Computing the Viability Kernel Using Maximal

Reachable Sets

Shahab Kaynama, John Maidens, Meeko Qishi,
lan M. Mitchell, Guy A. Dumont

University of British Columbia

www.ece.ubc.ca/~kaynama

aplace of mind THE UNIVERSITY OF BRITISH COLUMBIA



Motivation: Control of Anesthesia

e Control of depth of anesthesia

> [Simanski, et al. 07; lonescu, et al. 08; Syafiie, et al. 09; Dumont, et al. 09;
Oliveira, et al. 09; Mendonca, et al. 09]

o Goal: closed-loop drug delivery system
» Currently bolus-based open-loop system, 80 patients via clinical trials

o Key element for FDA/Health Canada: guarantees of safety

Infusion pump

Controller
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Motivation: Control of Anesthesia

¢ Insufficient constraints for the receding horizon optimization
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Motivation: Vehicle Safety, etc.

o Flight Envelope Protection  [Image: Lygeros 04]

o Collision Avoidance [Images: Mitchell, et al. 05; Hafner and Del Vecchio 11]
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Introduction

j::f(l',u), l'(O):xo, te [0’7—] =T
u(t) el (input constraint)
Kcx (target set/state constraint)

o Reachability analysis

» [Tomlin, et al. 03; Aubin, et al. 11; Kurzhanski and Varaiya 00; Lygeros 04;
Blanchini and Miani 08; .. ]

» Maximal vs. minimal reachability [Mitchell 07]
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Introduction

e Maximal reach tube
Reachh(K,U) == {xo € X | 3u(-), 3}, =(t) € K}
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Introduction

e Maximal reach set
Reachg(/C,Z/l) ={xo € X | Ju(-), z(t) € K}
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Introduction

e Maximal reach tube vs. set [Lygeros 04; Mitchell 07]
Reachﬁr(IC,U) = Ute’]l‘ Reachg(lC,U)

e Lagrangian methods to approximate

» e.g. [Frehse, et al. 11; Girard and Le Guernic 08; Girard, et al. 06; Han and
Krogh 06; Kurzhanski and Varaiya 00; Kurzhanskiy and Varaiya 06]
» Scalable and computationally efficient (polynomial)
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Introduction

e Minimal reach tube
Reach’ (K, U) := {zg € X | Vu(-), 3t, 2(t) € K}
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Introduction

e Viability kernel (finite horizon)
Viabr(K,U) == {xg € X | Ju(-), Vt, z(t) € K}

\_,..%/
5
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\

e Infinite horizon viab kernel = maximal controlled-invariant subset
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Introduction

¢ Viability kernel vs. minimal reach tube [Cardaliaguet, et al. 99]
(Viabp(K,U))¢ = Reachly (K¢, U)

e The only constructs to prove existence of safety control laws [Mitchell
07; Lygeros 04]

» Applications: [Lygeros, et al. 98; Tomlin, et al. 03; Bayen, et al. 07; Gillula,
et al. 10; QOishi, et al. 03; Aswani, et al. 11; Borrelli, et al. 10; Panagou, et al.
09; Del Vecchio, et al. 09; Ghaemi and Del Vecchio 11; ...]

e Eulerian methods to approximate

» [Mitchell, et al. 05; Cardaliaguet, et al. 99; Gao, et al. 06; Saint-Pierre 94]
» Computationally intensive (exponential) since grid-based
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Problem Statement and Methodology

e Desirable to compute Viaby(KC,U) (or Reach’(K,U)) for
high-dimensional systems for analysis and synthesis

e How to tackle the “curse of dimensionality”?
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Problem Statement and Methodology

Desirable to compute Viabr(KC,U) (or Reach’(K,U)) for
high-dimensional systems for analysis and synthesis

How to tackle the “curse of dimensionality”?

Existing methods:

» Hamilton-Jacobi projections [Mitchell and Tomlin 03]
» Structure decomposition [Kaynama and Oishi [JC'11; Kaynama and Oishi
TAC(ca); Mitchell 11; Stipanovi¢, et al. 03]

Proposed method:
» A Lagrangian approach [this paper]
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Lagrangian Approach: Viability vs. Maximal Reachability
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Lagrangian Approach

e Efficient techniques (Lagrangian) to compute maximal reach sets

Reach! (KC,U) := {xo € X | 3u(-), z(t) € K}

e Approximate Viabr(KC,U) via a nested sequence of sets reachable in
small sub-time intervals of T
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Lagrangian Approach: Continuous-Time

e Start with an under-approximation C (P) of K
(P: interval partition; M: uniform bound on f)

K, (P) = {z € K | dist(z, K) > M||P|)}

e Recursively compute Ky(P) from:

K\p|(P) = K (P),
Ki1(P)=K, (P)n Reach!

te—tp—1

for ke{l,...,|P|}
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e Start with an under-approximation C (P) of K
(P: interval partition; M: uniform bound on f)

K (P) :={z € K| dist(z,K°) > M||P|}

¢ Recursively compute K((P) from:

K\p|(P) = Ky(P),
Ki_1(P) = K (P) N Reach’ (K(P),U)

te—tk—1

for ke{l,...,|P|}

X 2
/
\
X 4
7
aplace of mind THE UNIVERSITY OF BRITISH COLUMBIA HSCC'12

15




Lagrangian Approach: Continuous-Time

e Start with an under-approximation C (P) of K
(P: interval partition; M: uniform bound on f)

K (P) :={z € K| dist(z,K°) > M||P|}

¢ Recursively compute K((P) from:

K\p|(P) = K (P),
Ki1(P)=K, (P)n Reach!

te—tk—1

for ke{l,...,|P|}

aplace of mind THE UNIVERSITY OF BRITISH COLUMBIA HSCC'12

(Kx(P),U)

15



Lagrangian Approach: Continuous-Time

e Start with an under-approximation C (P) of K
(P: interval partition; M: uniform bound on f)

K (P) :={z € K| dist(z,K°) > M||P|}

¢ Recursively compute K((P) from:

K\p|(P) = K (P),
Ki1(P)=K, (P)n Reach!

te—tk—1

for ke{l,...,|P|}

\ )
4
aplace of mind THE UNIVERSITY OF BRITISH COLUMBIA HSCC'12

(Kx(P),U)

15




Lagrangian Approach: Continuous-Time

e Start with an under-approximation C (P) of K
(P: interval partition; M: uniform bound on f)

K (P) :={z € K| dist(z,K°) > M||P|}

¢ Recursively compute K((P) from:

K\p|(P) = K (P),
Ki1(P)=K, (P)n Reach!

te—tk—1

for ke{l,...,|P|}

aplace of mind THE UNIVERSITY OF BRITISH COLUMBIA HSCC'12

(Kx(P),U)

15



Lagrangian Approach: Continuous-Time

e Start with an under-approximation C (P) of K
(P: interval partition; M: uniform bound on f)

K (P) :={z € K| dist(z,K°) > M||P|}

¢ Recursively compute K((P) from:

K\p|(P) = K (P),
Ki1(P)=K, (P)n Reach!

te—tk—1

for ke{l,...,|P|}

aplace of mind THE UNIVERSITY OF BRITISH COLUMBIA HSCC'12

(Kx(P),U)

15



Lagrangian Approach: Continuous-Time

e Guaranteed under-approximation: Ky(P) C Viaby(KC,U)
o Arbitrarily precise by choosing a sufficiently fine partition:

Viabr (K, U) < U Ko ) C Viabyp(K,U)
Pex (T
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Lagrangian Approach: Discrete-Time

Particular form of the continuous-time case

Recursively compute K from:

Kn = K:v
Ky_1 = KN Reach? (K, U)
for ke{l,...,n}

e Compute exactly: Ky = Viabpqz+(K,U)

Closely related to discrete algorithms in e.g. [Saint-Pierre 94; Cardaliaguet,
et al. 99; Blanchini and Miani 08]
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Computational Algorithms
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Computational Algorithms

e Facilitates the use of scalable/efficient Lagrangian methods
o Ideally polytopes
» But polytopic reach ([Kvasnica, et al. 04;...]) not scalable

» Other techniques (e.g. zonotopes, ellipsoidal, support functions) not so
easily convertible to polytopes (even if provide under-approximation)

e Piecewise ellipsoidal approach based on ellipsoidal techniques

Only deals with ellipsoids (fixed complexity)

Efficient, scalable, guaranteed under-approximation

Implementable in the Ellipsoidal Toolbox [Kurzhanskiy and Varaiya 06]
Generalizable to discriminating kernels

Safety-preserving control synthesis [in preparation]

Disadvantages: Loss of accuracy; Only LTI systems £(z) = Az + Bu
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Computational Algorithms

Ellipsoidal techniques (under-)approximating the maximal reach set:

K Reachi(K,U)

[Kurzhanski and Varaiya 00; Kurzhanski and Valyi 96]
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Piecewise Ellipsoidal Algorithm (CT)

e Given P € Z(T) form an under-approximation IC(P) of K

e For a fixed terminal direction ¢ € M do the recursion

KM = maxvol(Kp)(P) N Reachi™, (K71 (P),u))

tp—tk—1

for ke{l,...,|P|}

with K57 (P) = Kp|(P) = Ky(P).

e Generates an ellipsoidal set KS[M(P) such that

U ") = K5(P) € Viabs (1)
lreM
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Piecewise Ellipsoidal Algorithm (CT)

e Given P € Z(T) form an under-approximation IC(P) of K
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Piecewise Ellipsoidal Algorithm (CT): Loss of Accuracy

e Finer partition equals less accuracy loss (empirically)

e Simple example: The double integrator

(t) = [g (ﬂ (1) + m u(t)

subject to

u(t) €U = [—0.25,0.25]
£(t) € K= £(0,[%F 485)), Ve [0,1]

e Approximate with | M| = 10 random directions

aplace of mind THE UNIVERSITY OF BRITISH COLUMBIA




Piecewise Ellipsoidal Algorithm (CT): Loss of Accuracy

Pl =13 |P| =21

)
. B

05 0

0
0.5 -0.5 L J
-0.5 0 0.5 -0.5 0
|P| =233
0.5
|V >\
0
e IND
-0.5 0 0.5

[Produced via ET and LS Toolbox]
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Practical Examples

aplace of mind THE UNIVERSITY OF BRITISH COLUMBIA




Applications: Flight Envelope Protection (CT, 4D)

e Longitudinal aircraft dynamics [Source: Bryson 94]

—-0.003  0.039 0 —0.322
—-0.066 —-0.319  7.740 0
0.020 —-0.101 -0.429 0
0 0 1 0

B=1[0.010 —0.180 —1.160 0]"

A=

subject to

u(t) e U :=[—13.3°,13.3°],

8 1078 8 67024 8 8
r(t) e K:=€& ([2.18} ; [ 0 0 427716 0 ]) , Vtelo,2].
0 0 0 0 76.0384

e We choose |P| = 400, [IM| =8
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Applications: Flight Envelope Protection (CT,
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Piecewise Ellipsoidal: 10 m
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Applications: Safety in Anesthesia Automation (

Discrete-time Laguerre models (6D); patient’s response to rocuronium

Safety constraint: therapeutic bounds on output (pseudo-occupancy
level), i.e. desired clinical effect

e Input constraint: actuator bounds (hard bounds on drug infusion rate)

Compute viability kernel for a 30 min surgery (patient #80)

0.9960 0 0 0 0 0

0.0080 0.9960 0 0 0 0

A= —0.0080 0.0080 0.9960 0 0 0
0.0079  —0.0080 0.0080 0.9960 0 0
—0.0079 0.0079 —0.0080 0.0080 0.9960 0

0.0079 —0.0079 0.0079  —0.0080 0.0080 0.9960

B = [0.0894 —0.0890 0.0886 —0.0883 0.0879 70.0876]T
C = [18.5000 8.2300 3.5300 4.3400 3.7000 3.0700]
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Applications: Safety in Anesthesia Automation (DT, 7D)

o Reformulate by projecting the output bounds onto the state space
while making the control action regulatory.

e Dynamics are augmented and transformed to a coordinate system of
dimension seven

e Compute for [M| = 30 directions (15 resulted in non-empty ellipsoids)
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Applications: Safety in Anesthesia Automation (
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Produced via ET
Piecewise Ellipsoidal: 15 m [Produced via ET]

aplace of mind THE UNIVERSITY OF BRITISH COLUMBIA




Outline

Conclusions and Future Work
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Conclusions

e Need to compute viability kernel for guarantees of safety

e Traditionally and exclusively computed using Eulerian methods
(computationally intensive)

e Lagrangian methods (scalable/efficient) can compute maximal reach
constructs

e Connection between viability kernel and maximal reach sets

e Enables the use of Lagrangian methods for viability kernel!

o Piecewise ellipsoidal algorithm based on ellipsoidal reach techniques
o Easily extendable to hybrid systems
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Future Work

o Scalable synthesis of safety-preserving controllers

06 04 02 0 02 04 06 o 05 1 15 2

fun time (s)
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Code available at:
www.ece.ubc.ca/~kaynama/papers/HSCC12_matlab.zip
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