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Abstract— The continual reachability set, the set of initial
states of a constrained dynamical system that can reach a target
at any desired time, is introduced. The properties of this set
are investigated and its connection with maximal reachability
constructs is examined. Owing to this connection, efficient
and scalable maximal reachability techniques can be used to
compute the continual reachability set. An approximation of
this set based on ellipsoidal techniques is presented. The results
are demonstrated on a problem of control of anesthesia.

I. INTRODUCTION

In many cyberphysical systems, mathematical guarantees
of safety or performance are critical to efficient and ef-
fective operation. Reachability analysis has typically been
used to provide guarantees of safety (collision avoidance,
flight envelope protection, etc.) for systems in which hard
constraints must be observed despite bounded control author-
ity (e.g. [1]–[5]). Reachability analysis identifies the states
backward (forward) reachable by a constrained dynamical
system from a given target (initial) set of states. However,
such constraints may often be temporarily relaxed in favor of
improved overall performance. For example, consider a fleet
of environmental monitoring motes which must be dispersed
to gather relevant data (e.g., water clarity, air quality), but
power conservation is paramount; or a remotely operated
fleet of ground, air, or sea vehicles, in which a desired
formation must be achieved within a certain time frame.

In this paper, we focus on the application of backward
reachability analysis to performance problems, as well as
its relationship to safety problems. Maximal and minimal
reachability constructs, formally introduced in [6], relate
the ability of a system to reach a target and the types of
controllers required. In formation of the maximal reachability
construct, the input tries to steer as many states as possible
to the target set. In formation of the minimal reachability
construct, the trajectories reach the target set regardless of
the input applied. The objects generated by each of these
constructs have unique properties: The maximal reachability
construct can be used to synthesize inputs that steer the
trajectories to the target, while the minimal reachability
construct can be used to synthesize inputs that keep the
trajectories away from the target. Two other closely related
constructs are the invariance and viability kernels [7] that
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describe the behavior of the trajectories within the target
set itself depending on how the input is applied. All these
fundamentally different constructs are computed using two
separate categories of algorithms: Lagrangian methods (e.g.
[8]–[11]) that follow the trajectories and Eulerian methods
(e.g. [3], [12]–[14]) that are based on gridding the state space.

Here our main contribution is to highlight an overlooked
reachability construct that we refer to as the continual
reachability set, which can be used to provide guarantees of
performance in reachability analysis. The continual reach-
ability set is the set of states that can reach the target at
any given time within the finite horizon. For any state in
this set, there exists at least one input policy that can steer
the trajectory emanating from that state to the target at any
desired time. Initiating the system from this set provides
additional flexibility to a supervisory controller to choose
a policy that optimizes a trade-off between the desired time-
to-reach the target and the input effort (or other performance
indices) required to drive the state to the target.

We are motivated by a problem of guaranteed performance
and safety in control of anesthesia. A variety of approaches to
controlling depth of anesthesia have been proposed [15]–[20]
to improve patient recovery, lessen anesthetic drug usage,
and reduce time spent at drug saturation levels. We identify
the set of states for which an anesthesiologist (or a closed-
loop controller) can choose the most suitable drug infusion
rate, while ensuring that the patient reaches the desired
clinical effect at any given time. The continual reachability
set provides a guarantee of performance, in that for any initial
state in the set, the desired clinical effect can be reached at
arbitrary times. This may be particularly useful in scenarios
in which one wishes to minimize the total administered drug,
or to achieve a desired depth of anesthesia arbitrarily fast.

Section II defines various backward reachability con-
structs including the continual reachability set. Section III
establishes the connections between these constructs and
expresses the continual reachability set in terms of maximal
reachability sets. This allows us to use Lagrangian methods
to compute the continual reachability set. We formulate an
approximation of this set based on ellipsoidal techniques [21]
and show the results on a problem of control of anesthesia
in Section IV. Section V provides concluding remarks.

II. BACKWARD CONSTRUCTS FOR CONSTRAINED
DYNAMICAL SYSTEMS

Consider a continuous time, continuously valued system

ẋ(t) = f(x(t), u(t)), x(0) = x0 (1)



with state space X := Rn, state vector x(t) ∈ X , and
input u(t) ∈ U where U is a compact and convex subset
of Rm. We assume that the vector field f : X × U → X
is Lipschitz in x and continuous in u. Denote by U[0,t] the
set of Lebesgue measurable functions u(·) from [0, t] to U .
With an arbitrary time horizon τ > 0, for every t ∈ [0, τ ],
x0 ∈ X , and u(·) ∈ U[0,t], there exists a unique trajectory
ξx0,0,u(·) : [0, t] → X that satisfies the initial condition
ξx0,0,u(·)(0) = x0 and the differential equation (1) almost
everywhere. (Here the subscript 0 denotes the initial time.)

For a nonempty state constraint (target) set K ⊆ X the
following backward constructs can be defined:

Definition 1 (Maximal Reachability Set): The maximal
reachability set at time t is the set of initial states for
which there exists an input u(·) such that the trajectories
emanating from those states reach K exactly at time t:

Reach]t(K) :=
{
x0 ∈ X | ∃u(·) ∈ U[0,t], ξx0,0,u(·)(t) ∈ K

}
.

Definition 2 (Maximal Reachability Tube): The maximal
reachability tube (also known as the possible victory domain
[13], attainability tube [8], or capture basin [22]) over the
horizon [0, τ ] is the set of initial states for which there exists
an input such that the trajectories emanating from those states
reach K at some time t ∈ [0, τ ]:

Reach][0,τ ](K) :=
{
x0 ∈ X | ∃u(·) ∈ U[0,τ ], ∃t ∈ [0, τ ],

ξx0,0,u(·)(t) ∈ K
}
.

Definition 3 (Minimal Reachability Set): The minimal
reachability set at time t is the set of initial states such that,
for every input u(·), the trajectories emanating from those
states reach K exactly at time t:

Reach[t(K) :=
{
x0 ∈ X | ∀u(·) ∈ U[0,t], ξx0,0,u(·)(t) ∈ K

}
.

Definition 4 (Minimal Reachability Tube): The minimal
reachability tube (also known as the certain victory domain
[13]) over the horizon [0, τ ] is the set of initial states such
that, for every input u(·), the trajectories emanating from
those states reach K at some time t ∈ [0, τ ]:

Reach[[0,τ ](K) :=
{
x0 ∈ X | ∀u(·) ∈ U[0,τ ], ∃t ∈ [0, τ ],

ξx0,0,u(·)(t) ∈ K
}
.

Definition 5 (Invariance Kernel): The (finite horizon) in-
variance kernel of K is the set of initial states in K such that
the trajectories emanating from those states remain within K
for all time t ∈ [0, τ ] for all input u(·):
Inv[0,τ ](K) :=

{
x0 ∈ X | ∀u(·) ∈U[0,τ ], ∀t ∈ [0, τ ],

ξx0,0,u(·)(t) ∈ K
}
.

Definition 6 (Viability Kernel): The (finite horizon) via-
bility kernel (also known as the largest controlled-invariant
subset) of K is the set of all initial states in K for which
there exists a u(·) such that the trajectories emanating from
those states remain within K for all time t ∈ [0, τ ]:

V iab[0,τ ](K) :=
{
x0 ∈ X | ∃u(·) ∈U[0,τ ], ∀t ∈ [0, τ ],

ξx0,0,u(·)(t) ∈ K
}
.

Definition 7 (Continual Reachability Set): The continual
reachability set defined over the time horizon [0, τ ] is the set

Reach♯[0,τ ](K)

Reach♭[0,τ ](K)

K
Reachγ[0,τ ](K)

V iab[0,τ ](K)

Inv[0,τ ](K)

Fig. 1. An illustration of the inclusions in Proposition 1.

of initial states in K for which, for any given time t ∈ [0, τ ],
there exists a u(·) such that the trajectories emanating from
those states reach K at t:
Reachγ[0,τ ](K) :=

{
x0 ∈ X | ∀t ∈ [0, τ ], ∃u(·) ∈ U[0,t],

ξx0,0,u(·)(t) ∈ K
}
.

What differentiates these constructs from one another
is the type and order of quantifiers that operate on the
time and input variables. These subtle differences generate
fundamentally distinct sets. The states that belong to each
of these sets have properties that are unique to that set.
The properties of the invariance and viability kernels as
well as the maximal and minimal reachability sets and tubes
have been studied extensively [3], [7], [23]. To examine
the properties of the continual reachability set let us first
establish the connections between all of the above constructs.

III. CONNECTIONS BETWEEN BACKWARD CONSTRUCTS

We begin by stating a generic inclusion relation (Fig. 1):
Proposition 1:

Inv[0,τ ](K) ⊆ V iab[0,τ ](K) ⊆ Reachγ[0,τ ](K) ⊆ K
⊆ Reach[[0,τ ](K) ⊆ Reach][0,τ ](K).

(2)

Proof: That Inv[0,τ ](K) ⊆ V iab[0,τ ](K) ⊆ K is
well-known [7]. To show V iab[0,τ ](K) ⊆ Reachγ[0,τ ](K),
take x0 ∈ V iab[0,τ ](K). Therefore, (∃u(·) ∈ U[0,τ ])(∀t ∈
[0, τ ])ξx0,0,u(·)(t) ∈ K =⇒ (∀t ∈ [0, τ ])(∃u(·) ∈
U[0,t])ξx0,0,u(·)(t) ∈ K ⇐⇒ x0 ∈ Reachγ[0,τ ](K). To show
Reachγ[0,τ ](K) ⊆ K, take x0 ∈ Reachγ[0,τ ](K) and let τ = 0.
x0 must also belong to K. To show K ⊆ Reach[[0,τ ](K)
take x0 ∈ K and let τ = 0. Thus ξx0,0,u(·)(0) = x0 for
any u(·) ∈ U[0,τ ]. Therefore, x0 ∈ Reach[[0,τ ](K). To prove
Reach[[0,τ ](K) ⊆ Reach][0,τ ](K), take x0 ∈ Reach[[0,τ ](K).
Therefore, (∀u(·) ∈ U[0,τ ])(∃t ∈ [0, τ ])ξx0,0,u(·)(t) ∈ K =⇒
(∃u(·) ∈ U[0,τ ])(∃t ∈ [0, τ ])ξx0,0,u(·)(t) ∈ K ⇐⇒ x0 ∈
Reach][0,τ ](K).

The following proposition describes the connection be-
tween reachability tubes and viability and invariance kernels.

Proposition 2 ([13], [1]): With Kc denoting the comple-
ment of K in X we have

Reach][0,τ ](Kc) = (Inv[0,τ ](K))c, (3)

Reach[[0,τ ](Kc) = (V iab[0,τ ](K))c. (4)
In addition, it has been shown in [6] (and indirectly in

[1] using the Hamilton-Jacobi-Bellman framework) that the
following connections exist between maximal and minimal
reachability sets and tubes.



Proposition 3 ([6], [1]):

Reach][0,τ ](K) =
⋃

t∈[0,τ ]
Reach]t(K), (5)

Reach[[0,τ ](K) ⊇
⋃

t∈[0,τ ]
Reach[t(K). (6)

In fact, (5) is precisely how the Lagrangian methods
compute the maximal reachability tube. That is, to compute
Reach][0,τ ](K) these algorithms compute Reach]t(K) at ev-
ery time step and then take their collective union.

Among Lagrangian methods, the technique in [24] is
thus far the only method that has been extended to handle
universally quantified inputs. Therefore, it is also capable
of computing minimal reachability sets. As a by-product of
this feature, the same technique can also be used to directly
compute the invariance kernel.

Proposition 4 ([1]):

Inv[0,τ ](K) =
⋂

t∈[0,τ ]
Reach[t(K). (7)

Proof: x0 ∈ ⋂
t∈[0,τ ]Reach

[
t(K) ⇐⇒ (∀t ∈

[0, τ ])(∀u(·) ∈ U[0,τ ])ξx0,0,u(·)(t) ∈ K ⇐⇒ (∀u(·) ∈
U[0,τ ])(∀t ∈ [0, τ ])ξx0,0,u(·)(t) ∈ K ⇐⇒ x0 ∈ Inv[0,τ ](K).
This can also be verified from (3) and (5) and the simple
fact that Reach[t(K) = (Reach]t(Kc))c.

Note however that due to (6), minimal reachability tubes
(and viability kernels via Proposition 2) cannot be formed
from minimal reachability sets. It is shown in [7] and [6]
that V iab[0,τ ](·) and Reach[[0,τ ](·) are the only constructs
that can be used to prove the existence of an input (control
in this context) which guarantees “safety” of the system over
the horizon [0, τ ]. At this time, these constructs are only
available from computationally costly Eulerian methods that
rely on gridding the state space.

Theorem 1:

Reachγ[0,τ ](K) =
⋂

t∈[0,τ ]
Reach]t(K). (8)

Proof: x0 ∈ Reachγ[0,τ ](K) ⇐⇒ (∀t ∈ [0, τ ])(∃u(·) ∈
U[0,t])ξx0,0,u(·)(t) ∈ K ⇐⇒ (∀t ∈ [0, τ ])x0 ∈
Reach]t(K)⇐⇒ x0 ∈

⋂
t∈[0,τ ]Reach

]
t(K).

Remark 1: Due to Theorem 1 the (scalable and efficient)
Lagrangian techniques can be used to compute the continual
reachability sets.

A. Properties of the Continual Reachability Set

P1. If (1) is a linear system and K is convex and compact,
then Reachγ[0,τ ](K) is also convex and compact. This
is due to the fact that for a linear system with convex
and compact target, the maximal reachability sets are all
convex and compact [23]. Therefore, their intersection
is also convex and compact.

P2. Reachγ[0,τ ](K) ⊆ Reach]t(K), ∀t ∈ [0, τ ]. Particularly,
if Reach]t(K) = ∅ for some t then Reachγ[0,τ ](K) = ∅.

P3. The states that lie outside of the continual reachability
set but inside the maximal reachability tube can only
reach the target at specific times (provided that an
appropriate input is applied to the system); e.g., a state
x0 ∈ Reach][0,τ ](K)\

⋃
t∈[0,τ ]\{t̃}Reach

]
t(K) can only

reach the target at time t̃; or, x0 ∈
(
Reach]

t̂
(K) ∩

x1

x2

x3 K

Reach♯
t=1(K)

Reach♯
t=3(K)

Reach♯
t=2(K)

Fig. 2. A time-discretized illustration of P3. The maximal reachability sets
at times t = 1, 2, 3 are shown. The state x1 which belongs to the continual
reachability set (outlined in red) can reach the target at any desired time,
whereas x2 can be steered to the target at times t = 1 and t = 2, and x3

can only reach the target at t = 2.

Reach]
t̃
(K)
)
\⋃t∈[0,τ ]\{t̂,t̃}Reach]t(K) can only reach

K at times t̂ and t̃. In contrast, x0 ∈ Reachγ[0,τ ](K) can
reach the target at any given desired time. (Fig. 2)

P4. The states in Reachγ[0,τ ](K)\V iab[0,τ ](K) may tem-
porarily leave K, but will eventually return to it at the de-
sired time (provided that an appropriate input is applied).
It is clear from Theorem 1 that the farthest achievable
distance for a trajectory that emanates from one such
state is determined by the maximal reachability set it
belongs to. Let d(x,A) := infa∈A‖x − a‖ denote the
distance between a point x ∈ X and a compact subset
A of X . Also let dH1

(S,A) := sups∈S infa∈A‖s − a‖
denote the one-sided Hausdorff distance from a compact
subset S to A in X . Then for every x0 ∈ Reachγ[0,τ ](K)
and some t ∈ [0, τ ], for all t̂ ∈ [0, t],

d(ξx0,0,u(·)(t̂),K) ≤ dH1

(
Reach]

t−t̂(K),K
)

(9)

for any u(·) ∈ U[0,t] such that ξx0,0,u(·)(t) ∈ K.
Notice that P3 implies that when the constraint set K rep-

resents a target performance of the system and the initial state
is in the continual reachability set, the controller can decide
the most suitable course of action by applying an appropriate
control law based on the desired time to reach the target and
the required control effort. For example, depending on the
circumstances, the controller may choose a more aggressive
control action in favor of reaching the target at a shorter time
span. This provides the controller with additional degrees of
freedom in choosing the appropriate closed-loop trajectory
while ensuring that the target is reached.

B. Dealing With Under- and Over-Approximations
Most Lagrangian techniques compute maximal reachabil-

ity sets by under- and/or over-approximations. Since the
states that lie outside of the continual reachability set may
not reach K at a desired time, an under-approximation of
this set is the correct form of approximation. With under-
approximations of the maximal reachability sets the con-
tinual reachability set can be correctly under-approximated,
ensuring that all states in the approximating set possess the
properties of the continual reachability set.

Corollary 1: Let A↓ denote an under-approximation of A.

Reachγ[0,τ ](K) ⊇
⋂

t∈[0,τ ]
Reach]t(K↓)↓. (10)



C. Approximating the Continual Reachability Set Using El-
lipsoidal Techniques

Assume that (1) has linear dynamics and can therefore be
restated as a linear differential inclusion ẋ(t) ∈ Ax(t)+BU
for a.e. t ∈ [0, τ ], with A ∈ Rn×n and B ∈ Rn×m. Assume
further that U is a nonempty compact ellipsoid in Rm.

We will show in this section that when K is (or can
be reasonably under-approximated by) a nonempty compact
ellipsoid, ellipsoidal techniques [21] can be used to compute
an approximation of Reachγ[0,τ ](K).

Definition 8 ([23]): An ellipsoid with center q ∈ Rn and
shape matrix Q ∈ Rn×n, Q = QT � 0, is defined as

E(q,Q) :=
{
x ∈ Rn |

〈
(x− q), Q−1(x− q)

〉
≤ 1
}
. (11)

Let K↓ε := E(xτ , Xτ ) ⊂ X be an ellipsoidal under-
approximation of K, and U = E(p, P ) ⊂ Rm. Then, as
in [24] the maximal reachability set at time t is a compact
convex set whose center evolves according to ẋ∗(t) =
Ax∗(t) + Bp, x∗(τ) = xτ . For a given direction `τ ∈ Rn
consider the solution `(t) to the adjoint equation ˙̀(t) =
−AT`(t), `(τ) = `τ . There exists a “tight” [8] internal
approximating ellipsoid E(x∗(t), X−` (t)) in the direction of
`(t) such that

Reach]t(K↓ε) ⊇ E(x∗(t), X−` (t)) (12)

with a shape matrix X−` (t) obtained from a differential
equation [24]. Since this under-approximation is tight for
every `(t), it is shown that with L := {l ∈ Rn | ‖l‖ = 1},

Reach]t(K↓ε) =
⋃

`τ∈L
E(x∗(t), X−` (t)). (13)

Proposition 5:

Reachγ[0,τ ](K) ⊇ Reach
γ
[0,τ ](K↓ε)

=
⋂

t∈[0,τ ]

(⋃
`τ∈L

E(x∗(t), X−` (t))
)
.

(14)

Proof: The equality can be verified by substituting (13)
in Theorem 1, noting that the approximation of Reach]t(K↓ε)
is exact for a.e. t ∈ [0, τ ]. The inclusion stems from the fact
that for any two sets A and B such that A ⊆ B, we have
Reachγ[0,τ ](A) ⊆ Reach

γ
[0,τ ](B).

In practice, only a finite number of directions can be used
for maximal reachability set computations. Let V be a subset
of L with finite cardinality. Therefore, for every t ∈ [0, τ ],

Reach]t(K↓ε) ⊇ Reach]t(K↓ε)↓ :=
⋃
`τ∈V

E(x∗(t), X−` (t)).

(15)
Corollary 2:

Reachγ[0,τ ](K) ⊇ Reach
γ
[0,τ ](K↓ε)

⊇
⋂

t∈[0,τ ]

(⋃
`τ∈V

E(x∗(t), X−` (t))
)
.

(16)

Furthermore, with x∗t := x∗(t) and X−`,t := X−` (t),

Reachγ[0,τ ](K) ⊇ Reach
γ
[0,τ ](K↓ε) ⊇{

x ∈ X
∣∣∣ sup
t∈[0,τ ]

min
`τ∈V

〈
(x− x∗t ), (X−`,t)−1(x− x∗t )

〉
≤ 1
}
.

(17)

Proof: Substituting (15) in (10) yields (16). The ex-
pression (17) is a direct consequence of (16).

Remark 2: From a numerical standpoint, it is not nec-
essary to compute intersections and unions of ellipsoids to
obtain an under-approximation of the continual reachability
set; it is easy to determine whether a given point in the state
space belongs to Reachγ[0,τ ](K) by evaluating (17).

D. Continual Reachability Set for Discrete-Time Systems

The results presented in the previous sections, including
Corollary 2, hold in their entirety for discrete-time systems
as well. The only exception is how an internal approximating
ellipsoid is computed; cf. [25] for more details.

IV. EXAMPLE: CONTROL OF ANESTHESIA

Over the past few years, an interdisciplinary team of
researchers at the University of British Columbia has been
developing a closed-loop drug delivery system for anesthesia.
A bolus-based Neuromuscular Blockade Advisory System
has been developed and experimentally validated (in open-
loop) [26], [27]. This system is based on data from more
than 80 patients via clinical trials. LTI models of dynamical
response to the bolus have been numerically identified for
each patient by exploiting a Laguerre model framework [28].
A key element for fully closing the loop, and obtaining regu-
latory certification, are guarantees of safety and performance
that the viability kernel and the continual reachability set can
provide. The results presented here represent work towards
that goal.

Consider the problem of computing the continual reach-
ability set for a dynamical system that represents a patient
under anesthesia subject to a therapeutic target.

A. Patient Model and Constraints

Consider the following discrete-time LTI system describ-
ing the Laguerre dynamics of a patient [26], [28]:

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t) (18)

with time step t ∈ Z+, state vector x(t) ∈ R6, input
(rocuronium infusion rate [mg/kg/min]) u(t) ∈ R, and
output (pseudo-occupancy, a metric related to the patient’s
plasma concentration of anesthetic e.g. rocuronium or propo-
fol) y(t) ∈ R. The sampling interval is 20s and the system
matrices are given in (*).

The target is specified in terms of the pseudo-occupancy
level: y(t) ∈ K0 := [0.1, 1]. The input is bounded above and
below by hard physical constraints: u(t) ∈ U0 := [0, 0.8],
∀t ∈ [0, T ], where T is the time step horizon.

B. Reformulating the Problem

Notice that this problem differs from a typical reachability
formulation in two ways: 1) the target is given in the output
space as opposed to the state space, and 2) the output y
should track a reference that lies within K0. We reformulate
the problem by first projecting the output bounds onto the
state space and then making the control action regulatory. For
brevity, we drop the time argument from the state, input, and
output notations.



A=



0.9960 0 0 0 0 0
0.0080 0.9960 0 0 0 0
−0.0080 0.0080 0.9960 0 0 0
0.0079 −0.0080 0.0080 0.9960 0 0
−0.0079 0.0079 −0.0080 0.0080 0.9960 0
0.0079 −0.0079 0.0079 −0.0080 0.0080 0.9960

, B =



0.0894
−0.0890
0.0886
−0.0883
0.0879
−0.0876

, CT =



18.5000
8.2300
3.5300
4.3400
3.7000
3.0700

 (*)

1) Projection of Bounds onto the State Space: Consider
the (non-singular) linear transformation[

C
05×1 I5

][
x1 x2 · · · x6

]T
=:
[
w1 w2 · · · w6

]T
.

The states w2, . . . , w6 are the Laguerre states x2, . . . , x6.
In the new coordinate space, the bounds are state space
constraints on the first state w1 := Cx = y.

2) Tracking vs. Regulating: We perform an affine change
of coordinates and shift the equilibrium point to the origin.
This is done by augmenting the state vector in the w-space
with the reference output signal y∗ and applying a basis
translation so that in the new coordinates the first state
w1 := y becomes z1 := y − y∗:

1 0 ··· 0 −1

0 1
. . . 0

...
. . . . . . . . .

...
...

. . . 1 0

0 ··· ··· 0 1




y
w2

...
w6

y∗

 =


y − y∗
w2

...
w6

y∗

 =:


z1
z2
...
z6
z7

 . (19)

Let u(t) = uss be the steady state control input needed
for tracking a constant setpoint y∗(t) = y∗ = 0.9. This
value can be easily calculated using a standard state-feedback
procedure from[

xss
uss

]
=

[
A− I B
C 0

]−1 [
0
y∗

]
, (20)

where xss denotes the steady state equilibrium. To complete
the reformulation, we deduct uss from the control set of the
transformed system.

The new constraints for the transformed, extended system
z(t + 1) = Ãz(t) + B̃u(t), y(t) = C̃z(t), with Ã ∈ R7×7,
B̃ ∈ R7×1, C̃ ∈ R1×7, are as follows:

z(t) ∈ K := (K0 − y∗)× R6,

u(t) ∈ U := U0 − uss, ∀t ∈ [0, T ].
(21)

Note that with this formulation, the last state z7 is allowed
to take on values that are not needed; of actual interest are
the behavior of the remaining states when z7 = y∗.

C. Computing the Continual Reachability Set

We use the Ellipsoidal Toolbox [9] to under-approximate
the continual reachability set of K based on the results
presented in this paper. Notice that U is an ellipsoid. To
under-approximate K with a non-degenerate ellipsoid K↓ε
we use a priori knowledge about the typical values of the
(Laguerre) states z2, . . . , z6 and bound them by an ellipsoid
with spectral radius of λmax = 2 in those directions. (This
imposed constraint can be relaxed if necessary.) We first
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steps (each of 20s). Intersection of the time slices of this tube under-
approximates Reachγ

[0,τ ]
(K↓ε).

compute the maximal reachability sets of the system for K↓ε
at every time step in 14 random directions for T = 180. We
then under-approximate Reachγ[0,τ ](K↓ε) using Corollary 2.

Fig. 3 shows a projection of the constraint set K↓ε and
its continual reachability set Reachγ[0,τ ](K↓ε) for the patient
undergoing a 60min surgery (180 time steps each of length
20s). The apparent non-convexity of Reachγ[0,τ ](K↓ε) is due
to the fact that a limited number of directions has been used.
The set approaches convexity when the number of directions
goes to infinity, conforming to P1 and Proposition 5. Fig. 4
shows a projection of the maximal reachability sets for the
first 80 time steps (in backward time) that are used when
under-approximating Reachγ[0,τ ](K↓ε).

While to ensure safety it is usually desirable to keep
the patient within the target clinical effect as much as
possible, the required optimal drug infusion rate (or the
resulting trajectory generated by such control policy) may



not be physiologically ideal. There are instances in which,
depending on the current physiological status of the pa-
tient, the anesthesiologist (or the closed-loop controller) may
choose to relax the state constraint and allow the patient
to temporarily leave the target in exchange for additional
flexibility in selecting a better-suited (e.g. less aggressive,
mildly varying) infusion rate or satisfying other secondary
clinical objectives, while ensuring that the patient returns
to the target at a prescribed time. The computed continual
reachability set can be used for this purpose, as an alternative
constraint for a model predictive controller. This will ensure
that the closed-loop system chooses an infusion rate that
is physiologically more optimized to meet the operating
conditions and the patient’s ability to handle the anesthetic
drug, while simultaneously ensuring that the clinical effect
reaches the target at a desired time. Such flexible, patient-
oriented design has the benefit of tailoring the performance
of the system towards the patient’s needs during the surgery.

V. CONCLUSIONS

We studied the continual reachability set and its con-
nection to other backward reachability constructs. Initiating
the system from the continual reachability set provides the
(supervisory) controller with an additional degree of freedom
in choosing the most appropriate course of action. This is due
to the fact that for every state in the continual reachability
set and for every desired time-to-reach the target, there exists
at least one input that drives the trajectory to the target at
that desired time. Therefore, depending on circumstances,
the controller can choose between reaching the target at
a desired time or applying a more suitable input that also
ensures that the target is reached. An under-approximation
based on ellipsoidal techniques was formulated and applied
to a problem of control of anesthesia. Future work includes
i) synthesizing continual reachability control laws, and ii)
accounting for model uncertainty in the computations.
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