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Motivation
•Presence of hard input and state constraints
•Particularly important with unknown (but bounded) disturbances/uncertainties
•Goal: Design a scalable permissive feedback controller that maintains feasibility/safety[Aubin 91; Blanchini 99; Lygeros, et al. 99; Tomlin, et al. 00; Morari 00; ...]

“Scalability” is our main contribution.“Scalability” is our main contribution.

Background
• ẋ = f (x, u, v ), u(t) ∈ U, v (t) ∈ V, x(t) ∈ K, ∀t ∈ T , [0, τ ]
•Discriminating kernel

DiscT(K,U,V) , {x0 ∈ K | ∀v (·) ∈ VT,
∃u(·) ∈ UT, ∀t ∈ T, x(t) ∈ K}

K

. Feedback strategy for control: u(·) = û(x, ·) ∈ UT

.Non-anticipative strategy for disturbance: v (·) = ρ[u](·) ∈ VT

.When K is deemed safe, u(·) is safety-preserving

Conventional Approaches
• Synthesize safety-preserving controllers based on the shape of the kernel
. Contingent cones and proximal normals (per Nagumo’s theorem)
. Terminal constraint set for Receding Horizon Control
•Numerical solutions to compute the kernel
. Eulerian methods, e.g. level-set techniques, Saint-Pierre’s algorithm: grid-based
.Recursive methods for DT LTI systems with polytopic constraints, e.g. Blanchini’salgorithm: explosion of vertices
. A control Lyapunov function sublevel-set for CT systems: possibly too conservative

Discriminating Kernel Approximation (Offline)
Approximate DiscT(K,U,V) via a nested sequence of sets robustly reachable in small sub-intervals of T: Reacht(K,U,V) , {x0 ∈ X | ∀v (·) ∈ V[0,t], ∃u(·) ∈ U[0,t], x(t) ∈ K}

K|P|(P) = K↓(P) , {x ∈ K | dist(x,Kc) ≥ M ∥∥P∥∥},
Kk−1(P) = K↓(P) ∩ Reachtk−tk−1(Kk (P),U,V)

•Guaranteed under-approximation, & applicable to general systems and sets
• Arbitrary precision DiscT( ◦K,U,V) ⊆ ⋃P∈P(T)K0(P) ⊆ DiscT(K,U,V)

P: partition of TM: uniform bound on fP: partition of TM: uniform bound on f

Piecewise Ellipsoidal Algorithm (Offline)
•Based on the ellipsoidal techniques for maximal reachability (LTI) [Kurzhanski and Valyi 96]
• For fixed terminal direction `τ and partition P , with K [`τ ]

|P| (P) = K|P|(P) = K↓(P), do
K [`τ ]
k−1 = maxvol(K|P|(P) ∩ Reach[`τ ]

tk−tk−1(K [`τ ]
k (P),U,V))

•Generates an ellipsoidal set K [`τ ]0 (P) such that ⋃`τ∈MK [`τ ]0 (P) ⊆ DiscT(K,U,V)
• Finer partition = less accuracy loss (empirically)
• Computational complexity ∼ O(n3) (ellipsoidal reach & SDP)
Safety-Preserving Synthesis (Online)

qperf qsafe
û(x(t), t) ∈ U û(x(t), t) = ψBU(l[γ]

σ )
x(t) ∈ ◦

R[γ](σ (t), k) x(t) 6∈ ◦
R[γ](σ (t), k)

x(t) 6∈ ◦
R(σ (t), k)

x(t) ∈ ◦
R[¯̀τ ](σ (t), k)∃¯̀τ s.t.γ := ¯̀τγ := ¯̀τ

x(t) ∈ ◦
R[¯̀τ ](σ (t), k)∃¯̀τ 6= γ s.t. γ := `τ

x0 ∈ R[`τ ](0, 1)∃`τ ∈M s.t.

σ̇ (t) ∈ [0, 1] σ̇ (t) = 1

[Based on Kurzhanski and Valyi 96; Kurzhanskiy and Varaiya 08; Tomlin, et al. 00]
•Guarantees safety over at least T (pseudo-time σ (t) = s+ ∫ ts σ̇ (λ)dλ prolongs safety)
• Infinite-horizon control (via satisfaction of robust controlled-invariance conditions offline)
• Computational complexity ∼ O(n2) (inexpensive matrix multiplications)
Smoothing Modification
• Safety and performance control laws may be conflicting: pathological behavior
•One solution: with φ[γ] a measure of how deep inside ellipsoid γ,
u(t) = (1− βα(φ[γ](x(t), σ (t))))uperf(t) + βα(φ[γ](x(t), σ (t)))usafe(t)
•Benefit: u(t) is continuous across the automaton’s transitions
.When disturbance plays optimally (with inexact arithmetic)
→Unmodified policy: Chattering in HA and u
→Modified policy: HA less likely to chatter, u does not chatter
.When disturbance allowed to play non-optimally
→Unmodified policy: Chattering in HA and u as fast as disturbance itself (Zeno!)
→Modified policy: Neither HA nor u chatters
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Application: 12D Quadrotor
• 12D model [Cowling, et al. 10]. Linearized about hover. x = [x y z ẋ ẏ ż φ θ ψ φ̇ θ̇ ψ̇

]T
• Control u = [u1 u2 u3 u4]T ∈ [0.5, 5.4]× [−0.5, 0.5]3
•Disturbance is wind: unknown but bounded (v ∼ uniform(0,+0.1) in simulations)
•Physical constraints. Also, keep 1–7 m above ground for at least 2 s
•Performance: LQR (saturated) to move to xss = [0 0 5 0 0 0 0 0 0 0 0 0]T

Case 1: No safety controls; (Saturated) LQR; Failed at 1.8 s
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Case 2: Safety control with (saturated) LQR in qperf; Can extend upto 4.5 s
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