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Abstract

The flight envelope represents the safety bounds that arise from aero-
dynamical and physical limitations of an aerial vehicle. The protection
of this envelope consists of (a) analyzing the subset of states, known as
the viability or discriminating kernel, for which all hard input and state
constraints can be satisfied despite external disturbances or model uncer-
tainties, and (b) designing controllers that ensure such constraint satis-
faction even in the presence of conflicting performance objectives. Due
to the highly complex and under-actuated nature of quadrotors, their
flight envelope protection makes for a well-suited benchmark for reacha-
bility/viability analysis and safety-preserving controller synthesis.

Category: academic and industrial Difficulty: medium to high

1 Context and Origins

The ability to respect hard constraints despite potentially conflicting perfor-
mance objectives is key in safe operation of many cyberphysical systems. Au-
tonomous quadrotors are a perfect example of such safety-critical systems: On
the one hand, the actuators have limited authority in their power throughput,
and on the other hand, there are constraints on the state of the system that
arise due to flight dynamics and physical-structural limitations. These con-
straints constitute the flight envelope of the system which would have to be
analyzed and protected when designing a controller.

The full-dimensional model of a quadrotor consists of twelve states (posi-
tion, flight angles, and linear and angular velocities) and four inputs (thrust
and angular accelerations). The high dimensionality of the model presents a
challenge in successfully applying reachability analysis/viability computations,
and therefore limits one’s ability to synthesize safety-preserving controllers.

In academia, quadrotors are commonly used as a robotics platform for test-
ing of the state-of-the-art control algorithms. But their presence is not limited

∗Electrical Engineering and Computer Sciences, University of California at Berkeley

1



to academic circles: Aside from military and surveillance applications, quadro-
tors are increasingly employed as a civilian technology to accomplish complex
tasks such as monitoring and exploration of hazardous areas [1], in search and
rescue missions [2], for delivery of antibiotics in underprivileged countries with
inadequate transportation infrastructure [3], and HD filming of sports events [4].

Ensuring that the flight envelope can remain protected is essential in safe and
cost effective operation of these systems. This is a challenging problem because
the implementation of any relevant control strategy requires the computation
of the viability kernel—a task that is particularly hard in such high dimensions.
Even for a conventional scheme such as the model predictive control, the maxi-
mal controlled-invariant set (infinite-horizon viability kernel) is needed so as to
ensure recursive feasibility of the corresponding receding horizon optimization.

The model described here, detailed by Cowling et al. [5], is based on a six
degree of freedom Newton-Euler rigid body equations of motion for a particular
quadrotor. However, it is generic enough to be readily applicable to other types
of quadrotors. The resulting differential equation is normalized so that it is
independent of the mass of the vehicle.

2 Description

The states of the system

x =
[
x y z ẋ ẏ ż φ θ ψ φ̇ θ̇ ψ̇

]> ∈ R12 (1)

is comprised of translational positions in [m] with respect to a global origin, their
derivatives (linear velocities in x, y, z directions) in [m/s], the Eulerian angles,
roll φ, pitch θ, and yaw ψ in [rad], and their respective derivatives (angular

velocities) in [rad/s]. The control input is the vector u = [u1 u2 u3 u4]
> ∈ R4

consisting respectively of the total thrust in [m/s2] normalized with respect to
the mass of the vehicle and the second-order derivatives φ̈, θ̈, ψ̈ of the Eulerian
angles in [rad/s2]. The system is under-actuated since there are six degrees of
freedom but only four actuators.

The normalized equations of motion that describe the dynamics are

ẍ = −u1 cos(φ) sin(θ), (2a)

ÿ = u1 sin(φ), (2b)

z̈ = −g + u1 cos(φ) cos(θ), (2c)

φ̈ = u2, (2d)

θ̈ = u3, (2e)

ψ̈ = u4, (2f)

with g ≈ 9.81 being the acceleration of gravity.
The viability of the system could either be established globally for the non-

linear case using the above dynamics, or locally around the hover condition,
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for example, by linearizing these differential equations. The constraints on the
state and input vectors will be slightly different for each case:

1. Nonlinear case: The angles φ and θ and the speed profile V := ‖[ẋ ẏ ż]‖
are bounded as φ, θ ∈ [−π4 ,

π
4 ] and V ≤ 5. The angular velocities are

constrained as φ̇, θ̇, ψ̇ ∈ [−3, 3]. We further assume that the vehicle must
safely fly within the range of 1 to 7 m above the ground in z direction in an
environment that stretches 6 m in each direction in the x-y plane. These
constraints form the flight envelope K. The input vector u is constrained
by the hyper-rectangle U := [0, g + 2.38]× [−0.5, 0.5]3.

2. Linear case (hover mode): By linearizing the equations of motion (2)
about the hover condition φ = 0, θ = 0, and u1 = g, we obtain the linear
time-invariant (LTI) dynamics ˙̄x = Ax̄ + Bū where the bar notation is
used for the deviations from the equilibrium. The system matrices A and
B can be found in the Appendix. The flight envelope K is essentially the
same as in the nonlinear case. The new input vector ū is constrained by
the hyper-rectangle U := [−g, 2.38]× [−0.5, 0.5]3.

Note that due to the agility of the quadrotor, it can travel a significant dis-
tance in a short time interval. The safety problem can be tackled in continuous-
time or sampled-data1 frameworks (see Section 4 for arguments about the
discrete-time case). In describing these two frameworks, we ignore the bar
notation and denote the state and the control input respectively as x and u for
both linear and nonlinear cases.

1. Continuous-time framework: For a given time horizon τ in [s] (pos-
sibly infinite) we wish to compute the set of initial states x0 := x(0) for
which there exists a measurable control signal u(·) satisfying u(t) ∈ U al-
most everywhere such that the resulting trajectory xux0

(·) satisfies xux0
(t) ∈

K over at least T := [0, τ ]. This set is the continuous-time viability kernel

ViabT(K) :=
{
x0 ∈ K | ∃u(·) ∈ UT, ∀t ∈ T, xux0

(t) ∈ K
}

(3)

with
UT := {u : T→ R4 measurable, u(t) ∈ U a.e. t ∈ T}. (4)

A Lebesgue measurable control may not be implementable in practice.

2. Sampled-data framework: If the state of the quadrotor can only be
measured at fixed sampling intervals δ ∈ R>0, a sampled-data framework
represents the problem setup more adequately. In that case, let Nδ :=
dτ/δe denote the number of sampling intervals in T and consider the case
where the input is applied at the beginning of each sampling interval;
during the interval the input is kept constant until the next sampling

1In a sampled-data system, the dynamics are allowed to evolved continuously in time, but
the control is restricted to the class of piecewise constant functions; e.g. an analog system
controlled by a digital platform.
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instant (zero-order hold). We now wish to compute the set of initial
states x0 for which there exists a piecewise constant control signal u(·)
satisfying u(t) ∈ U such that xux0

(t) ∈ K over at least T := [0, τ ]. This is
the sampled-data viability kernel

Viabsd
T (K) :=

{
x0 ∈ K | ∃u(·) ∈ U pwc

T , ∀t ∈ T, xux0
(t) ∈ K

}
, (5)

where

U pwc
T := {u : T→ R4 piecewise const.,

u(tk) ∈ U ∀k ∈ {0, . . . , Nδ}, u(t) = u(tk) ∀t ∈ [tk, tk+1)}. (6)

3 Key Observations

For safety, an approximation of the viability kernel must be conservative—i.e.
in form of an under-approximation; an over-approximation includes states for
which one or more of the constraints would inevitably be violated.

The presented benchmark problem can be primarily used to assess the per-
formance of any algorithm that attempts to automatically generate an under-
approximation of the viability kernel. Additionally, the algorithm may synthe-
size the associated safety-preserving control laws (inputs that enforce the desired
constraint satisfaction) and test them in protecting the flight envelope.

Several properties can serve as quality indicators for approximations gener-
ated by the algorithm:

1. Conservatism: Check if every state that belongs to the approximation,
also belongs to the true (unknown) viability kernel. In other words, for
every state in the approximate set, does there exists an admissible control
signal u(·) that keeps the system contained in K over at least T?

2. Accuracy: Either a quantitative measure (via some metric of choice, e.g.
volume, Hausdorff distance) or a qualitative measure (by also computing
an over-approximation to compare against the under-approximation) of
accuracy can be provided. When there is a tradeoff between accuracy
and computational complexity, it can be explicitly stated in terms of the
inputs to the algorithm.

3. Convergence: The rate of convergence of the under-approximation to the
true kernel can be a useful indication of the performance of the algorithm.
Whether the algorithm can asymptotically recover the true kernel must
be discussed. If not, to what subset does the algorithm converge?

4. Termination: Even when the horizon τ is finite, the algorithm should be
able to terminate once the under-approximate set is controlled-invariant
(meaning there exists an admissible control that make the set positively
invariant under the closed-loop dynamics). Alternatively, the algorithm
should be able to test and verify that a generated set is controlled-invariant.
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4 Outlook and Possible Variants

Robustness: The unmodeled dynamics that may arise due to the ground effect,
air drag, the turbulence due to the flow of air within the propellers, and other
complicated or otherwise significant nonlinearities are neglected here. However,
these uncertainties can be treated as an additive, bounded but known distur-
bance to the system if necessary. Exogenous perturbations can also be taken
into account by augmenting the additive disturbance input (for example, the
effect of wind can be treated as perturbations to ẋ, ẏ, and ż).

Robustifying the analysis against an unknown, Lebesgue measurable addi-
tive disturbance that draws values from a bounded set V results in a zero-sum
differential game in the continuous-time case. The winning domain of the control
input, i.e. the set of initial states for which there exists an admissible safety-
preserving control despite the worst-case actions of the disturbance, is known
as the discriminating kernel of K:

DiscT(K,U ,V) :=
{
x0 ∈ K | ∀v(·) ∈ V na

T , ∃u(·) ∈ U fb
T , ∀t ∈ T, xu,vx0

(t) ∈ K
}
(7)

with U fb
T denoting the class of possibly time-dependent state feedback control

signals and V na
T denoting the class of non-anticipative disturbance signals taking

values pointwise in V. For more discussions surrounding this formulation as well
as the rationale behind the order of quantifiers in (8) please refer to [6].

The sampled-data case is simpler since the inputs need not react to one
another instantaneously. In that case, the kernel to be approximated is

DiscsdT (K,U ,V) :=
{
x0 ∈ K | ∃u(·) ∈ U pwc

T , ∀v(·) ∈ VT, ∀t ∈ T, xu,vx0
(t) ∈ K

}
,

(8)
where VT denotes the class of measurable signals from T to V. (cf. [7])

Simplified dynamics: It is possible to simplify the problem and deal with
a lower dimensional model by restricting the movement of the quadrotor and
suppressing the degrees of freedom. For example, limiting the vehicle to fly only
along the z-axis without turning or twisting yields a double-integrator dynamics.

Discrete time: Discretizing the dynamics and performing the analysis in
discrete time may not be ideal due to the agility and safety-critical nature of
the quadrotor. For instance, with a sampling frequency of 10 Hz the vehicle
could travel a distance of half a meter in between each two consecutive time
instants. That said, with a sufficiently high sampling frequency one can attempt
to approximate the discrete-time viability kernel and use that approximation for
safety analysis (and synthesis).
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A Appendix

Linearizing the equations of motion (2) about the hover condition yields

A =



0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −g 0 0 0 0
0 0 0 0 0 0 g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



, B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



.

As mentioned in Section 3, the capabilities of an algorithm can be tested
by computing the viability kernel (or the discriminating kernel in the presence
of a disturbance input) and by possibly synthesizing the corresponding safety-
preserving control laws. We refrain from enlisting all existing algorithms, but
only mention in passing that for the continuous-time LTI case above, a per-
missive, scalable, robust safety-preserving switched control strategy has been
proposed in [6]. Instead, as an example, we will discuss the performance of a
new algorithm [8] for approximation of the sampled-data viability kernel. Fig-
ure 1 shows selected 2D projections of a polytopic approximation of Viabsd

[0,2](K)
(with sampling interval δ = 0.1). The algorithm, which strikes a direct tradeoff
between accuracy and computational complexity, requires about 3 seconds (on
a common laptop computer, in Matlab, without optimizing the code for speed)
to generate a new vertex of the polytopic under-approximation and 5 seconds
to generate a facet of the over-approximation.

The under-approximation is tight in the sense that each vertex of the poly-
tope belongs to the boundary of the true viability kernel with some a priori
known accuracy. The over-approximation is also tight in that each facet of
the polytope touches the boundary of the true kernel in at least one point.
The two approximating sets sandwich the boundary of the viability kernel to
within a certain precision in at least half of the number of vertices of the under-
approximation, providing an added layer of confidence about the precise location
of the kernel. The tightness of the sets are unfortunately unobservable in the
projection plots shown in the figure.
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ẏ

−5 0 5
−5

0

5

φ̇

θ̇

−2 0 2

−2

−1

0

1

Figure 1: Selected 2D projections of a polytopic approximation [8] of the
sampled-data viability kernel for the linearized version of the benchmark ex-
ample. Under-approximations for N = 24, 48, 96, 500, 1000, 2000, 3000 vertices
are shown with N = 24 in the lightest shade of blue (innermost set), and
N = 3000 in the darkest shade of blue. An over-approximation (outermost set)
with 1500 facets is also shown in lavender. The approximations are tight and
touch each other to within a constant accuracy in N/2 points—a fact that is
unrecognizable due to projections.
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