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Abstract— This paper presents a discrete-time predictive con-
trol strategy for a voltage-source inverter based on computation
of a deadbeat control law and its approximating suboptimal
voltage vector at every sampling interval. The controller, in
addition to compensating for the inherent delay in the system,
employs a simple prediction filter to suppress the disturbance
caused by the back-EMF voltages and improve robustness
against parameter variations across the load. Discussions on
the effect of the back-EMF prediction on the performance
and robustness of the system is provided. It is shown that
the proposed control strategy yields satisfactory transient and
steady-state behavior and that the closed-loop system can
tolerate a wide range of parameter variations and model
uncertainty.
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I. INTRODUCTION

In the past two decades the predictive current control of
voltage-source inverters (VSI) has gained significant atten-
tion among researchers (see [1] for an excellent survey).
The recent emergence of fast microprocessors has enabled
the use of various control strategies within the predic-
tive control framework ranging from relatively simple-to-
implement model-based approaches to more sophisticated
and computationally demanding adaptive schemes (see [2]–
[17] and the references therein).

Depending on the type of controller, appropriate gate
signals are synthesized and applied to the inverter (directly
or indirectly through e.g. pulsewidth modulation (PWM)
techniques and a gate drive circuitry) such that the resulting
voltage waveform at the output of the inverter generates a
load current that satisfies some performance criteria (e.g.
tracking a reference signal).

In particular, discrete-time predictive control strategies
have seen wide-spread application due to their digitally im-
plementable nature, intuitive structure, and constant switch-
ing frequency under all operating conditions. This approach
is based on the discretization of the ordinary differential
equations that model the inverter-load system. The voltage
required by the load to achieve a desired current is computed
according to this discrete-time model. Advanced techniques
such as space-vector modulation can then be used to realize
this pre-computed voltage.
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In [15] a very effective (yet computationally simple) algo-
rithm is presented. The discrete-time model of the system
is used to predict the value of the load current for each
switching state of the inverter. The switching state that
minimizes a cost function (in this case defined as the error
between reference and actual output currents) is then selected
and sent directly to the inverter gates. It is shown that the
use of this technique can waive the need for more complex
modulation techniques and that the switching frequency is
limited, by construction, to half the sampling frequency.

In this paper we present a predictive control strategy based
on computing an optimal deadbeat control input (i.e. an
input that eliminates the output error at every time step) and
its suboptimal approximation that is physically-realizable by
the inverter. The controller is capable of compensating for
the inherent delay of the system by employing appropriate
prediction rules. Once an optimal input is synthesized, a
voltage vector that best represents this input is selected and
its associated switching state is sent to the inverter gates.
The proposed control scheme draws upon the feedback-
feedforward framework. As such, the back-EMF signal is
treated as disturbance and is thus rejected by the closed-loop
system. We show that a relatively more accurate prediction
of the back-EMF signal (used within the formulated control
law) can improve performance and robustness of the system.

Our main contribution is to provide an additional, compu-
tationally inexpensive, approach within the context of predic-
tive current control of VSI’s. In Section II the discrete-time
model of the system is derived. Section III presents the delay-
compensating deadbeat control law and its corresponding
suboptimal voltage vector selection scheme. The effect of
the back-EMF prediction is also discussed and a simple
prediction rule that improves the robustness and performance
of the system is proposed. Simulation results are given in
Section IV. Concluding remarks are provided in Section V.

II. DISCRETE-TIME MODEL

Fig. 1 depicts a generic closed-loop configuration of
a current-regulated three-phase half-bridge VSI based on
predictive current control methodology. The inverter is fed
from a dc link voltage source Vdc and is connected to a
balanced RL load in series with back-EMF voltages e. The
output voltage vectors generated by the inverter in terms of
the phase to neutral voltages can be represented by

v = 2
3

(
van + ηvbn + η2vcn

)
, η := ej2π/3. (1)

Combinations of the switching states of the inverter gate
signals Sa, Sb, and Sc generate the following eight voltage
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Fig. 1. Three-phase current-controlled VSI with RL load and back-EMF’s
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Fig. 2. Voltage vectors generated by the inverter. Respective switching states
are also shown.

vectors across the load;

v` =

{
2
3Vdce

j(`−1)π/3 for ` = {1, . . . , 6}
0 for ` = {0, 7}.

(2)

These vectors are shown in Fig. 2. The load current dynamics
are then governed by the differential equation

v = Ri + L
di

dt
+ e (3)

with i = 2
3

(
ia + ηib + η2ic

)
and e = 2

3

(
ea + ηeb + η2ec

)
.

Here, R and L are the load resistance and inductance,
respectively.

To comply with the digital nature of the closed-
loop system, we discretize (3) using the forward Euler
method1 by approximating the derivative term as di/dt ≈
1
T (i(k + 1)− i(k)) where T is the sampling time. Therefore
we obtain the following difference equation

i(k + 1) = Ai(k) +B {v(k)− e(k)} (4)

with A = 1− TR/L and B = T/L.

III. THE PROPOSED PREDICTIVE CONTROLLER

A. Deadbeat Control

We first seek an optimal deadbeat control law that if
applied would eliminate the output error ∆i := i−i∗ at every

1The forward Euler method provides sufficient accuracy if the sampling
frequency is much larger than the fastest mode in the system, i.e. if the
sampling period is sufficiently smaller than the time constant L/R.

kT ( 1)k T+ ( 2)k T+

Calculations
Control is applied

Currents are sampled

t

Fig. 3. The time-line of various events from the kth sampling interval in
which a control law is synthesized until its effect is sensed

time step k. Here “∗” is to denote the reference signal.2

This control voltage is computed during the kth sampling
interval, i.e. kT ≤ t ≤ (k + 1)T , and can only be applied
at time instant (k+ 1)T . The output current affected by this
control is then measured at the beginning of the (k + 2)th

sampling interval (see Fig. 3). Therefore there exists an
inherent delay of two sampling intervals from the time a
control is computed until the time the effect is sensed.

To compensate for this time delay we compute the control
input u∗(k + 1) such that in (4) the commanding voltage
(with a slight abuse of notation) is

v(k) = z−1u∗(k + 1) (5)

where z−1 is the unit delay operator. Furthermore, by ad-
vancing (4) one time step such that i(k + 2) = Ai(k + 1) +
B{v(k + 1) − e(k + 1)} and substituting for i(k + 1) we
can obtain, for a reference signal i∗(k + 2), the following
predictive control law;

u∗(k + 1) =
1

B

[
i∗(k + 2)−A

(
Ai(k) +B{v(k)

− z−1e(k + 1)}
)]

+ e(k + 1).

(6)

Notice that in computation of u∗(k + 1) in (6) during
the kth sampling interval, i(k) and v(k) are measured and
available for use. On the other hand, i∗(k + 2) and e(k +
1) have to be predicted using previously acquired and/or
estimated values. Henceforth we use the subscript “p” to
denote a predicted signal. As such, a quadratic two-step-
ahead prediction of the current reference can be computed
from the Langrange extrapolation formula (see [2]) as

i∗p(k + 2) = 6i∗(k)− 8i∗(k − 1) + 3i∗(k − 2). (7)

Similarly, the back-EMF voltage can be predicted as

ep(k + 1) = 6e(k − 1)− 8e(k − 2) + 3e(k − 3) (8)

where e(k − 1) is estimated, at time step k, using

e(k − 1) =
1

B

[
Ai(k − 1)− i(k)

]
+ v(k − 1). (9)

Assuming that there are no load parameter perturbations,
it can be verified that if the predicted signals converge to
their true values, i.e. ep(k+ 1) = e(k+ 1) and i∗p(k+ 2) =

2Our use of the term “optimal” is to refer to the fact that the deadbeat
control law is the global minimizer of ∆i. It follows that any approximation
to this control law is decidedly suboptimal.
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Fig. 4. Geometrical interpretation of the voltage vector selection scheme.
The threshold r is a design parameter chosen as 40% or 50% of |v`|.

i∗(k + 2), then the control law given in (6) constitutes a
deadbeat policy since

i(k + 1) = Ai(k) +B{z−1u∗(k + 1)− e(k)} (10)
= i∗(k + 1). (11)

B. Suboptimal Voltage Vector Selection

The optimal control law (6) computed during the kth

sampling interval is an arbitrary complex quantity that cannot
be directly generated by the inverter. Hence it must be
approximated by the available voltage vectors v`, ` ∈
{0, . . . , 7} ideally using a technique such as space vector
modulation. As a result, multiple switching states are applied
to the inverter gates during the next sampling interval.
Naturally, this process is computationally burdensome and in
some cases demands higher-than-needed switching frequency
(albeit with the advantage of minimizing the Total Harmonic
Distortion (THD) of the output current).

Instead, here we assume that the input voltage applied at
every time step is to remain constant for the entire duration
of the sampling interval and thus considerably reducing the
computational costs. The synthesized predictive control law
computed during the time interval kT ≤ t ≤ (k + 1)T is
approximated by a single suboptimal voltage vector v`. This
voltage is then applied to the load at time instant (k + 1)T
until the next sampling interrupt. The selection of v` at every
time step can be formalized as follows

(v`|u∗) : ` =

 arg min
σ∈{1,...,6}

∣∣∣∣∣cos−1

( 〈
u∗,vσ

〉
|u∗| · |vσ|

)∣∣∣∣∣ , |u∗| > r

0, |u∗| ≤ r
(12)

where
〈
·, ·
〉

denotes inner product. With r = 0.5|v`| a
voltage vector that satisfies (12) equivalently minimizes the
error vector magnitude |∆v| := |v` − u∗| (see Fig. 4).

Treated in polar coordinates, at any given time step, if the
pre-computed u∗ lies outside of a disc of radius r centered
around the origin in the complex plane, then the non-zero
voltage vector that constitutes the minimum angle with u∗

is chosen as the suboptimal control input. Otherwise, the zero
vector v0 is selected. Notice that v0 =v7 =0 and therefore
only seven vectors are considered in (12).

In practice, r can be chosen as 0.4|v`| in order to achieve
lower THD for the output current. This however may cause
steady-state error if the sampling frequency is not high
enough.

The dependance of the output current THD on the choice
of r may be explained by noticing the fact that the phase
angle of the reference voltage u∗ increases almost linearly
(and periodically) with time. If at any given time step u∗(k)
is located within the region in the complex plane bounded by
any two adjacent nonzero vectors vı and v, and ` = (∨ ı)
is found to be the solution of (12) at that time step, then it is
likely that one of the same voltage vectors vı or v will be
the solution at the next time step for the newly synthesized
u∗. This is true unless the magnitude of u∗ is sufficiently
small such that it can be best described by the zero voltage
vectors. Setting the threshold to a slightly lower value r =
0.4|v`| would then translate into selecting the zero vector
fewer times than the case in which r = 0.5|v`|. Therefore
the selection scheme is forced to have relatively fewer jumps
to the origin when rotating among the regions in the complex
plane. This in return results in comparatively lower THD of
the output current.

Limiting (enforcing) the selection of the zero voltage
vectors, however, must be performed with caution. Excessive
reduction (increase) of the threshold value may lead to per-
formance deterioration or instability under certain conditions.
Moreover, this increase (decrease) in the on-time of the
inverter in most cases will result in an adverse effect of
magnifying higher order harmonics in the phase voltage
waveform and thereby increasing the THD of the resulting
output current. In our tests a radius value of 0.4|v`| has
been found to yield the least current THD without causing
significant steady-state error.

Notice that the inverter operates in saturation when the
reference voltage u∗ exceeds the hexagonal region comprised
of the convex-hull of the vertices defined by the nonzero
voltage vectors.

Once v` is selected, the corresponding gate signal is
directly sent to the inverter without the need for an inter-
mediary circuit. In this case the commanding voltage (5) at
time step k becomes v(k) = z−1(v`|u∗)(k+1). Substituting
this in (4) and assuming as before that ep(k+ 1) = e(k+ 1)
and i∗p(k+2) = i∗(k+2), we obtain the closed-loop equation
as

i(k + 1) = Ai(k) +B{z−1(u∗(k + 1)

+ ∆v(k + 1))− e(k)}
(13)

= i∗(k + 1) +B∆v(k). (14)

It is clear that choosing a voltage vector that minimizes
|∆v| minimizes the current error |∆i| at the next time
step. Also notice that since B = T/L, choosing a smaller
sampling interval has the effect of improving the closed-loop
performance.

C. Back-EMF Prediction

As discussed before, for the optimal control law u∗ in (6)
to be realizable it must be approximated by the available



voltage vectors. Let us momentarily assume, for the sake of
derivation of the closed-loop equations, that u∗ is directly
applied to the system. That is, we ignore the errors due to
the approximation of u∗.

To see the effect of back-EMF prediction on the dynamic
response of the system we re-evaluate (10). In particular, us-
ing the Lagrange-based prediction (8) in (6) and substituting
the results in (10) we can derive the closed-loop equation
(with a loose exchange of notation between the time and
frequency domains) as

i(k + 1) =
1

F0(z)
i∗(k + 1) +

D0(z)

F0(z)
v(k) (15)

where

F0(z) =
1

B
E0(z)z−1 −

(A
B
E0(z)−A2

)
z−2 (16)

D0(z) = −B + (E0(z)−BA) z−1 (17)

E0(z) =
(
Bz−1 +BAz−2

) [
6− 8z−1 + 3z−2

]
. (18)

Notice that in general the response of the filters 1/F0(z)
and D0(z)/F0(z) alter according to the back-EMF prediction
characterized by the bracketed term in E0(z). Specifically,
for a perfect prediction, i.e. ep(k + 1) = e(k + 1) ≡
z2e(k−1), the term 1/F0(z) has unity gain and zero phase-
shift (with all the poles and zeros located at the origin)
and the term D0(z)/F0(z) has zero gain and zero phase-
shift across all frequencies. In such a case, the closed-loop
equation (15) reduces to (11) and the control (6) becomes
a deadbeat policy. Therefore the desire for more accurate
predictions of the back-EMF is evident.

For this purpose, while simultaneously aiming for real-
time computational simplicity, we construct and employ a
trivial 4-tap two-step-ahead finite impulse response (FIR)
prediction filter so that the predicted back-EMF is

ep(k + 1) =

3∑
n=0

αne(k − n− 1). (19)

Here the coefficients αn are computed empirically and by
taking advantage of some a priori knowledge about the
shape of the back-EMF signal. These coefficients can be
chosen such that the cut-off frequency of the FIR filter is
well beyond the typical operating frequency range of VSI’s
and thus is applicable in various practical scenarios.

It can be shown that even with such simple prediction rule
significant improvements in performance and robustness of
the system can be achieved (see Sections III-D and IV).

With R= 0.5 Ω, L= 10 mH, and T = 100µs, Fig. 5 com-
pares the frequency responses of the input-output transfer
function 1/F0(z) for the Lagrange and FIR back-EMF
predictions. It can be verified that the closed-loop response is
closer to the ideal case (with perfect back-EMF prediction)
when the FIR filter is used.

D. Robustness

It may be insightful to notice that the model-based predic-
tive controller presented above has an inherent feedforward
strategy to compensate for the input voltage disturbance (i.e.

−25

−20

−15

−10

−5

0

 

 

M
ag

ni
tu

de
 (

dB
)

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−100

−50

0

50

 

 

Frequency (kHz)

P
ha

se
 (

de
gr

ee
s)

 

 

FIR prediction
Lagrange prediction
Perfect prediction

Fig. 5. Frequency response of 1/F0(z) when perfect (dashed), FIR (solid),
and Lagrange (dash-dotted) back-EMF predictions are used. Simulation
parameters are R= 0.5 Ω, L= 10 mH, and T = 100µs.

e

+
1

Ls R
Inverter−1z

Deadbeat
Controller

ZOH

*i i*u v −
+

−
+ *( | )v u

, ,a b cS

  Predictive controller with EMF and delay compensation

Fig. 6. Feedback-feedforward structure of the proposed predictive controller

the back-EMF e). Within this framework the closed-loop
system can be portrayed as in Fig. 6. It is clear that a
controller that employs a more accurate back-EMF prediction
does a better job at rejecting the disturbance.

In the presence of system parameter perturbation and
model uncertainty the deviation in the system dynamics can
be encapsulated to some extent by the disturbance signal
e. Therefore a more accurate prediction of the back-EMF
voltage can account for some of the uncertainty and thus
increase the overall robustness of the system. We will show
this using an example in Section IV.

Notice that in this case the control law (6) becomes

u∗(k + 1) =
1

B̃

[
i∗(k + 2)− Ã

(
Ãi(k) + B̃{v(k)

− z−1e(k + 1)}
)]

+ e(k + 1)

(20)

where Ã := 1 − TR̃/L̃ and B̃ := T/L̃ are blind estimates
of the true (possibly perturbed) system parameters A and
B, respectively. The back-EMF voltage is now predicted
according to

ep(k + 1) = Γ(z)ẽ(k − 1) (21)

where ẽ(k − 1) is the estimated back-EMF using uncertain
parameters and is computed as

ẽ(k − 1) =
1

B̃

[
Ãi(k − 1)− i(k)

]
+ v(k − 1). (22)



Here Γ(z) characterizes the selected back-EMF prediction
filter. For the FIR filter (19) this is Γ(z) =

∑3
n=0 αnz

−n.
Substituting (20) in (10) (and ignoring the errors due to
approximation of u∗) we obtain the closed-loop equation as

i(k + 1) =
B

B̃F (z)
i∗(k + 1) +

D(z)

F (z)
v(k) (23)

with

F (z) =
1

B̃
E(z)z−1 −

( Ã
B̃
E(z)− BA2

B̃

)
z−2 (24)

D(z) = −B +
(
E(z)−BÃ

)
z−1 (25)

E(z) =
(
Bz−1 +BÃz−2

)
Γ(z). (26)

Evidently, a perfect back-EMF prediction (which now en-
capsulates the effect of the uncertainty in the system) would
be capable of entirely eliminating the effect of the parameter
mismatch in (23).

Finally we point out that with a self-tuning adaptive
scheme, such as the one proposed in [17], the model pa-
rameters and the back-EMF prediction converge to their true
values in finite time. Therefore the robustness of the system
is guaranteed and the closed-loop equation (23) reduces to
(11) yielding a deadbeat control (albeit at the expense of
added online computational complexity).

IV. SIMULATION RESULTS

To evaluate the performance of the proposed predic-
tive controller simulations are carried out using MAT-
LAB/SIMULINK. The parameters are initially chosen accord-
ing to

Case 1: R = 0.5 Ω, L = 10 mH, Vdc = 100 V
Case 2: R = 10 Ω, L = 10 mH, Vdc = 500 V.

A reference current with an amplitude of 13 A and a
frequency of 50 Hz is to be tracked by the closed loop
system. An unmeasurable sinusoidal disturbance (back-EMF)
of fixed amplitude (34 V) and frequency (50 Hz) is applied
to the system.

Primarily, to assess the performance of the proposed
scheme, we compare the resulting phase-a load current with
that obtained using the algorithm described in [15]. Note
that in [15] the load model is discretized through backward
Euler method and a voltage vector v` that minimizes the cost
functional g = |i∗α(k+1)−iα(k+1)|+|i∗β(k+1)−iβ(k+1)|
(with iα := Re(i) and iβ := Im(i)) is selected and applied
to the load at every sampling instant. The output current
is computed for all possible eight voltage vectors using
i(k+1) = 1

RT+L [Li(k) + T (v(k + 1)− ep(k + 1))] where
the back-EMF is assumed to be constant over a sampling
period and is thus predicted using ep(k + 1) ≈ e(k) =
v(k) + L

T i(k − 1)− RT+L
T i(k).

Figs. 7 and 8 show the phase-a load current obtained using
the proposed predictive controller (top plots in each figure)
vs. that obtained using the predictive algorithm [15] (bottom
plots in each figure) for parameter values in Case 1 and 2,
respectively. A sampling period of T = 100µs has been
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Fig. 7. Phase-a response with parameter values in Case 1 and T = 100µs.
Top: using the proposed controller. Bottom: using the algorithm in [15].
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Fig. 8. Phase-a response with parameter values in Case 2 and T = 100µs.
Top: using proposed controller. Bottom: using the algorithm in [15].

used and a voltage selection radius of r = 0.4|v`| in (12)
has been chosen. It can be observed that the current ripples
are significantly reduced when our proposed controller is in
use. Table I quantifies the Total Harmonic Distortion (THD)
of the steady-state output current for each controller with
two sampling intervals T = 100µs and T = 20µs. It can be
noticed that by using the proposed predictive controller up
to 60% reduction in THD can be achieved while the steady-
state and transient responses are also improved.

Fig. 9 shows the response of the closed-loop system to step
changes in the reference current. The simulation parameters
are chosen according to Case 1 with T = 100µs. At t =
0.024 s the amplitude of both the real and the imaginary
components of i∗ are reduced to 5 A. At t = 0.033 s the
amplitude of the real component of i∗ is further reduced to



TABLE I
OUTPUT CURRENT THD WHEN USING THE PROPOSED PREDICTIVE

CONTROLLER VS. THE ALGORITHM IN [15].

THD using the
proposed controller

THD using the
controller in [15]

Case 1 (T = 100µs) 1.47% 3.23%

Case 2 (T = 100µs) 6.68% 15.44%

Case 1 (T = 20µs) 0.33% 0.71%

Case 2 (T = 20µs) 1.41% 3.54%
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Fig. 9. Phase-a response to step changes in the reference current. Parameters
are chosen according to Case 1 and T = 100µs.

2 A while keeping the imaginary component fixed. Fig. 10
shows the magnitude and phase of the output current i.

It is shown in Fig. 11 that smaller sampling interval
(T = 20µs) yields a more profound separation between the
fundamental and higher order harmonics. In such a case an
even better transient response and steady-state tracking can
be achieved.

A. Effect of Back-EMF Prediction on Performance

Fig. 12 shows the response of the closed-loop system to
step changes in the reference current when the parameters
of the system are chosen according to Case 2 with sampling
interval T = 100µs. Notice that thus far the back-EMF has
been predicted using an FIR prediction filter as described
in Section III-C with coefficients α0 = 0.5337, α1 =
0.3636, α2 = 0.0926, α3 = 0.0081. In comparison, Fig. 13
shows the response when a Lagrange back-EMF prediction
is employed. Clearly a better performance is achieved when
the FIR prediction filter is in use.

The THD of the output current in steady-state for the FIR
back-EMF prediction (when i∗ is simply a sinusoidal signal
with 13 A amplitude and 50 Hz frequency) is 6.68% whereas
employing a Lagrange prediction rule increases the THD to
8.05%. For this case Figs. 14 and 15 show the FIR and
Lagrange back-EMF predictions, respectively.

B. Robustness

1) Parameter Mismatch: Fig. 16 shows the Mean Squared
Error (MSE) of the phase-a current in steady-state in the
presence of model uncertainty when FIR and Lagrange back-
EMF predictions are employed. The nominal (true) values
are set according to Case 1 and the sampling interval is T =
100µs. It is clear that when the more accurate FIR back-EMF
prediction is employed the closed-loop system is capable of
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Fig. 10. The magnitude (top) and phase (bottom) of the output current i in
response to various step changes in imaginary and real components of i∗.
Parameters are according to Case 1 and T = 100µs.
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Fig. 11. Phase-a response to step changes in the reference current. Param-
eters are chosen according to Case 1 and T = 20µs.

tolerating a wide range of parameter mismatch. On the other
hand when the Lagrange back-EMF prediction is used the
error in the response increases rapidly when the induction
value deviates from its nominal value, ultimately resulting
in instability.

Fig. 17 shows the phase-a response with ∆L(:= L̃
L−1) =

−60% when FIR and Lagrange back-EMF predictions are
used. The nominal values are chosen according to Case 1 and
the sampling interval is T = 100µs. Improved performance
of the closed-loop system with FIR prediction in the presence
of uncertainty can be clearly observed.

2) Parameter Perturbation: The top plot in Fig. 18 shows
the phase-a response of the closed-loop system with the pro-
posed controller when the system parameters are perturbed at
t = 0.025 s. Here the load inductance L is suddenly dropped
to 20% of its nominal value (as given in Case 1) while the
load resistance R is raised by 80%. The sampling interval
is chosen as T = 20µs. In comparison, the performance of
the control algorithm presented in [15] is severely degraded
under the same conditions as shown in the bottom plot of
Fig. 18.
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Fig. 12. The magnitude (top) and phase (bottom) of the output current i
in response to step changes in i∗. Parameters are according to Case 2 and
T = 100µs. (FIR back-EMF prediction).
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Fig. 13. The magnitude (top) and phase (bottom) of the output current i
in response to step changes in i∗. Parameters are according to Case 2 and
T = 100µs. (Lagrange back-EMF prediction)

V. CONCLUSIONS

In this paper we presented a predictive current control
strategy for a voltage-source inverter. A discretized load
model was obtained using forward Euler method. A deadbeat
control law based on this model was formulated. This optimal
control policy, computed at every sampling interval, would
eliminate the output current error while compensating for
the inherent delay associated with the closed-loop system. A
selection scheme was proposed that approximates the control
input with the most appropriate (suboptimal) voltage vector.
It was also shown that the selection scheme can be modified
to reduce the current ripples at the output of the system. Once
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Fig. 14. Predicted back-EMF voltage (using FIR prediction) for a current
reference i∗ with fixed amplitude (13 A) and frequency (50 Hz).

0 0.01 0.02 0.03 0.04 0.05 0.06
−300

−200

−100

0

100

200

300

e p r
ea

l

0 0.01 0.02 0.03 0.04 0.05 0.06
−300

−200

−100

0

100

200

300

time (s)

e p im
ag

in
ar

y

Fig. 15. Predicted back-EMF voltage (using Lagrange prediction) for a
current reference i∗ with fixed amplitude (13 A) and frequency (50 Hz).

a voltage vector is selected its corresponding switching state
is sent directly to the inverter gates without the need for an
intermediary circuit.

It was argued that the proposed scheme can be best
described within the feedback-feedforward framework in
which the induced back-EMF voltage across the load is
treated as disturbance. Since the proposed controller relies
on the predictions of the back-EMF signal, discussions
surrounding the effect of this prediction on the performance
and robustness of the system was provided. It was shown that
the use of a simple but relatively more accurate prediction
filter (as opposed to the commonly used polynomial rules)
can greatly improve the performance and robustness of the
system.
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Fig. 16. Mean Squared Error (MSE) of the phase-a current in steady-
state when FIR and Lagrange back-EMF predictions are employed versus
parameter uncertainty ∆L := L̃/L − 1 and ∆R := R̃/R − 1. Here R
and L are the true variables and R̃ and L̃ are their corresponding blind
estimates used for control synthesis.
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Fig. 17. Phase-a response with ∆L = −60% when FIR (solid) and
Lagrange (dashed) back-EMF predictions are employed.

Simulations were provided for two nominal configurations.
The performance of the system was compared to the algo-
rithm presented in [15] as a point of reference. The effect
of back-EMF prediction was also studied using a number of
examples. Finally, the robustness of the system to parameter
perturbation and model uncertainty was assessed.

Future work may include modification to the control
strategy such that the changes in the active and reactive
components of the output current are decoupled.
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