# Computing the Viability Kernel Using Maximal Reachable Sets

#### Shahab Kaynama, John Maidens, Meeko Oishi, Ian M. Mitchell, Guy A. Dumont

University of British Columbia

www.ece.ubc.ca/~kaynama



### Motivation: Control of Anesthesia

- Control of depth of anesthesia
  - [Simanski, et al. 07; Ionescu, et al. 08; Syafiie, et al. 09; Dumont, et al. 09; Oliveira, et al. 09; Mendonca, et al. 09]
- Goal: closed-loop drug delivery system
  - ► Currently bolus-based open-loop system, 80 patients via clinical trials
- Key element for FDA/Health Canada: guarantees of  ${\color{black} safety}$







#### Motivation: Control of Anesthesia

• Insufficient constraints for the receding horizon optimization



$$y \in [0.1, 1], \quad u \in [0, 0.8]$$



# Motivation: Vehicle Safety, etc.

• Flight Envelope Protection [Image: Lygeros 04]



• Collision Avoidance [Images: Mitchell, et al. 05; Hafner and Del Vecchio 11]





#### Background and Introduction

Lagrangian Approach: Viability vs. Maximal Reachability

Computational Algorithms

Practical Examples

Conclusions and Future Work



#### Background and Introduction

Lagrangian Approach: Viability vs. Maximal Reachability

Computational Algorithms

Practical Examples

Conclusions and Future Work



$$\begin{cases} \dot{x} = f(x, u), & x(0) = x_0, & t \in [0, \tau] =: \mathbb{T} \\ u(t) \in \mathcal{U} & \text{(input constraint)} \\ \mathcal{K} \subset \mathcal{X} & \text{(target set/state constraint)} \end{cases}$$

- Reachability analysis
  - [Tomlin, et al. 03; Aubin, et al. 11; Kurzhanski and Varaiya 00; Lygeros 04; Blanchini and Miani 08; ...]
  - Maximal vs. minimal reachability [Mitchell 07]



### Introduction

• Maximal reach tube

$$Reach_{\mathbb{T}}^{\sharp}(\mathcal{K},\mathcal{U}) := \{ x_0 \in \mathcal{X} \mid \exists u(\cdot), \ \exists t, \ x(t) \in \mathcal{K} \}$$





### Introduction

• Maximal reach set

$$Reach_t^{\sharp}(\mathcal{K},\mathcal{U}) := \{ x_0 \in \mathcal{X} \mid \exists u(\cdot), \ x(t) \in \mathcal{K} \}$$





• Maximal reach tube vs. set [Lygeros 04; Mitchell 07]

$$Reach_{\mathbb{T}}^{\sharp}(\mathcal{K},\mathcal{U}) = \bigcup_{t\in\mathbb{T}} Reach_{t}^{\sharp}(\mathcal{K},\mathcal{U})$$

#### • Lagrangian methods to approximate

- ▶ e.g. [Frehse, et al. 11; Girard and Le Guernic 08; Girard, et al. 06; Han and Krogh 06; Kurzhanski and Varaiya 00; Kurzhanskiy and Varaiya 06]
- Scalable and computationally efficient (polynomial)



### Introduction

• Minimal reach tube

$$Reach_{\mathbb{T}}^{\flat}(\mathcal{K},\mathcal{U}) := \{ x_0 \in \mathcal{X} \mid \forall u(\cdot), \exists t, x(t) \in \mathcal{K} \}$$





#### Introduction

• Viability kernel (finite horizon)

$$Viab_{\mathbb{T}}(\mathcal{K},\mathcal{U}) := \{ x_0 \in \mathcal{X} \mid \exists u(\cdot), \ \forall t, \ x(t) \in \mathcal{K} \}$$



• Infinite horizon viab kernel  $\equiv$  maximal controlled-invariant subset



THE UNIVERSITY OF BRITISH COLUMBIA

• Viability kernel vs. minimal reach tube [Cardaliaguet, et al. 99]

$$(Viab_{\mathbb{T}}(\mathcal{K},\mathcal{U}))^{c} = Reach_{\mathbb{T}}^{\flat}(\mathcal{K}^{c},\mathcal{U})$$

- The **only** constructs to prove existence of safety control laws [Mitchell 07; Lygeros 04]
  - Applications: [Lygeros, et al. 98; Tomlin, et al. 03; Bayen, et al. 07; Gillula, et al. 10; Oishi, et al. 03; Aswani, et al. 11; Borrelli, et al. 10; Panagou, et al. 09; Del Vecchio, et al. 09; Ghaemi and Del Vecchio 11; ...]

#### • Eulerian methods to approximate

- ▶ [Mitchell, et al. 05; Cardaliaguet, et al. 99; Gao, et al. 06; Saint-Pierre 94]
- Computationally intensive (exponential) since grid-based



# Problem Statement and Methodology

- Desirable to compute Viab<sub>T</sub>(K, U) (or Reach<sup>b</sup><sub>T</sub>(K, U)) for high-dimensional systems for analysis and synthesis
- How to tackle the "curse of dimensionality"?

#### • Existing methods:

- ▶ Hamilton-Jacobi projections [Mitchell and Tomlin 03]
- Structure decomposition [Kaynama and Oishi IJC'11; Kaynama and Oishi TAC(ca); Mitchell 11; Stipanović, et al. 03]
- Proposed method:
  - ► A Lagrangian approach [this paper]



# Problem Statement and Methodology

- Desirable to compute Viab<sub>T</sub>(K, U) (or Reach<sup>b</sup><sub>T</sub>(K, U)) for high-dimensional systems for analysis and synthesis
- How to tackle the "curse of dimensionality"?

- Existing methods:
  - ► Hamilton-Jacobi projections [Mitchell and Tomlin 03]
  - Structure decomposition [Kaynama and Oishi IJC'11; Kaynama and Oishi TAC(ca); Mitchell 11; Stipanović, et al. 03]
- Proposed method:
  - ► A Lagrangian approach [this paper]



#### Background and Introduction

#### Lagrangian Approach: Viability vs. Maximal Reachability

Computational Algorithms

Practical Examples

Conclusions and Future Work



### Lagrangian Approach

• Efficient techniques (Lagrangian) to compute maximal reach sets

$$Reach_t^{\sharp}(\mathcal{K},\mathcal{U}) := \{ x_0 \in \mathcal{X} \mid \exists u(\cdot), \ x(t) \in \mathcal{K} \}$$



 Approximate Viab<sub>T</sub>(K, U) via a nested sequence of sets reachable in small sub-time intervals of T



Start with an under-approximation K<sub>↓</sub>(P) of K
(P: interval partition; M: uniform bound on f)

$$\mathcal{K}_{\downarrow}(P) := \{ x \in \mathcal{K} \mid \operatorname{dist}(x, \mathcal{K}^c) \ge M \| P \| \}$$

$$\begin{split} K_{|P|}(P) &= \mathcal{K}_{\downarrow}(P),\\ K_{k-1}(P) &= \mathcal{K}_{\downarrow}(P) \cap Reach_{t_k - t_{k-1}}^{\sharp}(K_k(P), \mathcal{U})\\ \text{for} \quad k \in \{1, \dots, |P|\}. \end{split}$$



Start with an under-approximation K<sub>↓</sub>(P) of K
(P: interval partition; M: uniform bound on f)

$$\mathcal{K}_{\downarrow}(P) := \{ x \in \mathcal{K} \mid \operatorname{dist}(x, \mathcal{K}^c) \ge M \| P \| \}$$

$$\begin{split} K_{|P|}(P) &= \mathcal{K}_{\downarrow}(P), \\ K_{k-1}(P) &= \mathcal{K}_{\downarrow}(P) \cap Reach_{t_k - t_{k-1}}^{\sharp}(K_k(P), \mathcal{U}) \\ & \text{for} \quad k \in \{1, \dots, |P|\}. \end{split}$$



Start with an under-approximation K<sub>↓</sub>(P) of K
(P: interval partition; M: uniform bound on f)

$$\mathcal{K}_{\downarrow}(P) := \{ x \in \mathcal{K} \mid \operatorname{dist}(x, \mathcal{K}^c) \ge M \| P \| \}$$

$$\begin{split} K_{|P|}(P) &= \mathcal{K}_{\downarrow}(P), \\ K_{k-1}(P) &= \mathcal{K}_{\downarrow}(P) \cap Reach_{t_k - t_{k-1}}^{\sharp}(K_k(P), \mathcal{U}) \\ & \text{for} \quad k \in \{1, \dots, |P|\}. \end{split}$$





Start with an under-approximation K<sub>↓</sub>(P) of K
(P: interval partition; M: uniform bound on f)

$$\mathcal{K}_{\downarrow}(P) := \{ x \in \mathcal{K} \mid \operatorname{dist}(x, \mathcal{K}^c) \ge M \| P \| \}$$

$$\begin{split} K_{|P|}(P) &= \mathcal{K}_{\downarrow}(P), \\ K_{k-1}(P) &= \mathcal{K}_{\downarrow}(P) \cap Reach_{t_k - t_{k-1}}^{\sharp}(K_k(P), \mathcal{U}) \\ & \text{for} \quad k \in \{1, \dots, |P|\}. \end{split}$$





Start with an under-approximation K<sub>↓</sub>(P) of K
(P: interval partition; M: uniform bound on f)

$$\mathcal{K}_{\downarrow}(P) := \{ x \in \mathcal{K} \mid \operatorname{dist}(x, \mathcal{K}^c) \ge M \| P \| \}$$

• Recursively compute  $K_0(P)$  from:

$$\begin{split} K_{|P|}(P) &= \mathcal{K}_{\downarrow}(P), \\ K_{k-1}(P) &= \mathcal{K}_{\downarrow}(P) \cap Reach_{t_k - t_{k-1}}^{\sharp}(K_k(P), \mathcal{U}) \\ & \text{for} \quad k \in \{1, \dots, |P|\}. \end{split}$$





HSCC'12 15

Start with an under-approximation K<sub>↓</sub>(P) of K
(P: interval partition; M: uniform bound on f)

$$\mathcal{K}_{\downarrow}(P) := \{ x \in \mathcal{K} \mid \operatorname{dist}(x, \mathcal{K}^c) \ge M \| P \| \}$$

$$\begin{split} K_{|P|}(P) &= \mathcal{K}_{\downarrow}(P), \\ K_{k-1}(P) &= \mathcal{K}_{\downarrow}(P) \cap Reach_{t_k - t_{k-1}}^{\sharp}(K_k(P), \mathcal{U}) \\ & \text{for} \quad k \in \{1, \dots, |P|\}. \end{split}$$





Start with an under-approximation K<sub>↓</sub>(P) of K
(P: interval partition; M: uniform bound on f)

$$\mathcal{K}_{\downarrow}(P) := \{ x \in \mathcal{K} \mid \operatorname{dist}(x, \mathcal{K}^c) \ge M \| P \| \}$$

$$\begin{split} K_{|P|}(P) &= \mathcal{K}_{\downarrow}(P), \\ K_{k-1}(P) &= \mathcal{K}_{\downarrow}(P) \cap Reach_{t_k - t_{k-1}}^{\sharp}(K_k(P), \mathcal{U}) \\ & \text{for} \quad k \in \{1, \dots, |P|\}. \end{split}$$





- Guaranteed under-approximation:  $K_0(P) \subseteq Viab_{\mathbb{T}}(\mathcal{K}, \mathcal{U})$
- Arbitrarily precise by choosing a sufficiently fine partition:

$$Viab_{\mathbb{T}}(\overset{\circ}{\mathcal{K}},\mathcal{U}) \subseteq \bigcup_{P \in \mathscr{P}(\mathbb{T})} K_0(P) \subseteq Viab_{\mathbb{T}}(\mathcal{K},\mathcal{U})$$



### Lagrangian Approach: Discrete-Time

- Particular form of the continuous-time case
- Recursively compute *K*<sup>0</sup> from:

$$\begin{split} K_n &= \mathcal{K}, \\ K_{k-1} &= \mathcal{K} \cap Reach_1^\sharp(K_k, \mathcal{U}) \\ \text{for} \quad k \in \{1, \dots, n\} \end{split}$$

- Compute exactly:  $K_0 = Viab_{\mathbb{T}\cap\mathbb{Z}^+}(\mathcal{K},\mathcal{U})$
- Closely related to discrete algorithms in e.g. [Saint-Pierre 94; Cardaliaguet, et al. 99; Blanchini and Miani 08]



#### Background and Introduction

#### Lagrangian Approach: Viability vs. Maximal Reachability

#### Computational Algorithms

Practical Examples

Conclusions and Future Work



# **Computational Algorithms**

- Facilitates the use of scalable/efficient Lagrangian methods
- Ideally polytopes
  - ► But polytopic reach ([Kvasnica, et al. 04;...]) not scalable
  - Other techniques (e.g. zonotopes, ellipsoidal, support functions) not so easily convertible to polytopes (even if provide under-approximation)
- Piecewise ellipsoidal approach based on ellipsoidal techniques
  - Only deals with ellipsoids (fixed complexity)
  - ► Efficient, scalable, guaranteed under-approximation
  - ► Implementable in the Ellipsoidal Toolbox [Kurzhanskiy and Varaiya 06]
  - Generalizable to discriminating kernels
  - Safety-preserving control synthesis [in preparation]
  - ▶ Disadvantages: Loss of accuracy; Only LTI systems  $\mathcal{L}(x) = Ax + Bu$



### **Computational Algorithms**

Ellipsoidal techniques (under-)approximating the maximal reach set:



[Kurzhanski and Varaiya 00; Kurzhanski and Valyi 96]



a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

# Piecewise Ellipsoidal Algorithm (CT)

- Given  $P\in \mathscr{P}(\mathbb{T})$  form an under-approximation  $\mathcal{K}_{\downarrow}(P)$  of  $\mathcal{K}$
- For a fixed terminal direction  $\ell_\tau \in \mathcal{M}$  do the recursion

$$\begin{split} K_{k-1}^{*[\ell_{\tau}]} &= \operatorname{maxvol}(K_{|P|}(P) \cap Reach_{t_{k}-t_{k-1}}^{\sharp[\ell_{\tau}]}(K_{k}^{*[\ell_{\tau}]}(P),\mathcal{U})) \\ & \text{for} \quad k \in \{1, \dots, |P|\} \end{split}$$

with 
$$K_{|P|}^{*[\ell_{\tau}]}(P) = K_{|P|}(P) = \mathcal{K}_{\downarrow}(P).$$

• Generates an ellipsoidal set  $K_0^{*[\ell_{\tau}]}(P)$  such that

$$\bigcup_{\ell_{\tau}\in\mathcal{M}} K_0^{*[\ell_{\tau}]}(P) := K_0^*(P) \subseteq Viab_{\mathbb{T}}(\mathcal{K},\mathcal{U})$$



# Piecewise Ellipsoidal Algorithm (CT)

- Given  $P\in \mathscr{P}(\mathbb{T})$  form an under-approximation  $\mathcal{K}_{\downarrow}(P)$  of  $\mathcal{K}$
- For a fixed terminal direction  $\ell_\tau \in \mathcal{M}$  do the recursion

$$\begin{split} K_{k-1}^{*[\ell_{\tau}]} &= \operatorname{maxvol}(K_{|P|}(P) \cap \operatorname{Reach}_{t_{k}-t_{k-1}}^{\sharp[\ell_{\tau}]}(K_{k}^{*[\ell_{\tau}]}(P),\mathcal{U}))\\ & \text{for} \quad k \in \{1,\ldots,|P|\} \end{split}$$

with 
$$K_{|P|}^{*[\ell_{\tau}]}(P) = K_{|P|}(P) = \mathcal{K}_{\downarrow}(P).$$

• Generates an ellipsoidal set  $K_0^{*[\ell_{\tau}]}(P)$  such that

$$\bigcup_{\ell_{\tau}\in\mathcal{M}} K_0^{*[\ell_{\tau}]}(P) := K_0^*(P) \subseteq Viab_{\mathbb{T}}(\mathcal{K},\mathcal{U})$$



# Piecewise Ellipsoidal Algorithm (CT): Loss of Accuracy

- Finer partition equals less accuracy loss (empirically)
- Simple example: The double integrator

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

subject to

$$u(t) \in \mathcal{U} := [-0.25, 0.25]$$
  
$$x(t) \in \mathcal{K} := \mathcal{E}(\mathbf{0}, [\begin{smallmatrix} 0.25 & 0\\ 0 & 0.25 \end{smallmatrix}]), \quad \forall t \in [0, 1].$$

- Approximate with  $|\mathcal{M}|=10$  random directions



# Piecewise Ellipsoidal Algorithm (CT): Loss of Accuracy



#### [Produced via ET and LS Toolbox]



a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

HSCC'12 22

#### Background and Introduction

#### Lagrangian Approach: Viability vs. Maximal Reachability

Computational Algorithms

Practical Examples

Conclusions and Future Work



# Applications: Flight Envelope Protection (CT, 4D)

• Longitudinal aircraft dynamics [Source: Bryson 94]

$$A = \begin{bmatrix} -0.003 & 0.039 & 0 & -0.322 \\ -0.065 & -0.319 & 7.740 & 0 \\ 0.020 & -0.101 & -0.429 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$B = \begin{bmatrix} 0.010 & -0.180 & -1.160 & 0 \end{bmatrix}^{T}$$

#### subject to

$$\begin{split} & u(t) \in \mathcal{U} := [-13.3^{\circ}, 13.3^{\circ}], \\ & x(t) \in \mathcal{K} := \mathcal{E}\left( \begin{bmatrix} 0 \\ 0 \\ 2.18 \\ 0 \end{bmatrix}, \begin{bmatrix} 1075.84 & 0 & 0 \\ 0 & 67.24 & 0 & 0 \\ 0 & 0 & 42.7716 & 0 \\ 0 & 0 & 0 & 76.0384 \end{bmatrix} \right), \quad \forall t \in [0, 2]. \end{split}$$

• We choose 
$$|P| = 400$$
,  $|\mathcal{M}| = 8$ 



# Applications: Flight Envelope Protection (CT, 4D)





Eulerian (Level-Set): 5.5 h Piecewise Ellipsoidal: 10 m

[Produced via ET and LS Toolbox]



# Applications: Safety in Anesthesia Automation (DT, 7D)

- Discrete-time Laguerre models (6D); patient's response to rocuronium
- Safety constraint: therapeutic bounds on output (pseudo-occupancy level), i.e. desired clinical effect
- Input constraint: actuator bounds (hard bounds on drug infusion rate)
- Compute viability kernel for a 30 min surgery (patient #80)

$$A = \begin{bmatrix} 0.9960 & 0 & 0 & 0 & 0 & 0 \\ 0.0080 & 0.9960 & 0 & 0 & 0 & 0 \\ -0.0080 & 0.0080 & 0.9960 & 0 & 0 \\ 0.0079 & -0.0080 & 0.0080 & 0.9960 & 0 \\ -0.0079 & 0.0079 & -0.0080 & 0.0080 & 0.9960 \\ 0.0079 & -0.0079 & 0.0079 & -0.0080 & 0.0080 & 0.9960 \end{bmatrix}$$
$$B = \begin{bmatrix} 0.0894 & -0.0890 & 0.0886 & -0.0883 & 0.0879 & -0.0876 \end{bmatrix}^T$$
$$C = \begin{bmatrix} 18.5000 & 8.2300 & 3.5300 & 4.3400 & 3.7000 & 3.0700 \end{bmatrix}$$



- Reformulate by projecting the output bounds onto the state space while making the control action regulatory.
- Dynamics are augmented and transformed to a coordinate system of dimension **seven**
- Compute for  $|\mathcal{M}| = 30$  directions (15 resulted in non-empty ellipsoids)



# Applications: Safety in Anesthesia Automation (DT, 7D)



Eulerian (Level-Set): ? Piecewise Ellipsoidal: 15 m

[Produced via ET]



a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

#### Background and Introduction

#### Lagrangian Approach: Viability vs. Maximal Reachability

Computational Algorithms

Practical Examples

Conclusions and Future Work



- Need to compute viability kernel for guarantees of safety
- Traditionally and exclusively computed using Eulerian methods (computationally intensive)
- Lagrangian methods (scalable/efficient) can compute maximal reach constructs
- Connection between viability kernel and maximal reach sets
- Enables the use of Lagrangian methods for viability kernel!
- Piecewise ellipsoidal algorithm based on ellipsoidal reach techniques
- Easily extendable to hybrid systems



# Future Work

• Scalable synthesis of safety-preserving controllers



• Alternative algorithms w/o wrapping effect, e.g. support vector





a place of mind

HSCC'12 29

# Computing the Viability Kernel Using Maximal Reachable Sets

Shahab Kaynama, John Maidens, Meeko Oishi, Ian M. Mitchell, Guy A. Dumont

University of British Columbia

Code available at:

www.ece.ubc.ca/ $\sim$ kaynama/papers/HSCC12\_matlab.zip





a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA