
Safety Preserving Control Synthesis

for Sampled Data Systems

Ian M. Mitchell∗

Department of Computer Science, University of British Columbia

Shahab Kaynama, Mo Chen

Department of Electrical Engineering & Computer Science, University of California,

Berkeley

Meeko Oishi

Department of Electrical & Computer Engineering, University of New Mexico

Abstract

In sampled data systems the controller receives periodically sampled state
feedback about the evolution of a continuous time plant, and must choose
a constant control signal to apply between these updates; however, unlike
purely discrete time models the evolution of the plant between updates is
important. In this paper we describe an abstract algorithm for approximat-
ing the discriminating kernel (also known as the maximal robust control in-
variant set) for a sampled data system with continuous state space, and then
use this operator to construct a switched, set-valued feedback control policy
which ensures safety. We show that the approximation is conservative for
sampled data systems. We then demonstrate that the key operations—the
tensor products of two sets, invariance kernels, and a pair of projections—
can be implemented in two formulations: One based on the Hamilton-Jacobi
partial differential equation which can handle nonlinear dynamics but which

∗Corresponding author. Mailing address: 2366 Main Mall, Vancouver, BC, Canada,
V6T 1Z4. Phone: 604-822-2317. Fax: 604-822-5485.

Email addresses: mitchell@cs.ubc.ca (Ian M. Mitchell),
kaynama@eecs.berkeley.edu (Shahab Kaynama), mochen72@eecs.berkeley.edu (Mo
Chen), moishi@ece.unm.edu (Meeko Oishi)

URL: http://www.cs.ubc.ca/~mitchell (Ian M. Mitchell)

Preprint submitted to Nonlinear Analysis: Hybrid Systems April 22, 2013

scales poorly with state space dimension, and one based on ellipsoids which
scales well with state space dimension but which is restricted to linear dy-
namics. Each version of the algorithm is demonstrated numerically on a
simple example.

Keywords: nonlinear systems, sampled data, control synthesis, continuous
reachability, Hamilton-Jacobi equations, viability, ellipsoids

1. Introduction1

A wide variety of reachability and viability algorithms for continuous and2

hybrid systems have been proposed in the literature over the last decade,3

but they have for the most part been driven by safety verification problems;4

for example, given initial and terminal sets in the state space, do there exist5

trajectories leading from the former to the latter? For the purposes of system6

design and debugging, this boolean decision problem is often augmented by7

a request for counterexamples if the system is unsafe (for example, see [1]).8

When the system has inputs, however, there is a much less well-studied chal-9

lenge: Given a particular state, how can those inputs be chosen to maintain10

safety?11

Here we study that problem in the context of sampled data systems. A12

common design pattern in cyber-physical systems consists of a digital con-13

troller receiving periodically sampled state feedback about the continuous14

time evolution of a continuous (or hybrid) state plant, and then generat-15

ing a control signal (typically constant) to use until the next sample time.16

Feedback controllers for such systems are often designed using discrete time17

approaches, but that treatment ignores the states through which the plant18

evolves between sample times. Sampled data control takes the continuous19

time trajectories of the plant into account.20

In this paper we propose an algorithm for synthesizing a permissive but21

safe control policy (also known as a feedback control law) for continuous22

state sampled data systems. It is safe in the sense that if the system is in23

a state which is not identified as inevitably unsafe and control signals are24

chosen from this policy at the sample times, then the system will not leave25

the constraint set over the safety horizon. It is permissive in the sense that it26

is set-valued when possible, so that other criteria can be taken into account27

in choosing the final control signal while still maintaining safety; for example,28

2

minimum control effort in an energy constrained situation, or proximity to29

the human operator’s input in a collaborative control scenario.30

Viability theory [2] defines a number of constructs for exploring the safe31

subset of a constraint set. Perhaps the most familiar is the invariance kernel:32

the set of states from which all trajectories remain inside the constraint33

no matter what disturbance input signal is applied. The viability kernel is34

dual to the invariance kernel and is also known as the maximal controlled35

invariant set: the set of states from which at least one control input signal36

gives rise to a trajectory which remains inside the constraint set. Finally, the37

discriminating kernel combines both concepts and could be thought of as a38

robust version of the viability kernel or maximal controlled invariant set: the39

set of states from which a least one control signal gives rise to a trajectory40

which remains inside the constraint set despite the actions of disturbance41

inputs.42

We formulate our algorithm in terms of finite horizon versions of the43

discriminating and invariance kernels, although it could just as easily be for-44

mulated in terms of backward reach tubes. In fact, this algorithm is a gen-45

eralization of the algorithm presented in [3], which was itself an extension of46

the algorithm proposed in [4]; both of those algorithms were formulated using47

backward reachability. Relative to those papers, the key new contributions48

of this paper are:49

• Reformulation of the algorithm in terms of discriminating and invari-50

ance kernels.51

• An abstract version of the algorithm which does not depend on the52

Hamilton-Jacobi (HJ) partial differential equation (PDE).53

• An instantiation of the abstract algorithm’s operators using ellipsoidal54

reachability constructs; although this version is restricted to systems55

with linear dynamics, it scales much better with state space dimension56

than the HJ PDE version.57

We also replicate in a viability theory context several contributions from [3]:58

• Demonstration that the computed sampled data discriminating ker-59

nel is a conservative estimate of the true sampled data discriminating60

kernel.61

• Partition of the state space into regions where the full control authority62

can be used safely or where only a subset may be used while maintaining63

safety.64

• An instantiation of the abstract algorithm’s operators using HJ PDEs65

which can be applied to systems with nonlinear dynamics.66

3

The remainder of the paper is organized as follows. Section 2 formalizes67

the problem, while section 3 discusses related work. Section 4 outlines the68

abstract sampled data invariance kernel algorithm, proves its conservative-69

ness, and shows how it can be used to synthesize a permissive but safe control70

policy. Sections 5 and 6 respectively provide a Hamilton-Jacobi formulation71

and an ellipsoidal formulation of the abstract algorithm, discuss practical72

implementation details and provide simple examples.73

This paper is an extended version of [3], which was presented at the 4th74

IFAC Conference on the Analysis and Design of Hybrid Systems (Eindhoven,75

the Netherlands, June 6–8, 2012).76

2. Problem Definition77

Consider a system whose evolution is modelled by the ordinary differential78

equation (ODE)79

ẋ = f(x, u, v) (1)

with initial condition x(0) = x0, where x ∈ Ω is the state, Ω ⊂ Rdx (or some80

similar vector space of dimension dx) is the state space, u ∈ U is the control81

input, v ∈ V is the disturbance input, U ⊂ Rdu and V ⊂ Rdv are assumed to82

be compact, and the dynamics f : Ω×U×V → Ω are assumed to be Lipschitz83

continuous in x and continuous in u and v. Additional assumptions may be84

necessary for particular versions of the abstract algorithm; for example, f85

must be linear and U and V must be ellipsoids for the ellipsoidal formulation86

in section 6. Input u is used to keep the system within the imposed state87

constraints. Input v seeks to drive the system outside the state constraints,88

and can be used to model the effects of potentially adversarial agents on89

system evolution, to treat uncertainty in the dynamics in a worst case fashion,90

to improve the robustness of the results, or it can be omitted for deterministic91

scenarios.92

We will assume that for feedback control purposes the state is sampled at93

times tk , kδ for some fixed δ > 0 and integer k, and that the control signal94

is constant between sample times. As a consequence, the actual dynamics95

are of the form96

ẋ(t) = f(x(t), upw(t), v(t)) (2)

where the piecewise constant input signal upw(·) is chosen according to97

upw(t) = ufb(x(tk)) for tk ≤ t < tk+1 (3)

4



K0 K1
K2 KN-1 KN

Kfree

Figure 1: The subdivision of the state space. The constraint set K0 and the state space Ω
are specified in the problem definition. The finite horizon safe sets Kk for horizons k > 0,
the free control set Kfree and the mandatory control set Kctrl = K0 \ Kfree (not shown
explicitly, but it is the union of the red and all of the pink sets) are determined by the
algorithms proposed in this paper.

and ufb : Ω→ U is a feedback control policy. It was shown in [5] that there98

exists a control policy which renders the system safe if and only if there99

exists a feedback control policy which renders the system safe, so we restrict100

ourselves to feedback control policies without loss of generality. Input signal101

v(·) is not constrained to be piecewise constant, but is merely assumed to be102

measurable. Note that because the feedback control policy is time sampled,103

the dynamics (2) cannot be written in the form ẋ = f(x, v).104

The state constraint K0 ⊂ Ω that we seek to maintain for safety is as-105

sumed to be the complement of an open set [6]. We divide the state space106

Ω into nested subsets as shown in figure 1. The outermost is the safety con-107

straint K0. The finite horizon safe sets Kk contain states which give rise to108

trajectories which satisfy the safety constraint for at least time kδ provided109

the correct ufb is chosen. Finally, given a fixed horizon k = N of interest,110

we determine a free control subset Kfree within which any ufb can be chosen111

at the next sampling instant. The complement of this free control set with112

respect to the safety constraint is the mandatory control set Kctrl , K0\Kfree113

within which we will constrain ufb in order to ensure safety. We will deter-114

mine the sets Kk for 1 ≤ k ≤ N , Kctrl and Kfree through a series of finite115

horizon invariance kernel calculations. In some cases it may be possible to116

achieve N = ∞ in a finite number of steps, and thereby ensure safety over117

5

an infinite horizon.118

3. Related Work119

Sampled data systems have a long history in control engineering, and in120

recent decades that research has broadened to include nonlinear as well as lin-121

ear systems; however, the focus is typically on traditional control objectives122

such as stability (for example, see [7, 8] and the citations within).123

In the context of verification, research on “sampled data systems” has124

focused on hybrid systems in which some subset of the mode switches can125

only occur at sampling times. In [9], a “sampled data hybrid automata”126

formalism was introduced and used to extend the CheckMate hybrid system127

verification tool to study a version of such a system with deterministic contin-128

uous dynamics. In [10] the authors study a “piecewise affine” version of such129

a system; in other words, the state space is partitioned into polyhedra which130

specify the modes, in each of which the continuous dynamics are affine with131

a control input. An algebraic condition is given which ensures the existence132

of a control input signal which drives the system from an initial set of states133

to a specific final state; however, the input is assumed to be piecewise con-134

tinuous (not piecewise constant) and it is only the mode switching which is135

sampled. In [11], the authors consider hybrid systems with nondeterministic136

continuous dynamics and a controller which can enable and/or force mode137

switches at sampling times, but assume that trajectories of those dynamics138

are explicitly available. They then derive necessary and sufficient conditions139

for a predicate to be control invariant and show that there is always a supre-140

mal control invariant subpredicate for any predicate. Such a subpredicate141

corresponds conceptually to a (hybrid) discriminating kernel of the set de-142

fined by the predicate, although for their systems the control input can only143

influence the mode switching rules, not the continuous evolution. In [12] the144

authors consider a hybrid system whose continuous dynamics admit only a145

piecewise constant control input signal; however, they must restrict them-146

selves to affine dynamics within each mode in order to determine an explicit147

representation of trajectories in terms of linear inequalities and thereby con-148

struct their “timed relational abstraction,” which can then be composed with149

a controller and analyzed with discrete time verification tools. In contrast150

to these earlier works on verification of sampled data systems, our abstract151

algorithm handles nonlinear continuous dynamics with a piecewise constant152

control input signal and robustness provided by allowing for a measurable but153

6

bounded disturbance input signal. We do not assume availability of explicit154

solutions for the resulting trajectories. Our algorithm is constructive in that155

it yields a set-valued control law, although it is potentially conservative. At156

present our algorithm is restricted to systems with purely continuous state.157

Our algorithm is closely related to previous reachability and viability158

algorithms. We broadly categorize reachability algorithms into Lagrangian159

(those which follow trajectories of the system) and Eulerian (those which160

operate on a fixed grid); see [13] for a more extensive discussion of types161

of reachability algorithms. Most algorithms for systems with nonlinear dy-162

namics and adversarial inputs are currently Eulerian; for example, there are163

schemes based on viability theory [6, 2], static HJ PDEs [14, 15], or time-164

dependent HJ PDEs [5, 16, 17]. In all three cases it is possible to synthesize165

control laws that are optimally permissive: constraints are only placed upon166

the choice of control along the boundary of the safe or viable set. From167

a practical perspective, however, such policies are impossible to implement168

because they require information about the state at all times and the ability169

to change the control input signal at any time. In contrast, here we assume170

that state feedback and control signal modification only occur at the periodic171

sample times, and the control signal is held constant between sample times.172

In [4] a time-dependent HJ PDE formulation of sampled data reachability173

is presented for hybrid automata using the tool [18]. In that case, the HJ174

PDE is used to find an implicit surface representation of the sampled data175

backward reach tube, where the piecewise continuous control input signal176

attempts to drive the trajectory to a terminal set without entering an avoid177

set, despite the actions of a measurable disturbance input signal. In [3]178

we modify that algorithm to study the case where the control input signal179

seeks to avoid the target set, and also examine the relationship between180

the resulting HJ PDE solutions and the desired reachability operators. As181

described above, in this paper we create an abstract version of that algorithm182

formulated in terms of discriminating kernels instead of reachability, and183

provide an ellipsoidal version of the abstract algorithm in addition to the HJ184

PDE version.185

For systems with linear or affine continuous dynamics, there are a number186

of Lagrangian algorithms available for reachability; for example, see [19, 20]187

and the citations within. While these techniques have not traditionally been188

used for control synthesis, they are amenable to the abstract algorithm de-189

scribed below. We use the tool [20] to implement the ellipsoidal version of190

the algorithm in section 6. The techniques from [19] have been adapted to191

7

discrete time viability kernels in [21], but using them for the algorithm de-192

scribed below will require further modification to handle invariance kernels193

and continuous time.194

An alternative approach to finding safe control policies is through sample195

based planning schemes, such as the rapidly-exploring random tree (RRT)196

and its descendants (see [22] and the citations within). Adaptations of RRTs197

to verification/falsification are proposed in [23, 24], but to synthesize per-198

missive yet safe control policies requires a slightly different but still quite199

feasible modification of traditional RRTs (to collect sets of safe paths, rather200

than just the optimal or first path found). Like many sample based schemes201

RRTs appear to scale better in practice to high dimensional systems than do202

schemes based on grids, and unlike most Lagrangian approaches they do a203

good job of covering the state space given sufficient samples. On the other204

hand, the output of RRTs is not as easily or accurately interpolated into205

continuous spaces as are grid-based results, and there is no simple method206

of introducing worst-case disturbance inputs to make the results robust to207

uncertainty.208

4. Abstract Algorithm209

In this section we define the finite horizon sampled data discriminating210

kernel for dynamics (2)–(3), and then show how it can be computed through a211

sequence of finite horizon continuous time invariance kernels. This construct212

plus one additional invariance kernel calculation is sufficient to determine the213

sets Kk, Kctrl and Kfree. Given these sets, it is possible to define the permis-214

sive but safe control policy using a nondeterministic hybrid automaton. In215

subsequent sections we demonstrate two practical methods of approximating216

the invariance kernels and resulting control hybrid automaton.217

4.1. Preliminary Definitions218

The algorithms for constructing the sampled data discriminating kernel219

and a corresponding set-valued control policy depend upon a number of set-220

valued maps which we define here. The first map is simply the sampled data221

discriminating kernel that we seek:222

Discsd([0, T],S) , {x0 ∈ S | ∃upw(·),∀v(·),∀t ∈ [0, T], x(t) ∈ S}, (4)

where x(·) solves (2) with initial condition x(0) = x0. The key difference223

between (4) and continuous time discriminating kernels is that the input224

signal in (4) must be piecewise constant over each sampling interval.225

8

To construct an approximation to (4) we will sometimes work in an aug-226

mented state space227

x̃ ,

[
x
u

]
∈ Ω̃ , Ω× Rdu

with dynamics228

d

dt
x̃ =

d

dt

[
x
u

]
=

[
f(x, u, v)

0

]
, f̃(x̃, v). (5)

To move from the augmented state space back to the original state and229

control spaces, we need a projection operator from Ω̃ back into Ω:230

Projx(X̃) ,

{
x ∈ Ω

∣∣∣∣ ∃u, [xu
]
∈ X̃

}
for X̃ ⊆ Ω̃, (6)

and a projection operator from Ω̃ into U for a particular value of x:231

Proju(X̃ , x) ,

{
u ∈ U

∣∣∣∣ [xu
]
∈ X̃

}
for X̃ ⊆ Ω̃ and x ∈ Ω.

From these definitions it is straightforward to show232

x ∈ Projx(X̃) =⇒ Proju(X̃ , x) 6= ∅ (7)

Remark. It may appear to be dangerous from a complexity perspective to233

advocate augmenting the state space with the control input dimensions when234

viability algorithms have a reputation for poor scaling with dimension. We235

do so in this section because the resulting algorithm is conceptually simple.236

Section 5 will implement this algorithm with a formulation that scales poorly237

with dimension, but we will show that the lack of motion in the u coordinates238

allow us to use very coarse sampling and independent calculations in those239

dimensions. Section 6 will implement the algorithm in a formulation that240

scales polynomially with dimension, so the added dimensions are not as much241

of a concern.242

Although algorithms exist to approximate both continuous and discrete243

time discriminating kernels directly, in this paper we will construct an ap-244

proximation of the sampled data discriminating kernel (4) using a sequence245

of invariance kernels. In some cases these invariance kernels will be computed246

over the augmented dynamics (5) with only input v treated as a disturbance,247

9

while in other cases they will be computed over the original dynamics (1)248

with both inputs u and v treated as disturbances. For that reason, we define249

the invariance kernel in terms of a set of dummy variables: system dynamics250

ẏ = g(y, w) with initial condition y(0) = y0, solution y(·), and disturbance251

input w.252

Inv([0, T],S, w, g) , {y0 ∈ S | ∀w(·),∀t ∈ [0, T], y(t) ∈ S}, (8)

Depending on the situation, dummy state vector y may be either x or x̃,253

dummy dynamics g may be either f or f̃ , and dummy disturbance vector w254

may be either v or the concatenated vector
[
u v

]T
. Note that the symbol255

“w” is included as a parameter of the invariance kernel simply to indicate256

over which inputs the kernel is invariant; the corresponding input signal w(·)257

is determined by the universal quantifier inside the definition and is not itself258

an argument to the invariance kernel.259

4.2. Approximating the Sampled Data Discriminating Kernel through Iter-260

ated Invariance Kernels261

We start by examining a single sample period. Let the single step sampled262

data discriminating kernel be defined as263

Disc1(S) , Discsd([0, δ],S). (9)

This discriminating kernel can be determined through an invariance kernel264

in the augmented state space. For notational convenience we define265

Inv1(S) , Inv([0, δ],S × U , v, f̃) (10)

Lemma 1. The single step sampled data discriminating kernel is the projec-266

tion of a δ-horizon invariance kernel in the augmented state space267

Disc1(S) = Projx(Inv1(S)) (11)

Proof. We seek to show268

x0 ∈ Disc1(S)⇐⇒ x0 ∈ Projx(Inv1(S)).

To show the rightward implication, assume that x0 ∈ Disc1(S). By (4) there269

exists a upw(·) such that for all v(·) and t ∈ [0, δ], x(t) ∈ S where x(·)270

solves (2) with initial condition x(0) = x0. But for t ∈ [0, δ], u0 , upw(t) is a271

10

constant by (3), so the augmented trajectory x̃(·) =
[
x(·) u0

]T
satisfies (5).272

Since u0 ∈ U by (3) and for all v(·), x(·) ∈ S over the same time interval,273

it must be that for all v(·), x̃(·) ∈ S × U . By (8) we have that
[
x0 u0

]T ∈274

Inv1(S), and hence by (6) that x0 ∈ Projx(Inv1(S)).275

To show the leftward implication, assume that x0 ∈ Projx(Inv1(S)). By (6)276

there exists u0 ∈ U such that x̃0 ,
[
x0 u0

]T ∈ Inv1(S). Let x̃(·) solve (5)277

with initial condition x̃(0) = x̃0 for t ∈ [0, δ], and let x(·) be the corresponding278

state space component of x̃(·), which by (5) solves (2) with constant input279

u0. By (8), x̃(t) ∈ S ×U for all v(·) and t ∈ [0, δ]; consequently, x(t) ∈ S for280

all v(·) and t ∈ [0, δ]. Since upw(·) = u0 is a feasible piecewise constant input281

for x(·) over time interval [0, δ], by (4) x0 ∈ Disc1(S).282

Approximation of the sampled data discriminating kernel over longer hori-283

zons is then performed recursively284

Disck+1(S) , Disc1(Disck(S)) (12)

4.3. Conservatism of the Approximation285

Proposition 2. The true sampled data discriminating kernel over multiple286

sample periods is a superset of the recursive approximation287

Disck(S) ⊆ Discsd([0, kδ],S).

It may be a strict superset for k > 1.288

Proof. We start by using induction to show containment:289

x0 ∈ Disck(S) =⇒ x0 ∈ Discsd([0, kδ],S).

Assume that x0 ∈ Disck(S). The implication holds true in the base case290

k = 1 by definition (9). For k > 1, x0 ∈ Disck(S) implies by (12), (9) and (4)291

that for all v(·) and t ∈ [0, δ] there exists uapw(·) and xa(·) solving (2) such292

that xa(0) = x0 and xa(t) ∈ Disck−1(S) ⊆ S; in particular, x1 , xa(δ) ∈293

Disck−1(S). Make the inductive hypothesis that x1 ∈ Disck−1(S) implies294

x1 ∈ Discsd([0, (k − 1)δ],S). If x1 ∈ Discsd([0, (k − 1)δ],S) then for the time295

independent dynamics (1) we can shift time to show by (4) that for all v(·)296

and t ∈ [δ, kδ] there exists ubpw(·) and xb(·) solving (2) such that xb(δ) = x1297

and xb(t) ∈ S. Now define298

x(t) =

{
xa(t) 0 ≤ t < δ

xb(t) δ ≤ t ≤ kδ
and upw(t) =

{
uapw(t) 0 ≤ t < δ

ubpw(t) δ ≤ t < kδ.

11

Sampled Data Viability Kernel δ = 2.0, N = 3

x
1

x 2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

0

1

2

3

4

5

Figure 2: A demonstration that Disck(S) may exclude states which can remain inside S
over horizon kδ. In this case S is the Y-shaped shaded region. The states in Disck(S)
for k = 0, 1, 2, 3 are shown darkest to lightest (darker colored sets also contain all lighter
colored states). The solid blue line shows a trajectory starting within Disc2(S) which
nonetheless stays within S for all time. The input for this trajectory is sampled at the
points marked by small circles. Note that the states within the lightest shaded region at
the bottom are actually in Disc∞(S), although in this case the computation is performed
only up to k = 3.

By the arguments above, x(t) ∈ S for all v(·) and t ∈ [0, kδ], and upw(·) is a299

valid piecewise constant input signal, so x0 = x(0) ∈ Discsd([0, kδ],S).300

We demonstrate that strict conservatism is possible through an example.301

Let f(x, u, v) =
[
u −1

]T
in (2) with U = [−1,+1] (there is no input v). Let302

S be the Y-shaped shaded region shown in figure 2 (the arms and leg of the303

Y are assumed to extend outward to infinity). Notice that the upper arms304

of the Y are chosen to have constant width and a 45◦ slope. The vertical leg305

of S is viable for all δ > 0, but for δ = 2 there are regions of the upper arms306

which give rise to sampled data trajectories which inevitably leave S; for307

example, a trajectory starting at
[
+1 +1

]T
must choose u ≈ −1 to avoid308

leaving the lower edge of the right arm of S almost immediately, but such a309

choice results in leaving the left edge of the vertical leg of S at some t < δ.310

On the other hand, there are states along the upper arms which give rise311

to trajectories which remain viable for all time; for example, the trajectory312

12

Figure 3: A sketch of the actual Discsd([0, kδ],S) for k = 0, 1, 2, 3 and some sample trajec-
tories for the example in figure 2. The lightest shaded regions (including the periodic gaps
between the darker regions on the arms of the Y) are actually within Discsd([0,∞],S). Two
trajectories just at the boundary of safety (both blue, one solid and one dashed) are shown
beginning in the right arm of the Y, where samples occur at the circles. Two trajectories
just at the boundary of unsafety (both red, one solid and one dashed) are shown beginning
in the left arm of the Y, where samples occur at the boxes and trajectories exit the Y just
before the final (lowest) sample time. Note that perturbing the unsafe trajectories either
up or down will lead to an earlier failure time.

shown in figure 2 starts at
[
+4 +4

]T
and uses input signal313

upw(t) =

{
−1 0 ≤ t < 4;

0 t ≥ 4.

Despite the existence of these viable patches in the arms of the Y, the set314

Disck(S) for k > 2 completely excludes the arms up to some k-dependent level315

as shown in figure 2. A sketch of the actual sampled data discriminating316

kernel Discsd([0, kδ],S) (which includes the viable patches in the arms) is317

shown in figure 3.318

Note that this proof and counter-example are different from the ones319

in [25]: this proof uses the viability formulation and this counter-example’s320

control set is convex.321

13

x 2 Kfree

ufb(x) 2 U

x 2 Kctrl

ufb(x) 2 Uctrl(x)

Figure 4: The general form of the switched sampled data control policy. Arrows show
transitions which are possible under the policy.

4.4. Subdivision of the Constraint Set322

Using the operators defined above, we determine the subdivision of the323

constraint set K0 shown in figure 1. The finite horizon safe sets Kk are324

(conservatively) approximated using the sampled data discriminating kernel325

Kk = Disck(K0). (13)

The final safe set KN is partitioned using one last invariant set calculation,326

this time under the original dynamics (1) but treating both the control u and327

disturbance v in a worst-case fashion328

Kfree = Inv([0, δ],KN , (u, v), f), (14)

In other words, Kfree is the set of states which will remain within KN for at329

least time δ no matter what inputs u(·) and v(·) are chosen. Note that in330

the calculation of Kfree the control input signal u(·) is drawn from the set of331

measurable functions, so Kfree is also determined in a conservative fashion.332

4.5. Control Policy Synthesis333

Our permissive but safe control policy takes the form of a hybrid automa-334

ton as shown in figure 4. The policy guarantees that states which start in335

Kfree do not leave K0 during the time interval [0, Nδ]. We do not synthesize336

a policy for x /∈ K0, since the system has already failed the safety criterion337

in such states.338

In order to be permissive, the policy is often set-valued. In subsequent339

sections we will examine reasons why one input might be favored over an-340

other based on additional information available from specific computational341

14

algorithms—for example, an approximation of how deep within a set the fu-342

ture trajectory will stay—but at this stage we treat equally all control signals343

for which we can guarantee safety.344

For x ∈ Kfree, there are no constraints on the input ufb(x) ∈ U . For345

x ∈ Kctrl = K0 \ Kfree, define the safety horizon of x as346

n(x) ,

{
N, if x ∈ KN \ Kfree,

k, if x ∈ Kk \ Kk+1.
(15)

The control policy is given by347

Uctrl(x) , Proju(Inv1(Kn(x)−1), x); (16)

in other words, Uctrl(x) is the set of constant control values which keeps348

Kn(x)−1 invariant over a single sample period and hence allows x to be part349

of Kn(x).350

Lemma 3. For all x ∈ Kctrl, if n(x) > 0 then Uctrl(x) 6= ∅.351

Proof. Let x ∈ Kctrl such that n(x) > 0. By (15), x ∈ Kn(x), which352

by (13), (12) and (11) implies that x ∈ Projx(Inv1(Kn(x)−1)), which in turn353

implies by (7) that Proju(Inv1(Kn(x)−1), x) = Uctrl(x) 6= ∅.354

4.6. Safety of the Policy355

Theorem 4. Let trajectory x(·) solve (2)–(3) with initial condition x(0) = x0356

and sampled feedback control policy357

ufb(x) ∈

{
Uctrl(x), for x ∈ Kctrl;

U , for x ∈ Kfree.
(17)

If x0 ∈ Kfree, then x(t) ∈ K0 for all t ∈ [0, (N +1)δ], where Nδ is the horizon358

used in the computation (14) of Kfree. If x0 ∈ Kctrl, then x(t) ∈ K0 for all359

t ∈ [0, n(x0)δ].360

Proof. Consider first the case x0 ∈ Kctrl. By (13) x0 ∈ Kn(x0), which implies361

by (12) and (9) that x0 ∈ Projx(Inv1(Kn(x0)−1)) and by (16) that for all362

u0 ∈ Uctrl(x0), v(·) and t ∈ [0, δ], x(t) ∈ Kn(x0)−1 ⊆ K0, where x(·) solves (2)363

with fixed input u0 and initial conditions x(0) = x0. Since x(δ) ∈ Kn(x0)−1,364

use the same argument to construct a new constant input uj ∈ Uctrl(x(jδ))365

15

and show that x(t) ∈ Kn(x0)−j ⊆ K0 for all v(·) and t ∈ [jδ, (j + 1)δ] for all366

j = 1, 2, 3 . . . , n(x0) − 1. Concatenating the uj for j = 0, 1, 2, . . . , n(x0) − 1367

together we arrive at a control signal which satisfies (17) and maintains368

x(t) ∈ K0 for all t ∈ [0, n(x0)δ].369

If x0 ∈ Kfree, then by (14) for all u(·), v(·) and t ∈ [0, δ], x(t) ∈ KN . In370

particular, if x(δ) ∈ KN , then by the argument above we can construct a371

sampled feedback control policy according to (17) such that x(t) ∈ K0 for all372

t ∈ [0, (N + 1)δ].373

4.7. What About Infinite Horizon?374

Corollary 5. If at some point Kk+1 = Kk, then for x0 ∈ K∞ , Kk, it is375

possible to guarantee x(·) ∈ K∞ for all t > 0.376

Proof. Let x0 ∈ Kk+1 = Kk. By (12) and (9), x0 ∈ Projx(Inv1(Kk)) and377

by (16) for all u0 ∈ Uctrl(x0), v(·) and t ∈ [0, δ], x(t) ∈ Kk. In particular,378

x(δ) ∈ Kk = Kk+1, so use the same argument to construct a new constant379

input uj ∈ Uctrl(x(jδ)) and show that x(t) ∈ Kk for all v(·) and t ∈ [jδ, (j +380

1)δ] for all j = 1, 2, 3, Concatenating the uj together we arrive at a381

control signal which satisfies (17) and maintains x(t) ∈ Kk for all t > 0 (thus382

justifying the notational choice Kk = K∞).383

In general, there may not be an infinite horizon sampled data discrimi-384

nating kernel for a given set of dynamics, input and state constraints. Fur-385

thermore, because of the conservative nature of Disck(K0), K∞ may not exist386

even when a true infinite horizon sampled data discriminating kernel does.387

However, if a K∞ is found and it is possible to guarantee x0 ∈ K∞, then388

the control policy shown in figure 4 can be implemented without the need to389

evaluate n(x0) or store Kk for finite k; only Kfree, K∞ and the control policy390

for x0 ∈ K∞ \ Kfree need to be stored.391

5. Hamilton-Jacobi Formulation392

In this section we outline how to implement the abstract algorithm above393

using an HJ PDE formulation of invariance kernels. The main advantages394

of this formulation are that general nonlinear dynamics (1) can be handled395

and implementation of the key operators in the algorithm are straightforward.396

The main disadvantage is the computational cost: exponential in the number397

of dimensions in which the invariance kernel is calculated. We demonstrate398

how the constants involved can be kept small for the control dimensions, but399

16

there is at present no way to escape the curse of dimensionality for the state400

space dimensions.401

5.1. Preliminaries: Implicit Surface Functions and the HJ PDE402

In this formulation we represent sets S ⊂ Rd using an implicit surface403

function ψS : Rd → R such that404

S = {x ∈ Ω | ψS(x) ≤ 0}.

The implicit surface function representation is very flexible; for example,405

it can represent nonconvex and disconnected sets. Its main restriction is406

that sets must have a nonempty interior and exterior. Analytic implicit407

surface functions for common geometric shapes (such as spheres, hyper-408

planes, prisms, etc.) are easily constructed. The constructive solid geom-409

etry operations of union, intersection and complement of sets are achieved410

through pointwise minimum, maximum and negation operations on their411

implicit surface functions. For example, consider a sphere of radius two412

S1 = {x | ‖x‖2 ≤ 2}, the halfspace whose boundary has outward normal413

vector a and passes through the origin S2 = {x | aTx ≤ 0} and the hemi-414

sphere that is their intersection S3 = S1 ∩ S2. Implicit surface represen-415

tations of these sets are given by ψS1(x) = ‖x‖2 − 2, ψS2(x) = +aTx and416

ψS3(x) = max[ψS1(x), ψS2(x)].417

An HJ PDE whose solution is an implicit surface function for the reach-418

able tube of a system with adversarial inputs was proven in [17]; the adap-419

tation to invariance kernels that we outline here is straightforward. Given420

a constraint set S represented by the known implicit surface function ψS421

and system dynamics ẏ = g(y, w) with input w ∈ W , we can determine an422

implicit surface function for Inv([0, δ],S, w, g)423

ψInv([0,δ],S,w,g)(y) = φ(y, 0),

where φ is the viscosity solution of the terminal value, time-dependent HJ424

PDE425

Dtφ+ max [0, H(y,Dyφ)] = 0

with Hamiltonian426

H(y, p) = max
w∈W

pTg(y, w)

and terminal condition427

φ(y, δ) = ψS(y).

17

5.2. Hamilton-Jacobi Formulation of Operators428

Using properties of the implicit surface function and the HJ PDE formu-429

lation of invariance kernels described above, we can implement the operators430

needed to approximate the sampled data discriminating kernel.431

Given implicit surface representations ψS and ψU of S and U respectively,432

an implicit surface representation of S × U is given by433

ψS×U(x̃) = max (ψS(x), ψU(u))

where x̃ =
[
x u

]T
. To find the implicit surface representation ψInv1(S) of (10)434

we solve435

Dtφ+ max [0, H(x̃, Dx̃φ)] = 0

H(x̃, p) = max
v∈V

pT f̃(x̃, v)

φ(x̃, δ) = ψS×U(x̃)

ψInv1(S)(x̃) = φ(x̃, 0).

(18)

Projecting out the u dimension to accomplish (11) is easily done436

ψDisc1(S)(x) = min
u
ψInv1(S)(x̃). (19)

By (12) and (13), this sequence of pointwise maximization, HJ PDE solution437

and pointwise minimization can be repeated to construct implicit surface438

representations ψKk
for k = 1, 2, . . . , N .439

Once ψKN
is determined, we implement (14) by solving one last HJ PDE440

Dtφ+ max [0, H(x,Dxφ)] = 0

H(x, p) = max
v∈V

max
u∈U

pTf(x, u, v)

φ(x, δ) = ψKN
(x)

ψKfree
(x) = φ(x, 0).

(20)

to find the implicit surface representation ψKfree
.441

5.3. Control Policy Synthesis442

For x0 ∈ Kctrl, an implicit surface function for Uctrl(x0) in (16) can be443

constructed444

ψUctrl(x0)(u) = ψInv1(Kn(x0)−1)(x̃0) (21)

18

where x̃0 =
[
x0 u

]T
. However, there is additional quantitative information445

in the implicit surface functions ψKk
which we can take advantage of to con-446

struct alternative representations of the control policy and even alternative447

control policies.448

For x0 ∈ Kctrl, define the value at the next sample time under fixed input449

ū ∈ U as450

ψūδ (x0) , max
v(·)

ψKn(x0)−1
(x̄(δ)), (22)

where x̄(·) solves (2) with fixed input u = ū and initial condition x(0) = x0.451

If the infinite horizon discriminating kernel K∞ has been discovered, then for452

x0 ∈ K∞ use the alternative definition453

ψūδ (x0) = ψK∞(x̄(δ)).

With ψūδ defined, the policy (21) can also be represented as454

Uctrl(x0) , {ū ∈ U | ψūδ (x0) ≤ 0}, (23)

while two alternative policies are given by455

U→ctrl(x0) , {ū ∈ U | ψūδ (x0) ≤ ψKn(x0)
(x0)},

U↘ctrl(x0) , argmin
ū∈U

ψūδ (x0).
(24)

Note that all of these policies will be set-valued in general.456

Proposition 6. For all x0 ∈ Kctrl, U→ctrl(x0) 6= ∅.457

Proof. The HJ PDE (18) and minimization (19) imply that ψDisc1(S) is the458

value function of a finite horizon terminal value differential game problem459

ψDisc1(S)(x0) = max
v(·)

max
s∈[0,δ]

min
ū
ψS(x̄(s)), (25)

where v(·) is a measurable input signal but ū is a constant input. Consider460

x0 ∈ Kctrl, and let n̄ = n(x0). By (12) and (13), ψDisc1(Kn̄−1)(x0) = ψKn̄(x0);461

consequently, by (25) there exists ū ∈ U such that462

max
v(·)

max
s∈[0,δ]

ψKn̄−1(x̄(s)) = ψKn̄(x0).

By (22)463

ψūδ (x0) = max
v(·)

ψKn̄−1(x̄(δ)) ≤ ψKn̄(x0);

therefore, ū ∈ U→ctrl(x0).464

19

Corollary 7. For all x0 ∈ Kctrl, U↘ctrl(x0) 6= ∅. For all ū ∈ U↘ctrl(x0), ψūδ (x0) ≤465

ψKn(x0)
(x).466

Corollary 8. For x0 ∈ Kctrl, the following containment property holds467

U↘ctrl(x0) ⊆ U→ctrl(x0) ⊆ Uctrl(x0),

The intuition behind these different policies is468

• The most permissive policy Uctrl(x0) allows any control input which will469

keep x̄(δ) ∈ Kn(x0)−1; consequently, it ensures safety over the desired470

horizon but permits the system to get arbitrarily close to the boundary471

of Kn(x0)−1.472

• The intermediate policy U→ctrl(x0) allows any control input which will473

keep x̄(δ) at least as far away from the boundary of Kn(x0)−1 as x0 is474

from the boundary of Kn(x0) (where the distance metric is the implicit475

surface functions ψKk
).476

• The most aggressive policy U↘ctrl(x0) chooses the control(s) which will477

drive x̄(δ) as deep within Kn(x0)−1 as possible.478

Why use anything other than the most permissive policy Uctrl(x0)? The479

sampled data discriminating kernel algorithm from section 4.2 is inherently480

conservative (by Proposition 2), and models with disturbance inputs v are of-481

ten used to construct robust discriminating kernels even though such models482

are also conservative with respect to safety. Consequently, it may be possi-483

ble to drive x(·) back into Kfree using the more aggressive policies described484

above even if x0 ∈ Kctrl.485

5.4. Practical Implementation486

In this section we describe a particular approach to approximating the487

solution of the equations above for the common case where we do not have488

analytic solutions to those equations.489

5.4.1. Approximating the Implicit Surface Functions490

We use the Toolbox of Level Set Methods (ToolboxLS) as described491

in [18] to manipulate implicit surface functions. Implicit surface functions are492

represented by values sampled at nodes on a regular orthogonal grid. When493

values are needed away from grid points, interpolation is used (eg: interpn494

in Matlab). Maximum and minimum operations are done pointwise at each495

node in the grid.496

20

In general, HJ PDEs (18) and (20) include an input and so a Lax-497

Friedrichs centered difference scheme is used to approximate the respective498

Hamiltonians. High order of accuracy finite difference approximations of the499

spatial and temporal derivatives are used to evolve the equation (for exam-500

ple, see [26]). If (21) is used to construct the control policy in Kctrl then only501

the zero level set of the solutions of the PDEs are needed and so reinitial-502

ization and/or velocity extension techniques can be applied to improve the503

numerical results. If (23) or (24) are used to construct the control policy,504

then the value of the implicit surface functions ψKk
, and not just their zero505

level sets, is used via (22) for all x0 ∈ Kctrl, and so reinitialization and/or506

velocity extension cannot be applied when solving (18).507

5.4.2. Mitigating the Curse of Dimensionality508

As mentioned previously, the primary weakness of this formulation is that509

the size of the grid needed to accurately approximate the solution of the HJ510

PDEs grows exponentially with dimension. Such cost is bad enough in the511

dx dimensional state space, but (10) requires an invariant kernel computed512

in dx + du dimensions. Fortunately, without too much loss of accuracy those513

extra du dimensions can be treated with an arbitrarily coarse grid and each514

sample in those dimensions run separately, so the situation is not quite as515

dire as it might first appear.516

When approximating the solution of an evolutionary PDE, one normally517

has to ensure a grid fine enough to resolve key features of the solution both518

in order to avoid error in those key features and also to avoid that error519

from destroying the accuracy of nearby features through numerical dissipa-520

tion. This property holds true for the HJ PDEs above in the dx state space521

dimensions, but does not apply to the du control input dimensions because522

the augmented dynamics in these dimensions are zero. A coarse sampling of523

the u dimensions may not capture the optimal u input value and hence may524

underestimate the true discriminating kernel, but it will accurately reflect525

the discriminating kernel for the sampled values of u. In fact, the algorithms526

for approximating sampled data reachability in [4, 3] can be interpreted as527

exactly such a coarse sampling of a reachable set calculation using the same528

augmented dynamics (5). To give some idea of the order of magnitude savings529

such a coarse sampling of u can provide, the HJ PDE based approximations530

in sections 5.5 and 6.5 used only 3–7 samples of u (further sampling in the531

u dimension had little effect on the outcome), but grids of 60–200 nodes in532

each of the x dimensions. Such a coarse sampling strategy can be very effec-533

21

tive when the number of control input dimensions is low and/or the optimal534

samples for the control input can be guessed a priori.535

Furthermore, the fact that the dynamics in the control input dimensions536

are zero imply that the results for separate input samples do not interact with537

one another during the invariant set calculation. Therefore, it is possible to538

run the invariant sets for each input sample separately (either serially on a539

single processor or in parallel on a cluster) so that the memory cost of the540

algorithm is exponential only in dx. Separate runs for each input sample also541

ensures that there can be no numerical dissipation or issues with artificial542

boundary conditions in the u dimensions. Because this separated sampling543

approach reduces both memory cost and numerical error, we have not yet544

encountered any situation where it makes sense to directly approximate the545

HJ PDE formulation in the full augmented state space.546

The coarse and separated sampling strategies described above are effective547

at reducing the computational cost of this formulation significantly—they548

made the difference between seconds and hours of computation time for the549

examples presented below—however, it must be admitted that they only550

postpone but do not overcome the scaling barrier created by the exponential551

growth of computational effort with respect to both state space and control552

input dimension for this formulation.553

5.4.3. Constructing the Feedback Controller554

For x0 ∈ Kfree the implementation is trivial. For x0 ∈ Kctrl, there are two555

approaches to determine a set of safe control signals.556

To construct an implicit surface representation of the set Uctrl(x0), create557

a grid of u values {uj}j and then a grid of augmented state values {x̃j}j558

such that x̃j =
[
x0 uj

]T
. Using numerical interpolation where necessary,559

evaluate ψInv1(Kn(x0)−1)(x̃j) on the grid {x̃j}j. Then (21) provides an approx-560

imation on the grid {uj}j of an implicit surface function ψUctrl(x0)(u) repre-561

senting Uctrl(x0). Interpolation of ψUctrl(x0)(u) (which is continuous) can be562

used to approximate the full set of safe inputs if the control input dimension563

is sufficiently well sampled.564

Alternatively, again choose a set of input samples {uj}j but this time565

compute ψūδ (x0) through (22) with ū = uj for each uj. A numerical ODE566

solver (eg: ode45 in Matlab) can be used to approximate the point x̄(δ) and567

then numerical interpolation can provide an approximation of ψKn(x0)−1
(x̄(δ)).568

Either (23) or (24) can then be used to select a subset of {uj}j which lie within569

22

Uctrl(x0), U→ctrl(x0) or U↘ctrl(x0) as desired. Interpolation might also be needed570

to approximate ψKn(x0)
(x0) if U→ctrl(x0) is being used.571

5.4.4. Guaranteeing an Underapproximation572

The combination of the algorithm from section 4 and the analytic HJ573

PDE formulation of the operators from section 5.2 guarantees safety, but the574

numerical implementation described above does not maintain that guarantee.575

The decision to use an unsound implementation was primarily driven by576

convenience, and also the empirical accuracy that the level set schemes have577

demonstrated in the past.578

It is possible to use sound numerical implementations such as those de-579

scribed in [6] for the required invariance kernel calculations. These imple-580

mentations use an indicator-like representation of sets, so it might not be581

possible to directly extract the control policies (24) but there are several582

approaches to reformulate HJ PDEs as viability kernels if necessary. The583

primary shortcoming of these sound algorithms is their relative inaccuracy584

when compared to the schemes implemented in ToolboxLS. It is possible585

that a combination of the two approaches might be able to achieve both586

sound and accurate approximations.587

5.5. Example588

Computations were done on an Intel Core2 Duo at 1.87 GHz with 4 GB589

RAM running 64-bit Windows 7 Professional (Service Pack 1), 64-bit Mat-590

lab version 7.11 (R2010b), and ToolboxLS version 1.1. Matlab code can591

be found at the first author’s web site http://www.cs.ubc.ca/~mitchell592

We demonstrate the algorithms using an envelope protection problem for593

a variation on the double integrator because it is much easier to visualize re-594

sults in two dimensions. In the standard double integrator, once deceleration595

begins the optimal control stays constant until the system stops no matter596

what the state; consequently, the results are very similar in a sampled data597

environment to what they would be in a continuous time environment. In-598

stead, we modify the double integrator so that the optimal choice of input599

depends on state (a “spatially varying double integrator”). The dynamics600

are given by601

ẋ =
d

dt

[
x1

x2

]
=

[
x2

cos(2πx1)u

]
= f(x, u)

with |u| ≤ 1. Note that the effect of the input varies considerably over the602

domain, and the sign of the optimal input will switch every 0.5 units in the x1603

23

http://www.cs.ubc.ca/~mitchell

delta = 0.30, steps = 50, |u| ≤ 1.00, input samples = 7, accuracy veryHigh

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

K
0

K∞

K
free

Figure 5: The partition of Ω for the spatially varying double integrator with δ = 0.3 and
horizon N = 50 (eg: T = 15, long enough for convergence). The state constraint K0 is
the outermost thin red rectangle, K∞ is inside the thick magenta contour, Kctrl is outside
the dotted blue contour, and Kfree is inside that innermost contour (where the legend is).

direction. The constraint set is a rectangle K0 = [−4.5,+4.5]× [−2.0,+2.0].604

For the sampled data problem, we choose δ = 0.3 and N = 50 (which is605

empirically sufficient time for convergence). As discussed in section 5.4.2, we606

choose a coarse sampling of the input set607

{uj}7
j=1 =

{
−1,−2

3
,−1

3
, 0,+1

3
,+2

3
,+1

}
.

Figure 5 shows the results for the above parameters. They were calculated608

on a state space grid of size 201 × 101 using a fifth order accurate spatial609

and a third order accurate temporal derivative approximation. Figure 6610

shows results for the continuous time version, and also for versions with611

δ = 0.1 and δ = 1.0. Notice that the continuous time version has a much612

larger Kfree because it can always choose an input that generates deceleration.613

Furthermore, Kctrl = K∞ in this case, because δ = 0. In contrast, as δ614

becomes large the envelope becomes increasingly uncontrollable.615

Figures 7 and 8 show some sample trajectories generated using the pol-616

icy (17) with U→ctrl and U↘ctrl respectively. For illustrative purposes the control617

was chosen to drive the trajectory back toward Kctrl for x ∈ Kfree, and was618

chosen for U→ctrl to keep the trajectory as deeply within Kctrl as possible, but619

24

Continuous time, t
max

 = 4, u
max

 = 1.00, accuracy veryHigh

position

ve
lo

ci
ty

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

delta = 0.10, steps = 40, |u| ≤ 1.00, input samples = 7, accuracy veryHigh

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

delta = 1.00, steps = 24, |u| ≤ 1.00, input samples = 7, accuracy veryHigh

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 6: The effect of δ on the spatial partition. Top: Traditional reachability with
continuous state feedback and measurable control signals (T = 4). Middle: Sampled data
with δ = 0.1, N = 40 (T = 4). Bottom: Sampled data with δ = 1.0, N = 24 (T = 24).

25

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
1

x 2

Reach set
Donut set
Initial points
Trajectories

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

t

fu
nc

tio
n

va
lu

e

Figure 7: Sample trajectories using the intermediate safe policy U→ctrl for δ = 0.3. Top: Tra-
jectories x(·) in phase space overlaid on the state space partition. Bottom row: ψK∞(x(t))
versus t. Sample times are shown as red circles, and periods during which x(t) ∈ Kctrl are
shown with blue dots.

26

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
1

x 2

Reach set
Donut set
Initial points
Trajectories

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

t

fu
nc

tio
n

va
lu

e

Figure 8: Sample trajectories using the aggressive safe policy U↘ctrl for δ = 0.3. Top: Tra-
jectories x(·) in phase space overlaid on the state space partition. Bottom row: ψK∞(x(t))
versus t. Sample times are shown as red circles, and periods during which x(t) ∈ Kctrl are
shown with blue dots.

27

other choices are available. In the bottom of each plot, notice that the value620

of ψK∞ may decrease along a trajectory between samples, but if the trajec-621

tory is in Kctrl (as indicated by the blue dots) at the sample time, then the622

value of ψK∞ does not decrease at the subsequent sample time.623

6. Ellipsoidal Formulation624

In this section we outline how to implement the abstract algorithm from625

section 4 using an ellipsoidal formulation of invariance kernels. The main626

advantage of this formulation is computational cost: polynomial (roughly627

cubic) in the number of dimensions in which the invariance kernel is calcu-628

lated. The main disadvantages are a restriction to linear dynamics, reduced629

accuracy because ellipsoidal underapproximations must be used at several630

steps in the algorithm, and some additional intermediate steps which make631

the formulation of the key operators more complicated.632

6.1. Preliminaries: Ellipsoidal Complications633

Let P ∈ Rd1×d2 with d1 ≤ d2 be a matrix such that PTP is a projection634

matrix (so (PTP)2 = PTP). In particular, we will use block matrices635

Px =
[
Idx 0dx×du

]
and Pu =

[
0du×dx Idu

]
where Id ∈ Rd×d is an identity matrix and 0d1×d2 ∈ Rd1×d2 is a zero matrix.636

Given an augmented state x̃ =
[
x u

]T
, we then have that Pxx̃ = x and637

Pux̃ = u. More generally, we could choose P such that the rows form an638

orthonormal basis for a subspace into which we want to project a vector.639

6.1.1. Preliminaries: Ellipsoids640

An ellipsoid in Rd is defined by641

E(q,H) , {Hy + q ∈ Rd | ‖y‖2 ≤ 1}
= {y ∈ Rd | (y − q)TH−2(y − q) ≤ 1}

where q ∈ Rd is the center, H = HT ∈ Rd×d, and HHT = H2 is the symmet-642

ric positive definite shape matrix. For matrix A, the linear mapping of an643

ellipsoid is also an ellipsoid644

AE(q,H) = E(Aq,AH)

28

We will call a finite union of ellipsoids a piecewise ellipsoidal set.645

Many of the sets S involved in the algorithm below will not be ellip-646

soidal, so where necessary we will construct ellipsoidal approximations ES .647

An “ellipsoidal approximation” of a set is not a unique object, but in this648

algorithm it will typically be an underapproximation, it will often be a max-649

imum volume underapproximation, and the particular choice for each such650

approximation in the algorithm should be clear from context.651

6.1.2. Preliminaries: Maximum Volume Inscribed Ellipsoids652

It is well known that given a collection of nonempty compact ellipsoids653

{Yi}, their intersection ∩iYi is not in general an ellipsoid but it can be easily654

underapproximated by one: The maximum volume inscribed ellipsoid E∩iYi655

can be determined by solving a convex semi-definite program [27]. Here we656

slightly extend the technique to allow sets Yi which can be either an ellipsoid657

Yi = E(qi,Hi) or the tensor product of lower dimensional ellipsoids658

Yi = Yi,x × Yi,u
where Yi,x , E(qi,x,Hi,x) ⊂ Rdx and Yi,u , E(qi,u,Hi,u) ⊂ Rdu .

For notational simplicity we have assumed that the lower dimensional ellip-659

soids happen to be in the x and u subspaces of the augmented state space660

x̃, although the formulation can easily be generalized to allow different sub-661

spaces and/or the tensor product(s) of more than two lower dimensional662

ellipsoids.663

We will also modify the objective of the optimization to find the inscribed664

ellipsoid whose volume is maximal in a subspace projection given by some665

P̄. Choosing P̄ = I will generate the maximum volume inscribed ellipsoid as666

normal. Choosing P̄ = Px will find the inscribed ellipsoid whose volume is667

maximal in the x subspace.668

If ∩iYi 6= ∅, solve the semidefinite program (SDP)669

minimize− log det P̄H̄P̄T

over H̄ ∈ Rd×d, q̄ ∈ Rd, and λi ∈ R
(26)

subject to constraints for i = 1, 2, . . . either of the form670

λi > 0 1− λi 0 (q̄ − qi)T
0 λiI H̄

(q̄ − qi) H̄ H2
i

 ≥ 0,
(27)

29

if Yi = E(qi,Hi) or of the form671

λi,x > 0

λi,u > 0 1− λi,x 0 (Pxq̄ − qi,x)T
0 λi,xI PxH̄PT

x

(Pxq̄ − qi,x) PxH̄PT
x H2

i,x

 ≥ 0

 1− λi,u 0 (Puq̄ − qi,u)T
0 λi,uI PuH̄PT

u

(Puq̄ − qi,u) PuH̄PT
u H2

i,u

 ≥ 0

(28)

if Yi = Yi,x × Yi,u, where I and 0 are appropriately sized identity and zero672

matrices. The optimal values H̄∗ and q̄∗ define the inscribed ellipsoid with673

maximum volume in the P̄ subspace:674

InscribedP̄ (∩iYi) , E
(
q̄∗, H̄∗

)
.

We will use this operator several times in the algorithm below.675

6.1.3. Preliminaries: Ellipsoidal Underapproximation of Invariance Kernels676

For the implicit surface function representations used in the previous sec-677

tion, there was an HJ PDE whose solution governed their evolution. The678

situation is more complicated for the ellipsoidal representation: We will con-679

struct invariance kernels by a sequence of reachability and intersection oper-680

ations.681

To start with we must restrict the dynamics (1) and (2) to the forms

ẋ(t) = Ax(t) + Bu(t) + Gv(t) (29)

ẋ(t) = Ax(t) + Bupw(t) + Gv(t) (30)

respectively, where A ∈ Rdx×dx , B ∈ Rdx×du and G ∈ Rdx×dv are constant682

matrices.683

For a target set S ⊆ Rd and time t, define the minimal forward reach set684

as685

Reach(t,S) , {y(t) ∈ Ω | ∀w(·), y0 ∈ S}

where y(·) solves ẏ = g(y, w) with initial condition y(0) = y0 and w(·) is686

a measurable input function such that w(t) ∈ W . If g is linear and both687

S = ES and W = EW are ellipsoidal, it is possible to construct an ellipsoidal688

30

underapproximation EReach(t,S)(`) ⊆ Reach(t,S) for a given vector ` ∈ Rd [28,689

29, 30]. More generally, ∪iEReach(t,S)(`i) for some set of vectors {`i} can be690

used as a piecewise ellipsoidal underapproximation of Reach(t,S).691

In [31] we presented an algorithm to underapproximate continuous time692

viability kernels using these ellipsoidal reachability constructs, and in [32, 33]693

we extended this algorithm to discriminating kernels for systems with adver-694

sarial inputs. Here we briefly outline how to simplify the latter to approx-695

imate invariance kernels. For linear dynamics g, ellipsoidal S = ES and696

W = EW , and vector `, the algorithm creates an ellipsoidal underapproxima-697

tion EInv([0,δ],S,w,g)(`) using a series of substeps. Start by choosing the number698

of substeps n̂ > 0 and the substep length δ̂ = δ/n̂. If necessary, erode S to699

keep trajectories safe during the substeps (several approaches to such ero-700

sion are detailed in [34, pp. 94–97]). Then compute the sequence Ê (k̂)
S (`) for701

k̂ = 0, 1, . . . , n̂ where702

Ê (0)
S (`) =

{
E(eroded S), if erosion was necessary;

ES , otherwise;

Ê (k̂+1)
S (`) = InscribedP̄

(
Ê (0)
S (`) ∩ E

Reach(δ̂,Ê(k̂)
S)

(`)
)

EInv([0,δ],S,w,g)(`) = Ê (n̂)
S (`)

(31)

6.2. Ellipsoidal Formulation of Operators703

Using the maximum volume inscribed ellipsoid and ellipsoidal invariance704

kernel algorithms described above, we can implement the operators needed705

to approximate the sampled data discriminating kernel.706

Given ellipsoidal S = ES and U = EU , we use the SDP (26)–(28) to707

construct708

ES×U = InscribedI (S × U) .

To find an ellipsoidal underapproximation of Inv1(S) from (10), choose ` ∈709

Rdx+du and run the iteration (31) for Inv([0, δ], ES×U , v, f̃) where f̃ is the710

obvious restriction of (5) to the linear case (29). Given the result711

EInv([0,δ],ES×U ,v,f̃)(`) = EInv1(S)(`)

of that iteration, projecting out the u dimension to accomplish (11) is a712

simple projection operation713

EDisc1(S)(`) = Projx(EInv1(S)(`)) = PxEInv1(S)(`)

31

By (12) and (13), this sequence of ellipsoid inscribed tensor product, ellip-714

soidal invariance kernel and projection can be repeated to construct ellip-715

soidal underapproximations EKk
(`) for k = 1, 2, . . . , N for a single direction716

`, and then repeated for additional directions if desired.717

Once EKN
(`) is determined, one more ellipsoidal invariance kernel calcula-718

tion implements (14): run iteration (31) for Inv([0, δ], EKN
, (u, v), f) to create719

underapproximation720

EKfree
(`) = EInv([0,δ],EKN

,(u,v),f)(`).

6.3. Control Policy Synthesis721

For x0 ∈ Kctrl, let722

EInv1(Kn(x0)−1)(`) = E
([
q̄x
q̄u

]
,

[
H̄xx H̄xu

H̄ux H̄uu

])
.

Then an ellipsoidal representation of Uctrl(x0) is given by723

EUctrl(x0)(`) =

{
Pu

([
H̄xx H̄xu

H̄ux H̄uu

] [
x0

u

]
+

[
q̄x
q̄u

]) ∣∣∣∣∣
∥∥∥∥[x0

u

]∥∥∥∥2

2

≤ 1

}
=
{

H̄uuu+ (q̄u + H̄uxx0) | ‖u‖2
2 ≤ 1− ‖x0‖2

2

}
= E

(
q̄u + H̄uxx0, (1− ‖x0‖2

2)−
1
2 H̄uu

) (32)

6.4. Practical Implementation724

We use the Ellipsoidal Toolbox (ET) [20] to implement EReach(t,K)(`) and725

YALMIP [35] to implement the SDPs. Both packages use standard double726

precision floating point arithmetic operations; consequently, it is possible727

that roundoff error may cause failure of the underapproximation guarantees728

that the algorithms described above provide in exact arithmetic. In practice729

we have not had problems as long as the ellipsoids do not get exceedingly730

eccentric.731

When using (31) to approximate Kk, it is necessary to erode K0 before732

computing EK1 , but it is not necessary to erode Kk (or its ellipsoidal under-733

approximation) before computing EKk+1
for k ≥ 1. By eroding K0 before734

running the iteration (31), we ensure that trajectories cannot exit and reen-735

ter K0 during the substeps of length δ̂ used by the reach set computation.736

Without erosion, trajectories in subsequent outer steps k ≥ 1 can exit Kk737

32

during a substep. However, they cannot exit K0 since Kk ⊆ K1 and K1 does738

not contain any states giving rise to trajectories which exit K0 even during739

the substeps (because we used erosion before computing K1). Therefore, even740

if trajectories do exit and reenter Kk during the reachability substeps, they741

remain inside K0 and hence safe during the outer step, and by construction742

they finish the outer step within Kk.743

Furthermore, when computing Inv1(K0) = Inv([0, δ], EK0×U , v, f̃) to find744

K1, we erodeK0 before determining EK0×U—rather than eroding EK0×U directly—745

because the dynamics for the u dimension in f̃ are zero, and so no erosion746

in those dimensions is required to ensure safety of trajectories during the747

substeps.748

Obvious choices for the projection operator P̄ in (31) are the identity I or749

the projection into the x dimensions Px. Not surprisingly, the latter tends to750

generate a Ê (k̂+1)
S (`) at each substep whose projection into the x dimensions is751

somewhat larger but whose extent in the u dimensions is significantly smaller.752

However, our goal is to maximize the size of the eventual invariance kernel753

at the end of all of the substeps, and in our experiments no clear winner754

according to this metric has emerged. The example given below used P̄ = I,755

and we will continue to investigate these alternatives in future work.756

In order to avoid additional notational complexity, the formulation above757

focused on the case of only a single direction vector `. More generally, the758

algorithm can be repeated for a set of direction vectors {`i} and the results759

used to construct piecewise ellipsoidal underapproximations760

∪iEKk
(`i) ⊆ Kk and ∪i EKfree

(`i) ⊆ Kfree.

Details regarding control synthesis from piecewise ellipsoidal approximations761

can be found in [32, 33]. The main complication is that to extract a con-762

trol policy for x ∈ Kctrl from these piecewise ellipsoidal representations, the763

definition of EUctrl(x)(`) in (32) must use an `i corresponding to an ellipsoid764

containing x. The example given below uses only a single direction vector in765

order to avoid these additional complications; however, the choice of direc-766

tion vector did not seem to significantly affect the final kernel approximation767

in this particular case.768

As explained in section 6.2, there are several steps in the algorithm where769

a maximum volume inscribed ellipsoid is constructed. Such approximations770

necessarily reduce accuracy (albeit in a conservative manner) and almost771

certainly remove any chance that the resulting approximation of the kernel is772

33

−1 0 1
−1

−0.5

0

0.5

1

x
1

x 2

−1 0 1
−1

−0.5

0

0.5

1

x
1

x 3

−1 0 1
−1

−0.5

0

0.5

1

x
2

x 3

Figure 9: Projections of the partition of Ω into various pairs of state variables for the
oscillating double integrator with δ = 0.1 and N = 30. The outermost solid circle is K0.
The innermost solid ellipse is EKfree

, which is an underapproximation of the true Kfree

shown by a solid contour. The light green solid ellipse in the middle is EKN
, which is

an underapproximation of the true KN shown by the dotted light green contour. The
ellipsoidal underapproximations EKfree

and EKN
were computed using a single direction

vector `. The true sets Kfree and KN (the contours) were approximated by the HJ PDE
formulation described in section 5.

tight. In particular, we have found that the underapproximating ellipsoid for773

a given direction vector can become degenerate and hence empty even if the774

true sampled data discriminating kernel is nonempty. We are investigating775

approaches to determine emptiness of the sampled data discriminating kernel776

conclusively, but at present we just try additional direction vectors in the777

hopes of constructively demonstrating nonemptiness.778

6.5. Example779

We illustrate the algorithm using another variation of the double integra-780

tor: dynamics (29) with781

A =

 0 −10 0
+10 0 0
+2 +2 0

 B =

1
0
0


and U = [−1,+1]. Intuitively, the first two components of x provide an782

oscillating “velocity” so that the optimal input u varies rapidly with time783

along trajectories. The constraint set K0 is the unit ball. For δ = 0.1,784

N = 30 and a single direction vector ` = 1
2

[
1 1 1 1

]T
, figure 9 shows785

approximations of KN and Kfree as computed by both the HJ PDE based786

approach from section 5 and the ellipsoidal approach from this section. The787

34

−1 0 1
−1

−0.5

0

0.5

1

x
1

x 2

−1 0 1
−1

−0.5

0

0.5

1

x
1

x 3

−1 0 1
−1

−0.5

0

0.5

1

x
2

x 3

Figure 10: Projections of a trajectory for the oscillating double integrator with δ = 0.1
for 0 ≤ t ≤ 4, overlaid on the state space partition from figure 9. The initial condition is
shown with a light green circle, the final state by a light green square, and intermediate
sample times by red dots.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

u

t

Figure 11: Control signal for the trajectory shown in figure 10. Circles mark sample times.
Controls chosen in U are shown with open red circles, while those chosen in EUctrl(x) are
shown with closed blue circles.

HJ PDE based approximations are more accurate, but their cost would scale788

exponentially with additional state space dimensions, while the ellipsoidal789

approximation’s cost is roughly cubic in state space dimension.790

Projections of a sample trajectory x(·) are shown in figure 10, and the791

control signal upw(·) used to generate this trajectory is shown in figure 11. In792

this example both U and EUctrl(x) are always an interval (the latter possibly793

degenerate). The control signal in figure 11 was generated by randomly794

choosing one of the endpoints of the interval U (if x(tk) ∈ EKfree
) or EUctrl(x(tk))795

(if x(tk) ∈ EKctrl
) at each sample time tk. Although the state space partition796

was constructed with finite horizon N = 30 (corresponding to t = 3), the797

trajectory clearly stays well within K0 out to t = 4 (the final time shown798

35

in figures 10 and 11); in fact, in our simulations it stayed within K0 for all799

times that we tried.800

7. Conclusions and Future Work801

We have generalized the sampled data reachability algorithm described802

in [3, 4] to discriminating kernels with an abstract algorithm that does not de-803

pend on Hamilton-Jacobi equations but rather works in an augmented state804

space with a sequence of tensor products, invariance kernels and projections.805

We proved that this abstract algorithm can conservatively approximate the806

sampled data discriminating kernel. Using this kernel, we can synthesize a807

permissive but safe hybrid control policy—it allows as large a set of controls808

as possible at every state in the constraint set while still maintaining that809

constraint whenever possible. Two concrete versions of the algorithm were810

then demonstrated: one using Hamilton-Jacobi equations which can han-811

dle nonlinear dynamics but scales poorly with state space dimension, and812

another using ellipsoidal reachability which scales polynomially with state813

space dimension but requires linear dynamics and is less accurate.814

In the future we plan to apply these control synthesis algorithms to more815

complex, higher dimensional, and hybrid systems. Our long-term goal is to816

use the set-valued control policies to tackle collaborative and multi-objective817

control problems while still providing safety guarantees.818

8. Role of the Funding Source819

This research was supported by the National Science and Engineering820

Council of Canada (NSERC) Discovery Grants #298211 (Mitchell) & #327387821

(Oishi), an NSERC Undergraduate Student Research Award (Chen), the822

Canadian Foundation for Innovation (CFI) Leaders Opportunity Fund /823

British Columbia Knowledge Development Fund Grant #13113, and Can-824

Wheel, the Canadian Institutes of Health Research (CIHR) Emerging Team825

in Wheeled Mobility for Older Adults #AMG-100925.826

The funding agencies had no role in study design; in the collection, analy-827

sis, and interpretation of data; in the writing of the report; or in the decision828

to submit the paper for publication.829

36

References830

[1] E. M. Clarke, The birth of model checking, in: O. Grumberg, H. Veith831

(Eds.), 25 Years of Model Checking, no. 5000 in Lecture Notes in832

Computer Science, Springer Verlag, 2008, pp. 1–26. doi:10.1007/833

978-3-540-69850-0_1.834

[2] J.-P. Aubin, A. M. Bayen, P. Saint-Pierre, Viability Theory: New Direc-835

tions, Systems & Control: Foundations & Applications, Springer, 2011.836

doi:10.1007/978-3-642-16684-6.837

[3] I. M. Mitchell, M. Chen, M. Oishi, Ensuring safety of nonlinear sampled838

data systems through reachability, in: Proceedings of the IFAC Con-839

ference on Analysis and Design of Hybrid Systems, 2012, pp. 108–114.840

doi:10.3182/20120606-3-NL-3011.00018.841

[4] J. Ding, C. J. Tomlin, Robust reach-avoid controller synthesis for842

switched nonlinear systems, in: Proceedings of the IEEE Conference843

on Decision and Control, Atlanta, GA, 2010, pp. 6481–6486. doi:844

10.1109/CDC.2010.5717115.845

[5] J. Lygeros, C. Tomlin, S. Sastry, Controllers for reachability specifi-846

cations for hybrid systems, Automatica 35 (3) (1999) 349–370. doi:847

10.1016/S0005-1098(98)00193-9.848

[6] P. Cardaliaguet, M. Quincampoix, P. Saint-Pierre, Set-valued numer-849

ical analysis for optimal control and differential games, in: M. Bardi,850

T. E. S. Raghavan, T. Parthasarathy (Eds.), Stochastic and Differential851

Games: Theory and Numerical Methods, Vol. 4 of Annals of Interna-852

tional Society of Dynamic Games, Birkhäuser, 1999, pp. 177–247.853

[7] S. Monaco, D. Normand-Cyrot, Advanced tools for nonlinear sampled-854

data systems’ analysis and control, European Journal of Control 13 (2-3)855

(2007) 221–241. doi:10.3166/ejc.13.221-241.856

[8] D. Nešić, A. R. Teel, A framework for stabilization of nonlinear sampled-857

data systems based on their approximate discrete-time models, IEEE858

Transactions on Automatic Control 49 (7) (2004) 1103–1122. doi:10.859

1109/TAC.2004.831175.860

37

http://dx.doi.org/10.1007/978-3-540-69850-0_1
http://dx.doi.org/10.1007/978-3-540-69850-0_1
http://dx.doi.org/10.1007/978-3-540-69850-0_1
http://dx.doi.org/10.1007/978-3-642-16684-6
http://dx.doi.org/10.3182/20120606-3-NL-3011.00018
http://dx.doi.org/10.1109/CDC.2010.5717115
http://dx.doi.org/10.1109/CDC.2010.5717115
http://dx.doi.org/10.1109/CDC.2010.5717115
http://dx.doi.org/10.1016/S0005-1098(98)00193-9
http://dx.doi.org/10.1016/S0005-1098(98)00193-9
http://dx.doi.org/10.1016/S0005-1098(98)00193-9
http://dx.doi.org/10.3166/ejc.13.221-241
http://dx.doi.org/10.1109/TAC.2004.831175
http://dx.doi.org/10.1109/TAC.2004.831175
http://dx.doi.org/10.1109/TAC.2004.831175

[9] B. I. Silva, B. H. Krogh, Modeling and verification of hybrid sys-861

tems with clocked and unclocked events, in: Proceedings of the IEEE862

Conference on Decision and Control, Orlando, FL, 2001, pp. 762–767.863

doi:10.1109/.2001.980198.864

[10] S. Azuma, J. Imura, Synthesis of optimal controllers for piecewise affine865

systems with sampled-data switching, Automatica 42 (5) (2006) 697–866

710. doi:10.1016/j.automatica.2005.12.023.867

[11] Y. Tsuchie, T. Ushio, Control-invariance of sampled-data hybrid systems868

with periodically clocked events and jitter, in: Proceedings of the IFAC869

Conference on Analysis and Design of Hybrid Systems, 2006, pp. 417–870

422. doi:10.3182/20060607-3-IT-3902.00075.871

[12] A. Zutshi, S. Sankaranarayanan, A. Tiwari, Timed relational abstrac-872

tions for sampled data control systems, in: P. Madhusudan, S. Se-873

shia (Eds.), Computer Aided Verification (CAV), Vol. 7358 of Lec-874

ture Notes in Computer Science, Springer Verlag, 2012, pp. 343–361.875

doi:10.1007/978-3-642-31424-7_27.876

[13] I. M. Mitchell, Comparing forward and backward reachability as tools877

for safety analysis, in: A. Bemporad, A. Bicchi, G. Buttazzo (Eds.),878

Hybrid Systems: Computation and Control, no. 4416 in Lecture Notes879

in Computer Science, Springer Verlag, 2007, pp. 428–443. doi:10.1007/880

978-3-540-71493-4_34.881

[14] M. S. Branicky, G. Zhang, Solving hybrid control problems: Level sets882

and behavioral programming, in: Proceedings of the American Control883

Conference, Chicago, IL, 2000, pp. 1175–1180.884

[15] J. A. Sethian, A. Vladimirsky, Ordered upwind methods for hybrid con-885

trol, in: C. J. Tomlin, M. R. Greenstreet (Eds.), Hybrid Systems: Com-886

putation and Control, no. 2289 in Lecture Notes in Computer Science,887

Springer Verlag, 2002, pp. 393–406.888

[16] J. Lygeros, On reachability and minimum cost optimal control, Auto-889

matica 40 (6) (2004) 917–927. doi:10.1016/j.automatica.2004.01.890

012.891

[17] I. M. Mitchell, A. M. Bayen, C. J. Tomlin, A time-dependent Hamilton-892

Jacobi formulation of reachable sets for continuous dynamic games,893

38

http://dx.doi.org/10.1109/.2001.980198
http://dx.doi.org/10.1016/j.automatica.2005.12.023
http://dx.doi.org/10.3182/20060607-3-IT-3902.00075
http://dx.doi.org/10.1007/978-3-642-31424-7_27
http://dx.doi.org/10.1007/978-3-540-71493-4_34
http://dx.doi.org/10.1007/978-3-540-71493-4_34
http://dx.doi.org/10.1007/978-3-540-71493-4_34
http://dx.doi.org/10.1016/j.automatica.2004.01.012
http://dx.doi.org/10.1016/j.automatica.2004.01.012
http://dx.doi.org/10.1016/j.automatica.2004.01.012

IEEE Transactions on Automatic Control 50 (7) (2005) 947–957. doi:894

10.1109/TAC.2005.851439.895

[18] I. M. Mitchell, J. A. Templeton, A toolbox of Hamilton-Jacobi solvers896

for analysis of nondeterministic continuous and hybrid systems, in:897

M. Morari, L. Thiele (Eds.), Hybrid Systems: Computation and Con-898

trol, no. 3414 in Lecture Notes in Computer Science, Springer Verlag,899

2005, pp. 480–494. doi:10.1007/978-3-540-31954-2_31.900

[19] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,901

R. Ripado, A. Girard, T. Dang, O. Maler, SpaceEx: Scalable verification902

of hybrid systems, in: G. Gopalakrishnan, S. Qadeer (Eds.), Proceedings903

of the International Conference on Computer Aided Verification, no.904

6806 in Lecture Notes in Computer Science, Springer, 2011, pp. 379–905

395. doi:10.1007/978-3-642-22110-1_30.906

[20] A. A. Kurzhanskiy, P. Varaiya, Ellipsoidal toolbox, Tech. Rep.907

UCB/EECS-2006-46, Department of Electrical Engineering and Com-908

puter Science, University of California, Berkeley (May 2006).909

URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/910

EECS-2006-46.html911

[21] J. N. Maidens, S. Kaynama, I. M. Mitchell, M. M. K. Oishi, G. A.912

Dumont, Lagrangian methods for approximating the viability kernel in913

high-dimensional systems, Automatica (2013) 15 pages(in press).914

[22] S. M. LaValle, Planning Algorithms, Cambridge University Press, New915

York, 2006.916

[23] M. Branicky, M. Curtiss, J. Levine, S. Morgan, Sampling-based plan-917

ning, control and verification of hybrid systems, IEE Proceedings Con-918

trol Theory and Applications 153 (5) (2006) 575 – 590.919

[24] E. Plaku, L. Kavraki, M. Vardi, Hybrid systems: from verification to920

falsification by combining motion planning and discrete search, For-921

mal Methods in System Design 34 (2009) 157–182. doi:10.1007/922

s10703-008-0058-5.923

[25] I. M. Mitchell, M. Chen, M. Oishi, Ensuring safety of nonlinear sam-924

pled data systems through reachability (extended version), Tech. Rep.925

39

http://dx.doi.org/10.1109/TAC.2005.851439
http://dx.doi.org/10.1109/TAC.2005.851439
http://dx.doi.org/10.1109/TAC.2005.851439
http://dx.doi.org/10.1007/978-3-540-31954-2_31
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-46.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-46.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-46.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-46.html
http://dx.doi.org/10.1007/s10703-008-0058-5
http://dx.doi.org/10.1007/s10703-008-0058-5
http://dx.doi.org/10.1007/s10703-008-0058-5

TR-2012-02, Department of Computer Science, University of British926

Columbia, Vancouver, BC, Canada (April 2012).927

[26] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces,928

Springer, 2002. doi:10.1007/b98879.929

[27] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University930

Press, Cambridge, UK, 2004.931

[28] A. B. Kurzhanski, P. Varaiya, Ellipsoidal techniques for reachability932

analysis, in: B. Krogh, N. Lynch (Eds.), Hybrid Systems: Computation933

and Control, no. 1790 in Lecture Notes in Computer Science, Springer934

Verlag, 2000, pp. 202–214.935

[29] A. B. Kurzhanski, P. Varaiya, Ellipsoidal techniques for reachability936

analysis: Internal approximation, Systems and Control Letters 41 (2000)937

201–211.938

[30] A. B. Kurzhanski, P. Varaiya, On reachability under uncertainty, SIAM939

Journal of Control and Optimization 41 (1) (2002) 181–216.940

[31] S. Kaynama, J. Maidens, M. Oishi, I. M. Mitchell, G. A. Dumont, Com-941

puting the viability kernel using maximal reachable sets, in: Hybrid942

Systems: Computation and Control, Beijing, China, 2012, pp. 55–64.943

doi:10.1145/2185632.2185644.944

[32] S. Kaynama, I. M. Mitchell, M. M. K. Oishi, G. A. Dumont, Safety-945

preserving control of high-dimensional continuous-time uncertain linear946

systems, Poster presented at Hybrid Systems Computation and Control,947

a part of Cyber-Physical Systems Week (April 2013).948

[33] S. Kaynama, I. M. Mitchell, M. M. K. Oishi, G. A. Dumont, Scalable949

safety-preserving robust control synthesis for continuous-time linear sys-950

tems, submitted February 2013 to IEEE Transactions on Automatic951

Control.952

[34] S. Kaynama, Scalable techniques for the computation of viable and953

reachable sets: Safety guarantees for high-dimensional linear time-954

invariant systems, Ph.D. thesis, Department of Electrical and Computer955

Engineering, University of British Columbia (July 2012).956

40

http://dx.doi.org/10.1007/b98879
http://dx.doi.org/10.1145/2185632.2185644

[35] J. Löfberg, YALMIP : a toolbox for modeling and optimization in MAT-957

LAB, in: Computer Aided Control Systems Design, 2004, pp. 284–289.958

doi:10.1109/CACSD.2004.1393890.959

41

http://dx.doi.org/10.1109/CACSD.2004.1393890

	Introduction
	Problem Definition
	Related Work
	Abstract Algorithm
	Preliminary Definitions
	Approximating the Sampled Data Discriminating Kernel through Iterated Invariance Kernels
	Conservatism of the Approximation
	Subdivision of the Constraint Set
	Control Policy Synthesis
	Safety of the Policy
	What About Infinite Horizon?

	Hamilton-Jacobi Formulation
	Preliminaries: Implicit Surface Functions and the HJ PDE
	Hamilton-Jacobi Formulation of Operators
	Control Policy Synthesis
	Practical Implementation
	Approximating the Implicit Surface Functions
	Mitigating the Curse of Dimensionality
	Constructing the Feedback Controller
	Guaranteeing an Underapproximation

	Example

	Ellipsoidal Formulation
	Preliminaries: Ellipsoidal Complications
	Preliminaries: Ellipsoids
	Preliminaries: Maximum Volume Inscribed Ellipsoids
	Preliminaries: Ellipsoidal Underapproximation of Invariance Kernels

	Ellipsoidal Formulation of Operators
	Control Policy Synthesis
	Practical Implementation
	Example

	Conclusions and Future Work
	Role of the Funding Source

