obtained through our method.

We first decompose the system into two 2D subsystems. Since the control input is non-disjoint
across the resulting subsystems, we use Proposition 3.4 and obtain unidirectionally coupled
subsystems, one of which is trivially-uncontrollable. The reachability calculation is performed
over a grid with 41 nodes in each dimension for τ = 5 s. The computation time for the actual
and the Schur-based reachable sets (including decomposition and projections) were 28546.80 s
and 54.64 s, respectively—a significant reduction.
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Figure 5. Schur-based (solid dark) vs. actual (transparent light) controlled-invariant sets (safe) in the transformed coor-
dinate space for Example 4.2. The computed reachable set and its overapproximation are the non-convex complements of
these objects.

Since the computed sets are 4D, we plot a series of 3D snapshots of these 4D objects at specific
values of z4 (Figure 5). The aircraft flight envelope (safe) is represented by the area inside the
shaded regions.

4.3 8D Distillation Column

Consider the dynamic model of a binary distillation column obtained from Skogestad and
Postlethwaite (2007) with

A =



−0.5774 3.0567 0.0073 −0.8121 0.3034 −0.3035 0.0072 −0.1542
−2.7290 −0.7147 −0.3430 1.5321 0.6643 0.2896 −0.0013 0.0926

0 0 −0.3891 −0.9956 0.0182 0.0235 0.0049 0.0506
0 0 1.3640 −1.3363 −0.9037 −0.4686 −0.0009 −0.1887
0 0 0 0 −0.7357 −0.2275 −0.0082 −0.0021
0 0 0 0 0 −0.2259 0.0021 −0.0457
0 0 0 0 0 0 −0.0052 0.0024
0 0 0 0 0 0 0 −0.0755


B =

[
−0.0335 −0.4534 −0.8005 0.5497 1.2886 0.3132 0.7117 0.0599
−0.1228 −0.0711 −0.2612 −0.1344 −0.0504 −0.2249 −0.6994 −0.3014

]T
.

The input u = [u1, u2]T ∈ R2 with u1, u2 ∈ [0, 1] is comprised of reflux and boilup flows,
respectively. The full-order system with state vector x ∈ R8 is first decomposed into two (unidi-
rectionally coupled) 4D subsystems using Proposition 3.4, since the control vector is non-disjoint
across the two candidate subsystems. Similarly, each of these 4D subsystems is decomposed into
two 2D subsystems. Since the upper 4D subsystem is made trivially-uncontrollable through (19),
its decomposition is disjoint and therefore Proposition 3.1 is used to obtain the 1st and 2nd (de-
coupled) 2D subsystems. On the other hand, for the lower 4D subsystem the decomposition
results in non-disjoint control input. Therefore Proposition 3.4 is employed and the 3rd and 4th
(unidirectionally coupled) 2D subsystems are obtained.

Reachability is first performed on the 3rd and 4th subsystems while taking the effect of uni-
directional coupling into account. Next, the reachable sets of the 1st and 2nd subsystems are
computed while treating the effect of the 3rd and 4th subsystems as disturbance.

We label the 2D transformed state subspaces as w̃1 = [w1, w2]T, w̃2 = [w3, w4]T, q̃1 = [q1, q2]T,
and q̃2 = [q3, q4]T. Notice that R4 3 q = [q̃T1 , q̃

T
2 ]T = T−1

3 z̃2, R4 3 w = [w̃T
1 , w̃

T
2 ]T = T−1

2 z̃1, and
R8 3 z = [z̃T1 , z̃

T
2 ]T = T−1

1 x with z̃1, z̃2 ∈ R4.
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Figure 6. Safe set of Example 4.3 in transformed 2D subspaces.

We assume that the target (unsafe) set X0 ⊂ R8 is chosen such that the transformations
T−1

1 ∈ R8×8, T−1
2 ∈ R4×4, and T−1

3 ∈ R4×4 result in W0 := {w ∈ R4 | ‖w‖ > 20} and
Q0 := {q ∈ R4 | ‖q‖ > 20}. The target sets for the 2D subsystems is simply the projection of
W0 and Q0 onto their corresponding subspaces.

Lower dimensional reachability is performed over a grid with 101 nodes in each dimension for
τ = 6 s. The overall computation time (including decomposition and projections) was 94.31 s.
The complement of the shaded regions in Figure 6 overapproximate the reachable (unsafe) set
in each of the 2D subspaces. The full 8D reachable set is the intersection of the back-projection
of the 2D reachable sets.

The actual reachable set is not shown since it is prohibitively computationally expensive to
compute with LS.

4.4 4D Unstable System (An Example for Section 3.4)

Consider an unstable system (Ioannou and Sun 1996, Ex. 2.2.1) with

A =

 0 1 0 0
0.1023 0 −0.0085 0

0 0 0 1
−0.0153 ε 0.0993 0

 , B = 10−3×

 0
−0.8696

0
0.1304

.
Let the eigenvalues of the system be slightly perturbed as determined by parameter ε ∈ R. With
ε = 0.0491 the real anti-stable eigenvalues coincide.

We apply the method described in Section 3.4 and obtain two 2D subsystems (with separated
stable and anti-stable eigenvalues) across which the input is disjoint. The system matrices in the
transformed coordinates are

T−1AT =


−0.3426 0.0354 −0.6988 0.1399

−0.0000 −0.2912 0.9481 −0.0000

0 0 0.3150 −0.0135

0 0 0.0003 0.3188

 , T−1B = 10−3×


0

0

−0.7621

0.3426

.

A target (unsafe) set X0 is chosen such that Z0 = {z ∈ R4 |
√
zTz ≤ 0.2, z = T−1x, x ∈ X0},

i.e. a small Euclidean ball of radius 0.2 around the origin. The magnitude of the input is bounded
by |u| ≤ 1. Using reachability analysis we attempt to identify the set of initial states that reach
Z0 in τ = 3 seconds, regardless of the input applied.

Since all conditions in Proposition 3.6 are satisfied for the lower subsystem, to obtain an over-
approximation of the full-order system, we only compute the overapproximation of the reachable
set in its stable subspace. The reachable set and its overapproximation are shown in Figure 7.
Reachability was performed over a grid with 41 nodes in each dimension. The overall compu-
tation time (including decomposition and projections) was 2.8 s. In comparison, computing the
reachable set of the full-order system would require 1741.6 s.
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Figure 7. 3D snapshots of the actual (solid dark) unsafe reachable set vs. its overapproximation (transparent light) in the
transformed coordinate space. The overapproximation was computed using Schur-based decomposition in conjunction with
Proposition 3.6 for only one of the subsystems.

5 Conclusions and Future Work

We presented a Schur-based decomposition for reachability analysis of LTI systems. This de-
composition has considerable potential for reducing the computational complexity in reachable
set calculations, especially for reachability tools that are computationally intensive (such as the
Level Set Toolbox). The decomposition was evaluated in terms of whether the resulting sub-
systems had disjoint or non-disjoint control inputs. In the event that a Sylvester equation can
be solved, the decomposition yields two decoupled subsystems. When the Sylvester equation
cannot be solved, its minimization yields two weakly coupled subsystems. A constrained opti-
mization problem is considered for the case in which the control input is non-disjoint across
decomposed subsystems. We applied this technique to a variety of examples computed with the
Level Set Toolbox, and found computational time significantly reduced when our method was
employed. Furthermore, we presented conditions under which the backward reachable and the
target sets coincide. We then showed that the proposed Schur-based decomposition can be used
together with these conditions in order to significantly reduce the computational complexity of
reachability analysis for a class of unstable systems.

Future work includes efforts to reduce potential conservatism in the overapproximation of
the reachable set. One direction is in a time-dependent formulation of the disturbance to the
upper subsystem by performing reachability in sub-time intervals. A second direction is in an
alternative transformation in the trivially-uncontrollable case, that produces subsystems that
may all be controlled to some degree while still preserving the disjoint property of the input. If the
target set in the new coordinate space is far from being axis-aligned, the projections contribute
to the conservatism of the reachable set overapproximation. A third direction, therefore, is in
incorporating the geometric information about the shape of the target set into the decomposition
process so that the projection of the set onto the subspaces of the transformed coordinates does
not result in excessive loss of detail.
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Appendix A: Proof of Proposition 3.6

To prove Proposition 3.6 let us first state a simple lemma.

Lemma A.1: Denote by XC
[t, 0] the backward reachable set of (3) over the time interval [t, 0],

t ∈ [−τ, 0], τ > 0, and by XA
[t, 0] the backward reachable set of its corresponding autonomous
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system

ẋ = Ax. (A1)

The following inclusions hold:

X0 ⊆ XC
[t, 0] ⊆ X

A
[t, 0] ∀t ∈ [−τ, 0]. (A2)

Proof Assume, without loss of generality, that U is a compact hyper-rectangular subset of Rp
such that U =

∏p
i=1 Ui, ui ∈ Ui = [U i,U i], 0 ∈ Ui. Notice that the autonomous system (A1) is

equivalent to the controlled system (3) when γ := supv∈U‖v‖ is zero. As such, we draw on the
level set formulation of the backward reachable set of system (3) and treat (A1) as a particular
form of (3) in which the control input u is diminished.

It is well-known (Mitchell et al. 2005) that if X0 is represented as the zero sublevel set of some
bounded and Lipschitz continuous implicit surface function g : Rn → R, i.e. X0 = {x | g(x) ≤ 0},
then the backward reachable set XC

[t, 0] can be obtained as the zero sublevel set of the viscosity

solution φC : Rn × [−τ, 0]→ R of the modified terminal value HJB PDE

∇tφC(x, t) = −min
{

0, H
(
x,∇xφC(x, t)

)}
, φC(x, 0) = g(x) (A3)

H(x, `) = sup
u∈U

〈
`, Ax+Bu

〉
(A4)

with the Hamiltonian H(·, ·) and the costate vector `. Here, 〈·, ·〉 denotes the inner product.
Thus, XC

[t, 0] = {x | φC(x, t) ≤ 0}. The optimal Hamiltonian, in this case, can be determined

analytically as

H∗(x, `) = `TAx+ `TBu∗, u∗ = [u∗1 · · ·u∗p]T (A5)

with

u∗i =


U i if `Tbi < 0;

[U i,U i] if `Tbi = 0;

U i if `Tbi > 0

, i = 1, . . . , p (A6)

where bi is the i-th column vector of matrix B. Notice that the second term on the right hand
side of (A5) is always non-negative, i.e. `TBu∗ ≥ 0. Therefore we have

∇tφC(x, t) =

{
0 if `TAx ≥ −`TBu∗;
|`TAx| − `TBu∗ otherwise.

(A7)

When γ ← 0, the controlled system (3) is equivalent to the autonomous system (A1) and the
Hamiltonian (A4) becomes H(x, `) = H∗(x, `) = `TAx. Consequently, (A7) reduces to

∇tφC(x, t)

∣∣∣∣
γ←0

=: ∇tφA(x, t) =

{
0 if `TAx ≥ 0;

|`TAx| otherwise
(A8)

where φA(·, ·) is to denote the implicit surface function whose zero sublevel set determines the
backward reachable set XA

[t, 0] of (A1). That is, XA
[t, 0] = {x | φA(x, t) ≤ 0}.

Comparing (A7) and (A8) one can observe that not only the interval over which ∇tφ (the rate
of surface change in time) is zero is shortened (i.e. `TAx ≥ 0 as opposed to `TAx ≥ −`TBu∗),
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Figure A1. Three sample costate vectors (`i) and trajectories (xi) initiating from the boundary of an arbitrarily-shaped
convex target set X0 in the phase-plane of a simple planar system in forward time. Notice the non-negativity of

〈
`i, xi

〉
as

shown in forward time. In backward time the trajectories are reversed and the eigenvalues are negated, hence the Hamiltonian
is still non-negative.

but also its maximum (positive) value is increased (i.e. |`TAx| as opposed to |`TAx| − `TBu∗).
Therefore, for all (x, t) ∈ Rn × [−τ, 0] we have

∇tφA(x, t) ≥ ∇tφC(x, t) (A9)

⇒ φA(x, t) ≤ φC(x, t) ≤ φA,C(x, 0) ≤ 0 (A10)

⇔ XA
[t, 0] ⊇ X

C
[t, 0] ⊇ X0. (A11)

�

Notice that this result agrees with the intuitive interpretation that larger control authority
(i.e. γ 6= 0) implies a smaller unsafe reachable set. We are now ready to prove Proposition 3.6.

Proof [Proof of Proposition 3.6] Using Lemma A.1 we have XA
[t, 0] ⊇ X

C
[t, 0], where XA

[t, 0] denotes

the backward reachable set of the autonomous system (A1). Therefore, to prove XC
[t, 0] = X0,

∀t ∈ [−τ, 0], it is sufficient to show that XA
[t, 0] = X0, ∀t ∈ [−τ, 0].

Let SΛS−1 be the eigen-decomposition of A. Conditions (ii) and (iii) imply Λ = λIn, λ ≥ 0.
Rewriting the Hamiltonian of the HJB PDE (A3) for the autonomous system (A1) and using
condition (i) we have

H(x,∇xφA(x, t)) =
〈
∇xφA(x, t), Ax

〉
(A12)

=
〈
∇xφA(x, t), SΛS−1x

〉
(A13)

= λ
〈
∇xφA(x, t), x

〉
≥ 0 ∀(x, t) ∈ Rn × [−τ, 0]. (A14)

The non-negativity of the Hamiltonian is due to the fact that X0 is convex and 0 ∈ intX0. Thus,
the costate vector ∇xφA(x, t) at every point on the boundary constitutes an acute (hyper-) angle
with respect to the trajectory x initiating from that point in forward time. This is schematically
illustrated for a trivial planar system in Figure A1. As a result, for all (x, t) ∈ Rn × [−τ, 0] we
have

H(x,∇xφA(x, t)) ≥ 0⇔ ∇tφA(x, t) = 0 (A15)

⇔ XA
[t, 0] = X0. (A16)

This concludes the proof. �


