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Abstract— We describe a practical collision avoidance algo-
rithm that synthesizes provably safe piecewise constant control
laws (compatible with the sampled-data nature of the system)
for an experimental platform. Our application is formulated in
a pursuer-evader framework in which an automated unmanned
vehicle navigates its environment while avoiding a moving
obstacle that acts as a malicious agent. Offline, we employ
reachability analysis to characterize the evolution of trajectories
so as to determine what control inputs can preserve safety
over every sampling interval. The moving obstacle is considered
unpredictable with nearly no restrictions on its control policies
(although we do take into account the physical constraints due
to limited dynamical and actuation capacities of both robots).
Online, the controller executes computationally inexpensive
operations based only on an easy-to-store lookup table. The
results of the experiment as well as the proposed algorithm are
presented and discussed in detail.

I. INTRODUCTION

Collision avoidance is a central problem when dealing
with safety of autonomous vehicles such as unmanned air-
craft and ground robots. Commonly, a safety distance is
defined around the vehicle and the goal is to keep other
objects away from this perimeter.

Much research has been done in this domain, mainly
through the concept of velocity obstacles (basically the set
of velocities that would lead to collision with a moving
obstacle). In [1], safe straight-line trajectories are built for a
host robot that faces multiple obstacles with constant velocity
vectors, while in [2] velocity obstacles have been generalized
to the case of obstacles that move along arbitrary trajectories.
Safety guarantees are obtained for either finite or infinite time
horizons. In [3], the concept of velocity obstacle has been
extended considering unicycle models for obstacles. The safe
paths for the host robot are successions of lines that do not
consider the dynamical capacities or physical constraints of
the robot during changes of heading or speed.

In [4], the problems of collision avoidance in the presence
of moving obstacles and path planning are solved simultane-
ously in the joint state-time space via probabilistic roadmaps.
A similar approach is that of rapidly-exploring random trees
[5]. Other related techniques include the body of work on
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optimal trajectory generation and path planning in dynamic
environments, e.g. through trajectory parameterization [6].

A numerical tool for solving the collision avoidance prob-
lem is reachability analysis [7], [8]. Indeed, in many appli-
cations, the systems under study are modeled by constrained
nonlinear differential equations, and therefore analytical so-
lutions for trajectories do not always exist. Reachability
analysis allows for controller design via numerical safety
verification of trajectories. The backward reachable set of
a given set A is the set of initial states that can be driven
into A by the constrained dynamical system. In the context
of collision avoidance, the reachable set formulation can be
used to construct control policies that ensure safety of the
vehicle despite the actions of a malicious agent. A classical
method for numerically computing the reachable set is via
the resolution of a terminal value Hamilton-Jacobi-Isaacs
(HJI) partial differential equation [7], where one computes
the backward evolution of a level set function representing
A using, for example, the method described in [9]. The
safety-preserving control inputs are those that optimize the
associated Hamiltonian.

In this paper we primarily focus on an application of the
reachability-based controller design to an experimental plat-
form with two agents. The problem we consider is to design
and implement a practical collision avoidance algorithm that
is to be mounted on board an automated unmanned ground
vehicle (henceforth simply referred to as the UV) which is
being chased by a human-operated robot (henceforth referred
to as the moving obstacle, or simply the obstacle). Our
testbed consists of two Pioneer robots [10] whose positions
are measured by a VICON system. This measurement is
in turn fed into the UV and is used online to compute an
appropriate course of action. The challenges we face include
proposing a provably-safe algorithm that is (a) light enough
to store and execute on an embedded microcontroller, (b)
compatible with the sampled-data nature of the system (a
sampled-data system is one whose evolution is in continuous
time, yet it is driven by a digital, and hence discrete-time,
controller that has access to state measurements/estimates at
a fixed sampling frequency), and (c) flexible enough to allow
the UV to follow an objective when safety is not at stake.

Great progress has been made in reachability analysis of
constrained, nonlinear sampled-data systems. The common
element is to ensure conservatism when the control law is
restricted to the class of piecewise constant (PWC) functions
(as opposed to the more common, and less stringent, class of
Lebesgue measurable functions). For instance, in [11], [12] a
reach-avoid problem is considered where the goal is to reach



a given target set in finite time, and thereafter remain in an
invariant subset of the target while also avoiding a given
unsafe set. Similarly in [13], a projection-based technique
is described that allows one to compute the sampled-data
discriminating kernel (loosely speaking, the complement of
the reachable set) and its associated control laws.

Here, we build upon these works and propose and apply a
collision avoidance algorithm on our experimental platform
subject to the challenges described above. Our approach,
similar to [11]–[13], is based on quantization of the control
set (the set from which the UV draws its input values)
which maintains conservatism/safety while reducing the on-
line computational burden. Most computations are handled
offline. The online computations, which are performed on the
embedded microcontroller, are limited to forming an estimate
of the state and executing basic arithmetic based on an easy-
to-store lookup table (precomputed offline). Several concepts
are introduced to allow simple, practical implementation of
the collision avoidance algorithm. For instance, we introduce
the notion of freedom set which allows us to identify the
regions of the state space in which all possible control
values can safely be applied to the system. The freedom
set serves as an indicator when choosing optimal boundaries
for the numerical grid (over which the reachable set has
been computed) so as to minimize the data that is needed
to be stored on the UV’s memory. To that end, we also
describe a method to account for the case in which a
state estimate falls in between grid points. Doing so will
waive the need for employing a dense grid (which could be
impossible to store on limited memory), while still ensuring
a reasonable degree of conservatism when choosing safety-
preserving control values. We also discuss a technique that
allows for computation of certain regions of the state space
in which any nominal and arbitrary controller with access to
the original non-quantized control set could be used without
the fear of jeopardizing safety.

In Section III, we present a recursive algorithm for the
computation of the sampled-data reachable set. We then
describe how this set can be used to design a safety-
preserving PWC control law. Section IV quantifies the error
introduced when the state estimation does not yield values
that can be mapped exactly on the stored grid points. In
Section V, we lay out the online algorithm which is real-
ized using the open-source Robot Operating System (ROS)
[14], while in Section VI the main experimental results are
presented in detail. Section VII discusses (and validates via
simulations) additional physically-motivated restrictions that
can be placed on the input set of the obstacle so as to reduce
the conservatism (as measured by the energy expenditure of
the UV’s input signal) of our algorithm. Finally, concluding
remarks and future works are provided in Section VIII.

II. PROBLEM FORMULATION

Consider a two-player differential game where the dynam-
ics are governed by ẋ = f(x, u, d) with x ∈ X , where
X ⊆ Rn is the state space. Here, u(·) is the control input of
the UV, and d(·) is the control input of the moving obstacle.

For simplicity, we shall use the simplified notations u and d
to denote both functions as well as their point-wise values;
differentiating between these two types should be possible
via the context in which they are used.

With a sampling time Ts > 0, we define the set of control
inputs for the UV over [−Ts, 0] as

C1 := {u : [−Ts, 0]→ U s.t. u constant on [−Ts, 0]} , (1)

where the input constraint set U is a compact subset of Rmu .
To simplify our algorithm for the purpose of implementation
on board the UV, we quantize the set U (which we denote
by Uq) and only consider a finite number of possible input
values. Therefore, the new set of control signals for the UV
is

Cq
1 := {u : [−Ts, 0]→ Uq s.t. u constant on [−Ts, 0]} .

(2)
Note, however that the quantization of the input set maintains
our desired conservatism in the sense that all generated
control laws by the algorithm are, as we shall see shortly,
safety-preserving.

On the other hand, we define the set of control inputs for
the obstacle over [−Ts, 0] as

C2 := {d : [−Ts, 0]→ D s.t. d measurable on [−Ts, 0]} ,
(3)

where the input constraint set D is a compact subset of Rmd .
We do not restrict the control inputs of the obstacle as we did
for the UV because we want to allow any possible obstacle
behavior.

For a given set A, define its backward reachable set for
fixed u ∈ Cq

1 over one sampling interval as

BA(A, u) := {x0 ∈ X : ∃d ∈ C2,
∃t ∈ [−Ts, 0], xu,dx0

(t) ∈ A} (4)

with xu,dx0
(t) the solution of ẋ = f(x, u, d), x(−Ts) = x0.

To model the dynamics of the two agents (our automated
UV and the moving obstacle) on a 2D plane, we use the
classical pursuer-evader formulation. The UV acts as the
evader and the obstacle as the pursuer. The relative dynamics
can be represented [7] by the continuous-time system

ẋ =
d

dt

x1

x2

x3

 =

−u1 + d1 cos(x3) + u2x2

d1 sin(x3)− u2x1

d2 − u2

 = f(x , u , d).

(5)
The evader’s inputs are speed u1 and yaw rate u2. The

pursuer’s inputs d1 and d2 are similarly defined. x1 and x2

are Cartesian coordinates of the pursuer in the evader’s frame
(centered at the evader, x-axis aligned with evader’s heading)
and x3 is the relative angle between the evader’s and the
pursuer’s headings; see Fig. 1 for a graphical description.
The evader’s control input is defined and constrained as
u := (u1, u2) ∈ Uq ⊂ U = [0, U1] × [−U2, U2] ⊆ R2.
The pursuer’s control input is defined and constrained as
d := (∆1, d2) ∈ D = [−D1

2 ,
D1

2 ] × [−D2, D2] ⊆ R2 where
∆1 = d1 − D1

2 (we shifted d1 to simplify the Hamiltonian
(9)).
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Fig. 1: Graphical description of pursuer-evader game. Arrows
represent velocity vectors.

We naturally define the avoid set A around the evader as
A := {x ∈ R3 :

√
x2

1 + x2
2 ≤ R }, where R > 0 is the

safety radius. The goal is to keep the pursuer out of this set
that characterizes collision.

Consider the solution Φ : X × [−Ts, 0] → R of the HJI
equation 

∂Φ
∂t + min[0, H(x, ∂Φ

∂x )] = 0

Φ(x, 0) = Φ0(x)
(6)

over one sampling interval [−Ts, 0] with Φ0 being a function
(e.g., signed distance) whose zero sublevel set represents A
(i.e. Φ0(x) ≤ 0 ⇔ x ∈ A). Let Φ0(x) =

√
x2

1 + x2
2 − R.

The Hamiltonian for a fixed control input u ∈ Uq for the
evader is defined as

∀x ∈ X , ∀p ∈ R3, H(x, p) = inf
d∈D

[pT f(x, u, d)], (7)

where p is a placeholder for the costate. Expanding the
Hamiltonian yields:

H(x, p) = inf
d∈D

[p1(−u1 + (
D1

2
+ ∆1) cos(x3) + u2x2)

+ p2((
D1

2
+ ∆1) sin(x3)− u2x1)

+ p3(d2 − u2)] (8)

= p1(−u1 +
D1

2
cos(x3) + u2x2)

+ p2(
D1

2
sin(x3)− u2x1)− p3u2

− D1

2
|p1 cos(x3) + p2 sin(x3)| −D2|p3|. (9)

The unsafe backward reachable set of A over [−Ts, 0]
is then described by the level set function Φ(·,−Ts), i.e.
BA(A, u) = {x ∈ X : Φ(x,−Ts) ≤ 0}.

Through the formulation of BA(A, u) the pursuer plays in
a worst-case fashion—i.e., it selects input values that are
most likely to drive the dynamics into the avoid set A.
To be conservative, we will design PWC safety-preserving
control laws for the evader with the assumption that the
pursuer plays its worst-case control during each sampling
interval. In practice, the pursuer does not always behave that
aggressively; but if the collision avoidance algorithm is safe
in this case, then it will be also safe for any other situation.

III. REACHABILITY-BASED CONTROLLER DESIGN

A. Unsafe Set Computation

We begin by computing the backward reachable set of the
avoid set A under the dynamics (5), where the evader is as-
sumed to use PWC control laws while the pursuer is allowed
to use any admissible Lebesgue measurable control policy.
This can be achieved through an iterative process, using the
semi-group property of reachable sets, where the control is
kept constant on every sampling interval [−nTs,−(n−1)Ts].
Then after N iterations one obtains a PWC control law over
[−NTs, 0] by connecting the subintervals. The backward
reachable set that is obtained at iteration n is denoted by
Rn and is the nth unsafe set (if the initial state x0 ∈ Rn

then it can be driven into the avoid set within n or less
sampling intervals). It is obtained via the recursion

R0 = A, (10)

Rn =
⋂

u∈Cq1

BA(Rn−1, u), ∀n ∈ N. (11)

Intuitively, at iteration n, for every point of the state space X ,
the intersection implicitly selects the best control u ∈ Cq

1 to
apply over [−nTs,−(n−1)Ts] (i.e. the input that will make
the backward evolution of the (n − 1)th unsafe set Rn−1

the smallest possible). It can be shown that the intersection
of sets that are represented by Lipschitz level set functions
is also represented by a Lipschitz level set function. Hence,
the Lipschitz property that is a necessary requirement of the
Level Set Toolbox [9] is preserved through iterations.

By construction of the above recursion, if the initial state
x0 /∈ Rn, then there exists a PWC control law over [−nTs, 0]
that will keep the evader safe (i.e. out of the avoid set),
regardless of the control law of the pursuer.

B. Convergence of the Reachable Set

If the unsafe reachable set converges, i.e. if ∃N ∈ N such
that ∀n ≥ N, Rn = RN , then the time dependency of the
previous sequence of unsafe sets disappears and the set R :=
RN becomes (robust) controlled-invariant. Indeed, if x0 /∈
R, then there exists a PWC control law that will keep the
dynamics out of R (and thus out of A) forever, despite the
worst-case efforts of the pursuer. The existence and design
of such a control law is described next. In our particular
experiment (details of which will be described later), the
reachable set converges after three iterations; see Fig. 2a.

Suppose that the reachable set converges, which we shall
refer to as R. At t = −Ts, for a given initial state x0 /∈ R,
one needs to know what is the value of the constant control to
apply over [−Ts, 0] to keep the evader safe. Naturally, we can
pick an arbitrary control u ∈ Cq

1 and compute the one step
backward reachable set BA(R, u) of R. If x0 ∈ BA(R, u)
then u is not safe to apply, because it will lead the dynamics
into R in at most one sampling interval. On the contrary, if
x0 /∈ BA(R, u), then u is safe to apply because it keeps the
dynamics out of R over that time interval.



Note that if x0 /∈ R then such a safe u always exists.
Indeed, because R =

⋂
u∈Cq1

BA(R, u), one has x0 /∈⋂
u∈Cq1

BA(R, u) which implies ∃u ∈ Cq
1 s.t. x0 /∈ BA(R, u).

Finally, if x0 /∈ R one can build a perpetually safe control
law by choosing an admissible control at t = −Ts, applying
it over [−Ts, 0] and reseting the time to t = −Ts.

The reachable set has been computed over a numerical
grid which is a finite subset of X . We denote this grid by G.
For every u ∈ Cq

1 , define Φu as the zero level set function of
BA(R, u). We can check the admissibility of a fixed u ∈ Cq

1

for a given x0 ∈ G via

u is admissible ⇔ Φu(x0) > 0. (12)

C. The Freedom Set

Consider the set of states where all controls are admissible
to apply over the current sampling interval. We call this set
the freedom set and denote it by F . We have that,

F :=
(⋃

u∈Cq1
BA(R, u)

)c
. (13)

Computing the freedom set can be very useful when dimen-
sioning the numerical grid G which is to be stored on board
the UV. Indeed, G only needs to contain the complement of
the freedom set, Fc. In this case, if a state is out of G, then
the evader will not get any information about safety. But
this is not a problem because it means that this state belongs
to F and hence all controls belonging to the finite set Uq

are admissible. Computed for our particular application, the
complement of the freedom set is shown in Fig. 2b.

(a) Converged unsafe reachable
set R3 =: R after 3 iterations.

(b) Complement Fc of freedom
set, enclosing the reachable set.

Fig. 2: Sets of interest for the collision avoidance experiment
described in Section VI.

D. More General Control Laws Away From the Pursuer

The boundary of the freedom set F serves as an indicator
of the amount of data that needs to be loaded onto the
UV’s memory. In the interior of F any control value in
the quantized set Uq is admissible. Away from the pursuer,
however, the evader should have far greater flexibility in its
choice of control policy. This allows the UV to be nominally
controlled by any desired control strategy (for example, a
feedback linearizing mechanism) taking values in the general

set U , and only switch back to the collision avoidance
controller when safety is of concern.

To achieve this, we would need to identify—somewhat
pessimistically—the regions of the state space where there
exists a control policy of the evader taking value in U that,
when combined with the action of the pursuer, could drive
the evader inside of the unsafe reachable set R at some time
during a sampling interval. That is, we wish to compute

BAw(R) :=
{
x0 ∈ X : ∃u ∈ C1, ∃d ∈ C2,

∃t ∈ [−Ts, 0], xu,dx0
(t) ∈ R

}
. (14)

If x0 ∈ (BAw(R))c, then any control law in C1 is admissible
over [−Ts, 0]; otherwise, one would have to be wary of safety
and a safety-preserving control law within Cq

1 is needed to
keep the evader out of harm’s way.

The set U is infinite. To numerically compute BAw(R) we
approximate C1 with

C̃1 := {u : [−Ts, 0]→ U s.t. u measurable on [−Ts, 0]} .
(15)

Since the class of Lebesgue measurable functions is a
superset of the class of constants (thus, C̃1 ⊇ C1), the set
BAw(R) can now be conservatively approximated by

B̃Aw(R) :=
{
x0 ∈ X : ∃u ∈ C̃1, ∃d ∈ C2,

∃t ∈ [−Ts, 0], xu,dx0
(t) ∈ R

}
, (16)

ensuring that BAw(R) ⊆ B̃Aw(R). This set can simply be
computed as usual with the difference that the corresponding
Hamiltonian is now H(x, p) = inf(u,d)∈U×D p

T f(x, u, d).

IV. STATE MEASUREMENT AND CHOICE OF CONTROL

We saw before how to compute and use Φu(x0) to
determine the safety of a control u ∈ Cq

1 at a given grid
point x0 ∈ G. However, estimation of the current state yields
a measurement x (assumed to be within the grid boundaries)
that may not belong to G (which is only a finite subset of
X ). The goal here is to approximate Φu(x) based on Φu(x0)
with x0 being the closest grid neighbor of x.

The first approach for approximating Φu(x) is relatively
more precise, although it is heavier to implement: it uses
a first order Taylor expansion where partial derivatives are
approximated with finite differences.

The second approach, which we will use in our exper-
iments, is less precise but lighter to implement. It simply
assumes that Φu(x) ≈ Φu(x0). This is equivalent to saying
that a control u is admissible for a state x if it is admissible
for its neighboring grid point x0. An estimate of the error
resulting from this approach is described next.

A. Numerical Threshold for the Neighboring Approach

We know that for every u ∈ Cq
1 , Φu (which is the level

set function of BA(R, u)) is K-Lipschitz. Hence, |Φu(x)−
Φu(x0)| ≤ K|x − x0|. An analytical expression for K can
be formulated based on the relation between the terminal
value optimal control problem and the level set function of



the reachable set [15]. For brevity, however, we refrain from
discussing these results in the current paper.

Let us assume the grid has constant spacings in every
direction. Let ∆xi be the spacing along the xi direction ∀i ∈
{1, 2, 3}. Then, since x0 is the closest grid point to x, we
have |x−x0| ≤ 1

2

√
(∆x1)2 + (∆x2)2 + (∆x3)2. Denote the

numerical error as ε := K 1
2

√
(∆x1)2 + (∆x2)2 + (∆x3)2

so that for any x that is within the bounds of the grid, for its
corresponding closest grid neighbor x0, and ∀u ∈ Cq

1 one has
|Φu(x) − Φu(x0)| ≤ ε. In (12) we saw a decision criterion
based on the sign of Φu(x0). We can adapt this criterion to
take into account the fact that the estimated state x may fall
in between grid points:

u is admissible at x ⇔ Φu(x0) > ε, (17)

where x0 is the closest neighboring grid point to x.
This new decision threshold is going to reduce the size

of the freedom set F . Intuitively, some controls that used to
be admissible before are no longer admissible since our new
decision criterion is more conservative. This implies that the
evader starts having a safety reaction earlier than before. The
new freedom set is F = {x ∈ X : minu∈Cq1 Φu(x) > ε}.

V. ONLINE ALGORITHM

We implemented our collision avoidance algorithm on
ground robots via the Robot Operating System (ROS) [14] in
C++. Based on the presented offline computations, we form
our online algorithm as follows. The main data are the values
of Φu(x0), ∀(u, x0) ∈ Cq

1 ×G which we store into an array
and load onto the UV’s memory.

1) At t = −Ts, update measurements, which are positions
and headings of the pursuer and the evader. A heading
is obtained by measuring two successive positions at
100 Hz. Reconstruct 3D state vector x.

2) If the estimated vector falls within the grid’s bounds,
find the closest grid neighbor x0; Otherwise, all con-
trols are admissible and proceed to step 4.

3) For every u ∈ Cq
1 , check the sign of Φu(x0) − ε.

This gives us the set of admissible, safety-preserving
controls.

4) Among these controls, choose one that fulfills a given
task (such as reaching an objective).

5) Apply the chosen control law during the current time
interval (t = −Ts to t = 0). Reset the time variable
t← −Ts, and restart from step 1.

We robustify our online algorithm against measurement
noise, delay, and numerical errors by increasing the value
of the threshold ε. For our experiment we empirically found
this value to be ε = 0.5 m.

Finally, it may happen that due to experimental approxi-
mations the obstacle would come too close to the boundary
of the reachable set (though it still remains outside of it).
Then at step 3 of the above algorithm, there would not
be any u ∈ Cq

1 verifying Φu(x0) − ε > 0. In this case
the evader should play its best effort control defined as
ubest(x0) ∈ arg maxu∈Cq1 {Φu(x0)}.

VI. EXPERIMENTS

A. Setup

We used two Pioneer ground robots [10]. The first one
was automated with the collision avoidance algorithm and
played the role of the evader. The second one was re-
motely controlled by a human operator and played the role
of the pursuer. We used VICON system to get position
measurements. We set the maximum speeds of the robots
to U1 = D1 = 0.15 m/s and the maximum yaw rates to
U2 = D2 = 1 rad/s (these values were obtained based
on the robots’ physical capacities). Finally, we assumed
that Pioneer ground robots follow unicycle models, i.e. they
can be controlled in terms of velocity vector’s magnitude
and angular rate. This assumption is fairly accurate when
considering this type of robot which has a physical heading
(the direction from the rear to the front). That being said, the
robot is not using a steering mechanism (as one would expect
in a vehicle that follows a unicycle model), but instead it is
applying differential rotating speeds to the wheels in order to
turn (which introduces additional drifting). The kinematics
are described by the following simple nonlinear model:

ẋ = v cos(ψ)
ẏ = v sin(ψ)

ψ̇ = ω.
(18)

Therefore, we assume that we can directly control the speed
v and the yaw rate ω.

The evader’s objective is to reach the plane’s origin. At
every iteration of the algorithm, it synthesizes the set of safe
yaw rate values, and picks one that would orient its velocity
vector the closest toward the direction of the objective.
Finally, to simplify the implementations, we fixed the speed
of the evader to its maximum value. Therefore, the only
actual control input is the yaw rate. The set of considered
control values Uq that appears in the definition of Cq

1 in (1)
is

Uq = {0.15} × {−1 ,−0.5 , 0 , 0.5 , 1}, (19)

where the speed has been fixed to 0.15 m/s and the yaw rate
values are given in rad/s. As discussed earlier, such quanti-
zation maintains conservatism and formalism. Qualitatively,
the inputs drawn from Uq allow the evader to go straight and
to turn left or right more or less quickly.

Finally, we fixed the sampling time as Ts = 1 s. The
sampling frequency of the collision avoidance algorithm can
be chosen as desired (though it must be the same in both
offline and online calculations) as long as it is slower than
that of the internal lower-level control unit inside of the
robots, as well as the sampling frequency of the measurement
sensors used in the state estimator. Also, we fixed the safety
radius as R = 0.8 m. This value has been chosen based
on the size of the robots, so that as long as the pursuer’s
center is further than 0.8 m away from the evader’s center
then collision has not occurred.

With the previously described numerical values, the reach-
able set converges after 3 iterations (Fig. 2a). The grid’s size
was of 60 points in each direction. The offline computational
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Fig. 3: Absolute trajectories in x-y plane. The objective is
represented by a blue cross. Small black circles/diamonds
represent the start/end of trajectories.

time of the converged unsafe reachable set was approxi-
mately 15 mins.1 We used 8 MB of on board memory to store
the values of the level set function Φu on the UV. We apply
the collision avoidance algorithm described in Section V.

B. Results

The absolute trajectories of the evader and the pursuer are
measured and plotted in Fig. 3, while Fig. 4 shows various
snapshots of these trajectories so as to highlight the behavior
of the evader when the pursuer is coming towards it, and
as a comparison, when the pursuer is going away from it.
We plotted two points for each object. One is located at the
rear end of the vehicle, the other at the front. The arrow
represents the direction of the velocity vector (computed for
the center point of the vehicle, by measuring two successive
positions of the vehicles via sensors) and clearly determines
what point is at the rear and what point is at the front. One
can observe the safety reaction of the evader that is fleeing
when the pursuer is coming close. Also, when the pursuer is
going away, the evader attempts to go back to the objective.

Finally these snapshots also highlight that physical and
velocity headings (the physical heading is the direction from
the rear to the front end, while the velocity heading is
represented by an arrow) are not exactly the same, especially
during turns. This phenomenon is shown in Fig. 5, which
highlights that the ground robot follows a close but not
perfect unicycle model (recall that we are controlling the
physical heading, although the velocity heading is really of
importance). To formalize the effect of this discrepancy on
the control algorithm one would need to study the dynamics
of the ground robot, hoping to find a relation between the
two headings’ evolutions. In our experiments, we assume
(and empirically validate) that the discrepancy is negligible.

The relative trajectory of the pursuer in evader’s frame
is plotted in Fig. 6. One can notice that the pursuer never
enters the avoid set, which is an expected behavior and
validates the proposed collision avoidance algorithm. Various
snapshots of this relative trajectory are displayed in Fig. 7.

1Computed on Matlab R2009b running on an Intel Core i7 CPU clocked
at 2.67 GHz with 8 GB of RAM.
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Fig. 4: Absolute trajectory snapshots. The objective is rep-
resented by a blue cross. Arrows represent velocity vectors.
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Fig. 5: Physical versus velocity headings of evader.

The inner set is the unsafe reachable set R and the outer
set is Fc, the complement of the freedom set. The arrow
represents the relative direction of the pursuer’s velocity
vector in the evader’s frame. When the pursuer enters the
outer set (i.e. when it exits the freedom set F), not all
controls are admissible for the evader, and the evader has
to choose a safety-preserving one. Although the pursuer’s
relative velocity direction is pointing toward the evader, the
pursuer is never able to enter the unsafe set, highlighting the
fact that the evader is reacting in an appropriate manner.

Fig. 8 shows the corresponding synthesized control policy
(i.e. commands) sent to the evader, and the evader’s actual
responses to these commands. The green crosses represent
the control values chosen when considering safety (i.e. when
the state vector belongs to Fc). This plot also highlights the
existence of an internal dynamical delay: The synthesized
command is PWC, but the actual response is continuous, with
connection slopes between constant pieces. Although we do
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Fig. 6: Relative trajectory of pursuer in evader’s frame. The
avoid set is represented by the dashed blue circle.
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(d) t = 4.3 s.

Fig. 7: Relative trajectory snapshots.
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Fig. 8: The evader’s synthesized yaw rate command and its
actual input response.

not explicitly account for this delay, the chosen sampling
time seems to be large enough that the general response
during constant yaw rate phases is satisfactory and is close
to the given command. In future work, we plan to examine
different methods that take into account this dynamical

delay, by essentially considering the maximum variational
capacities of the robot in terms of yaw rate response.

VII. ONLINE RESTRICTION OF PURSUER’S INPUTS

So far we have let the pursuer’s speed d1 vary as it
desires within the set [0, D1]. The lack of any reasonable
assumptions on this input during the offline computations of
the collision avoidance algorithm may yield an excessively
conservative online control policy for the evader. This is due
to the fact that the pursuer’s input is technically allowed
to oscillate/chatter infinitely frequently since the only as-
sumption we impose is for it to be Lebesgue measurable. To
be more realistic, one can take into account the maximum
acceleration of the pursuer and restrict its set of possible
speeds over one sampling interval.

Let us assume that the pursuer has a finite maximum
acceleration (speed derivative) amax < ∞. At t = −Ts, the
evader has to take a control decision to apply during the
interval [−Ts, 0]. Let us call d10

the initial speed value of the
pursuer at t = −Ts and assume that it verifies d10 ∈ [a , b],
with 0 ≤ a ≤ b ≤ D1. Then, over [−Ts, 0], one has a
new restricted interval for the control input of the pursuer
described by

d1 ∈ [max(0 , a− Tsamax) ,min(D1 , b+ Tsamax)]. (20)

The restriction of how the pursuer’s input is allowed to
vary over every sampling interval reduces conservatism of
the collision avoidance algorithm. During offline computa-
tions of BA(R, u), ∀u ∈ Cq

1 , this restriction is accounted for
by constraining the set of pursuer’s speed input values over
which the Hamiltonian is minimized.

A. Validation via Simulations

To demonstrate the effect of restricting the pursuer’s input
sets on conservatism of the proposed collision avoidance
algorithm, we employ simulations. We implemented the
pursuer-evader game and our algorithm in Matlab. The
maximum input values are U1 = D1 = 1 m/s and U2 =
D2 = 1 rad/s. The safety radius is R = 1 m and the sampling
time is Ts = 1 s. The evader is starting from the origin,
and has to reach the location at (x = 0 m, y = 18 m).
Throughout the simulation we fixed the pursuer’s speed
d1 = 0.1 m/s, although the evader does not know that this
value is constant. At the beginning of every time interval,
the evader measures the initial speed of the pursuer and
then computes the possible ensuing values for the pursuer’s
speed over the time interval. We chose a = 0 m/s and
b = 0.1 m/s (values that appear in the restricted interval
(20)). The maximum acceleration of the pursuer has been
fixed to amax = 0.1 m/s2. We randomly generated 1000
trajectories for the pursuer (Fig. 9a) and obtained the ensuing
trajectories of evader (Fig. 9b).

To quantify the effect of the restriction of the pursuer’s
inputs on the evader’s control law, we introduce two cost
indicators which are the time to reach the objective for
the evader tmax and the energy of its yaw rate control
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Fig. 9: Simulations for pursuer’s speed restriction. The
collision avoidance algorithm generates control policies that
on average require less energy expenditure.

∫ tmax

0
u2

2(t) dt. We average these cost indicators over all
evader’s trajectories and obtain the following results:

Method Energy (rad2/s) Time (s)
With restriction 1.94 19.18
Without restriction 2.63 19.32

We can see that for equivalent times to reach, the evader
requires less energy (on average) to reach the objective when
the pursuer’s input is restricted as above.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a practical reachability-based collision
avoidance algorithm in the framework of a planar two-player
pursuer-evader game. We implemented our algorithm on
an automated unmanned vehicle (UV) that seeks to reach
an objective in a safe fashion despite the actions of a
moving obstacle. Our algorithm formally takes into account
the sampled-data nature of the underlying system by not
ignoring the fact that physical systems evolve continuously
in time while digital controllers can only make decisions
that are based on sensor measurements and are discrete in
time. (A provably safe controller must be able to account
for the inter-sample behavior of the system.) As such, the
presented collision avoidance algorithm generates piecewise
constant (PWC) control laws that guarantee safety of the
UV, while not making any strict assumptions on the behavior
of the obstacle. Costly computations are performed offline,
leaving the online calculations manageable on an embedded
microcontroller. To achieve this, we introduced the notion
of freedom set that is useful in optimally dimensioning the
numerical grid (used by the level set methods) which is
to be stored on board the UV. Discussions surrounding the
ability of the vehicle to apply more general control strategies
away from the obstacle were also presented. In addition,
our algorithm considers the numerical error introduced by
the fact that state estimates could fall in between grid
points. This enabled us to work with a relatively coarse grid
(and consequently, a smaller online lookup table) while still
maintaining formalism to a great extent.

We validated the presented algorithm via experiments on
Pioneer ground robots. That being said, this algorithm can

be directly used for any other vehicle that is governed by the
unicycle model (e.g., a planar fixed wing aircraft). In all other
cases (consider the quadrotor, for instance), to be able to use
similar analysis based on the unicycle model (which has the
advantage of yielding relatively low dimensional dynamics in
relative coordinates), an intermediate step would be needed
to fill the gap between the vehicle’s actual dynamics and the
unicycle model. We are currently exploring this avenue.

The presented algorithm generates PWC commands that,
in rare occasions, may be difficult to realize by a physical
system. This is due to the fact that, without additional con-
straints, a PWC signal can vary greatly at the discontinuities,
while most dynamical systems generally can only tolerate
limited variations on their actuation input. This warrants an
algorithm that is capable of taking into account the maximum
variational capacities of the vehicle. We plan to investigate
such an algorithm in future work.
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