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Abstract— We present a decomposition method for complex-
ity reduction in reachability analysis and controller synthesis
based on a series of transformations. The decomposition is
guaranteed to yield weakly-coupled (lower dimensional) sub-
systems with disjoint control input across them. Reachable
sets, computed independently for each subsystem, are back-
projected and intersected to yield an overapproximation of
the actual reachable set. Using an example we show that
significant reduction in the computational costs can be achieved.
This technique has considerable potential utility for use in
conjunction with computationally intensive reachability tools.

Keywords: reachability analysis, dimension reduction, transfor-
mation, projection, LTI systems, decomposition

I. INTRODUCTION

A major step towards formal verification and controller
synthesis of continuous and hybrid systems is the so-called
reachability analysis. Historically, a major obstacle in em-
ploying reachability analysis has been the “curse of dimen-
sionality” [1]. The computational complexity of reachability
techniques increases with the dimension of the continuous
state space, often rendering them impractical for complex
real-life applications. This difficulty motivated the develop-
ment of more efficient reachability techniques within the past
few years [2], [3]. Despite their success, the applicability
of these methods is limited to systems whose constraints
can be described by very specific classes of shapes (e.g.,
ellipsoids and zonotopes) in both the input and the state
spaces. On the other hand, for many applications, the ability
to take advantage of some of the unique features (e.g.,
safety controller synthesis, and handling of non-convex or
arbitrarily shaped sets) offered almost exclusively by more
computationally intensive reachability tools is of critical
importance.

This paper focuses on continuous linear time-invariant
(LTI) systems (and by extension, hybrid systems with LTI
continuous dynamics). We aim to broaden the range of
applicable reachability tools for LTI systems with high
dimensionality, to enable the use of reachability tools that
would otherwise be too computationally complex to employ
(e.g., [4], [5], [6]). We accomplish this through a series of
transformations of the system into a coordinate space in
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which reachability could be performed in lower-dimensional
subspaces and is guaranteed to yield an overapproximation of
the actual reachable set in that space. Performing reachability
in lower dimensions, we obtain significant reduction in the
computational costs regardless of the reachability tool used.

Complexity reduction for reachability analysis has been
addressed by a number of researchers. In general, methods
to compute reachable sets for higher dimensional systems
can be divided into three categories. First are techniques that
take advantage of certain representations of sets in the state
space [2], [3], [7]. Second are techniques that make use of
model reduction and approximation [8], [9], hybridization
[10], projection [11] and structure decomposition [12], [13],
[14]. Finally, third are methods that combine the approaches
from the first two categories. For instance, [15] employs both
model approximation (through Krylov subspace projection)
and efficient set representation (using low-dimensional poly-
topes) to perform reachability for very large-scale systems
with affine dynamics.

In [11], a projection scheme based on Hamilton-Jacobi-
Isaacs (HJI) PDEs is considered in which the projection
of the actual reachable set is overapproximated in lower
dimensional subspaces where the unmodeled dimensions are
treated as disturbance. Similarly in concept, [12] decomposes
a full-order nonlinear system to either disjoint or overlap-
ping subsystems and solves multiple HJI PDEs in lower
dimensions. The computed reachable set for each subsystem
is an overapproximation of the projection of the full-order
reachable set onto the subsystem’s subspace. In [13], using an
ε-decomposition procedure, affine systems are decomposed
into multiple subsystems and reachability is performed on
each lower-dimensional subsystem. In [14] we presented a
Schur-based decomposition for LTI systems. A Sylvester
equation (or an optimization problem) was solved in order
to eliminate (minimize) the coupling between the resultant
subsystems. Additional constraints were imposed when the
control input was non-disjoint across candidate subsystems.
Reachability was then performed on each subsystem inde-
pendently.

In this paper, our main contribution is to provide an
additional method, based on structure decomposition, to
reduce the complexity of reachability analysis for high
dimensional LTI systems. We present a set of transformations
through which resultant subsystems are ensured to a) be
weakly coupled and b) have disjoint inputs. In Section II,
we provide necessary preliminaries. Section III presents the
decomposition method. An extension to hybrid systems is
also provided. Section IV demonstrates our method on a



numerical example. Lastly, we provide concluding remarks
in Section V.

II. MATHEMATICAL PRELIMINARIES

We focus on LTI systems of the form

ẋ = Ax+Bu (1)

described in standard notation by

G :=

[
A B
∗ ∗

]
(2)

with A ∈ Rn×n, B ∈ Rn×p, state vector x(t) ∈ Rn, and
control input u(t) ∈ U ⊂ Rp (with U a compact set). Here,
“∗” is simply a place holder for the terms in (2) with which
we are not concerned in this paper.

Consider the following two definitions of reachable sets.
Definition 1: Given a target (unsafe) set of states Xf ⊂

Rn and the time interval τ ∈ [t, tf ], the backward reachable
set of system (2) at time t is defined as Xt := Reach(Xf ),
Xt ⊆ Rn and is the set of all states for which there exists
a trajectory x(τ) such that x(tf ) ∈ Xf for all control input
u(τ) ∈ U .

Definition 2: Given a target (unsafe) set of states Xf ⊂
Rn and the time interval τ ∈ [t, tf ], the backward reachable
set of the perturbed system ẋ = Ax + Ld, L ∈ Rn×q , d ∈
D ⊂ Rq , at time t is defined as Xt := Reach(Xf ), Xt ⊆ Rn
and is the set of all states for which there exists a trajectory
x(τ) and a disturbance signal d(τ) ∈ D such that x(tf ) ∈
Xf .

For brevity, we adapt the following notation: A non-
subscripted norm ‖·‖ denotes an infinity norm. In particular,
for a matrix A = [aij ] ∈ Rm×n this norm is an induced norm
defined by ‖A‖ := supv 6=0

‖Av‖
‖v‖ , v ∈ Rn, and can be com-

puted as max1≤j≤n
∑m
i=1|aij |. For a Lebesgue measurable

function x : R → Rn defined over an interval [t0, tf ], we
denote ‖x(t)‖ := ‖x(t)‖L∞[t0,tf ] = supt∈[t0,tf ]|x(t)| <∞.

Now consider the following definitions.
Definition 3: The LTI system that consists of two subsys-

tems

ẋ1 = A1x1 + Λcx2 (3)
ẋ2 = A2x2 (4)

with A1 ∈Rk×k, A2 ∈R(n−k)×(n−k), Λc ∈Rk×(n−k),
x1(t)∈Rk, and x2(t)∈R(n−k), is said to be unidirectionally
coupled since the trajectories of (3) are affected by those of
(4), while (4) evolves independently from (3).

Definition 4: Let there be a non-singular transformation
matrix T ∈Rn×n, such that [zT

1 , z
T
2 ]T = T−1[xT

1, x
T
2]T, and

ż1 = A1z1 + Λ̃cz2 (5)
ż2 = A2z2. (6)

Then (5) and (6) are said to be unidirectionally weakly-
coupled (in comparison to (3) and (4)) if

‖Λ̃c‖ < ‖Λc‖. (7)

Definition 5: Let there be a non-singular transformation
matrix T ∈ Rn×n and a coordinate space w := T−1x in
which (1) can be partitioned into N subsystems as

ẇi = Ãiwi + B̃iui, i = 1, . . . , N. (8)

The input u is disjoint across these subsystems if

ui ∈ Ui ⊂ Rpi , p =

N∑
i=1

pi (9)

so that the partitioning of U is mutually exclusive and
exhaustive.

Definition 6: A subsystem i in (8) is said to be trivially-
uncontrollable if it possesses a null input matrix, i.e. B̃i = 0.

Next, consider the following lemmas which will be used
in Section III.

Lemma 1: The Sylvester equation

EX +XF +H = 0, (10)

with E ∈ Rk×k, F ∈ Rm×m, and H ∈ Rk×m, has a
unique solution X ∈ Rk×m if and only if the eigenvalue sum
λi(E) + λj(F ) 6= 0, ∀i ∈ {1, ..., k} and ∀j ∈ {1, ...,m}.

Proof: cf. [16, Lem. 2.7].
Lemma 2 (Schur form): For any real matrix M ∈ Rn×n,

there exists an orthogonal matrix U ∈ Rn×n such that
UTMU = M̃ is upper (quasi) triangular, and the eigenvalues
of M are the eigenvalues of the block diagonals (each of
dimension 2 or less) of M̃ . Furthermore, the matrix U can
be chosen to order the eigenvalues arbitrarily.

Proof: cf. [17, Thm’s 7.1.3 and 7.4.1] and [18, 5R].
Remark 1: There always exists a partitioning of M̃ such

that M̃ =

[
M̃11 M̃12

0 M̃22

]
.

The condition number of a non-singular matrix A ∈ Rn×n
is κ(A) := ‖A‖2‖A−1‖2 = σmax(A)

σmin(A) where ‖·‖2 denotes the
Euclidean norm and σ(·) is the singular value operator.

Lemma 3: Let Aı,A be non-singular matrices in Rn×n.
Then the following properties hold:

i) κ(AıA) ≤ κ(Aı)κ(A)
ii) κ(AıA) = κ(Aı) if A is orthogonal (AT

 = A−1
 ).

Proof: The proof follows directly from the definition
of κ(·) above and noting that ‖AıA‖2 ≤ ‖Aı‖2‖A‖2 and
that if AT

 = A−1
 , then ‖A‖2 = 1.

Remark 2 ([19]): If A ∈ Rn×n is a transformation ma-
trix, κ(A) measures the degree of distortion of Ax, x ∈ Rn.

Finally, a linear transformation of a set X ⊆ Rn using an
invertible transformation matrix T ∈ Rn×n is V := {v ∈
Rn | v = T−1x, x ∈ X}. This, with an abuse of notation, is
sometimes stated as V = T−1X .

III. PROBLEM FORMULATION AND SOLUTION
METHODOLOGY

In this section we present a decomposition method which
results in unidirectionally weakly coupled subsystems with
disjoint input across them. Reachability analysis can then be
performed on these lower dimensional subsystems instead of
the full-order system.



We assume a partitioning of (2) that results in exactly
two subsystems. However, the proposed method is general-
izable to N subsystems by applying the same decomposition
technique to each subsystem iteratively. A higher number of
subsystems (i.e. iterated decomposition) may result in a more
conservative overapproximation of the actual reachable set.

When the control input is non-disjoint, even if the dy-
namics of the subsystems are completely decoupled, their
evolution is tightly paired through a common input. The dif-
ficulty arises, for example, when in reachability computation
a control value deemed optimal for one subsystem is in fact
non-optimal for the full-order system. Blindly performing
reachability for each subsystem separately may result in
an underapproximation and additional measures have to be
taken in order to ensure the overapproximation of the actual
reachable set.

In [14] we proposed a modified transformation that en-
sured a decomposition with disjoint input across the com-
puted subsystems. However, one such transformation could,
in some cases, increase the unidirectional coupling between
subsystems which in turn would potentially result in exces-
sive overapproximation of the full-order reachable set.

Here we present a series of transformations that simul-
taneously address the above issues. That is, the resultant
subsystems are unidirectionally weakly coupled across which
the input is guaranteed to be disjoint by ensuring that one
of the subsystems in the new coordinate system is trivially-
uncontrollable.

In such a case, as discussed in [14], it is clear that the
(otherwise non-disjoint) control action does not affect the
evolution of the reachable set of the trivially-uncontrollable
subsystem. Therefore, an optimal control input for the sub-
system with nonzero input matrix is also optimal for the
full-order system.

A. The Similarity Transformation

We first apply Lemma 2 with an orthogonal transformation
matrix T1 ∈ Rn×n to (2) to obtain

G′ = T−1
1 (G) =

[
T T

1AT1 T T
1B

∗ ∗

]

=

 Ã11 Ã12 B̃1

0 Ã22 B̃2

∗ ∗

 (11)

with Ã11 ∈ Rk×k, Ã12 ∈ Rk×(n−k), Ã22 ∈ R(n−k)×(n−k),
B̃1 ∈ Rk×p, and B̃2 ∈ R(n−k)×p.

Applying a second transformation

T2 =

[
αIk×k 0

0 I(n−k)×(n−k)

]
∈ Rn×n, (12)

with α ∈ R, α > 1 results in

G′′ = T−1
2 (G′) =

 Ã11 α−1Ã12 α−1B̃1

0 Ã22 B̃2

∗ ∗

 . (13)

In this case if α is chosen to be sufficiently large, the
subsystems in (13), collectively written as[

ż1

ż2

]
=

[
Ã11 Ac
0 Ã22

] [
z1

z2

]
+

[
α−1B̃1

B̃2

]
u (14)

with z = (T1T2)−1x and Ac := α−1Ã12, can be made
unidirectionally weakly coupled (since ‖Ac‖ < ‖Ã12‖) with
“nearly” disjoint input decomposition across them. However,
such a transformation with a deliberately large α� 1, among
other shortcomings, is prone to cause numerical instability
in reachability computations since the target set in the
transformed coordinates, Zf = (T1T2)−1Xf , is likely to
become too severely distorted to be of any practical use.

We address this issue by using a third transformation,
subject to the assumption that B̃2 is full-column rank. Notice
that this assumption is not too restrictive and is generally
satisfied for (n− k) ≥ p.

Theorem 1: Let B̃†2 := (B̃T
2 B̃2)−1B̃T

2 be the left inverse
of B̃2. Then a nonsingular transformation matrix

T3 =

[
Ik×k α−1B̃1B̃

†
2

0 I(n−k)×(n−k)

]
∈ Rn×n, (15)

with a bounded α given as

α = max

(
1 ,
‖Ã11B̃1B̃

†
2 − B̃1B̃

†
2Ã22 + Ã12‖

‖Ã12‖

)
+ ε (16)

and a small ε ∈ R+, makes the subsystems in (14) unidirec-
tionally weakly coupled across which the input is completely
disjoint.

Proof: Applying the transformation T3 to (13) we
obtain

G′′′ = T−1
3 (G′′) =

 Ã11 Π 0

0 Ã22 B̃2

∗ ∗

 (17)

with

Π = α−1
(
Ã11B̃1B̃

†
2 − B̃1B̃

†
2Ã22 + Ã12

)
. (18)

Thus, the first subsystem has been made trivially-
uncontrollable regardless of the value of α. Disjoint de-
composition of the control input across subsystems follows
naturally.

To prove that the value of α given in (16) will result in
subsystems that are unidirectionally weakly coupled while
preventing the severe distortion of the target set (as discussed
previously), we solve the following optimization problem:

minimize α (19)

subject to ‖Π‖ < ‖Ã12‖
α > 1

That is, we seek a value for α that is as small as possible to
prevent potential numerical difficulties but is large enough
to ensure weakening of the unidirectional coupling.



Luckily, this problem has a closed-form solution. Consider
the first constraint. Simple algebraic manipulation gives,

| 1α | · ‖Ã11B̃1B̃
†
2 − B̃1B̃

†
2Ã22 + Ã12‖ < ‖Ã12‖

⇒ α >
‖Ã11B̃1B̃

†
2 − B̃1B̃

†
2Ã22 + Ã12‖

‖Ã12‖
(20)

Therefore, any α that satisfies both (20) and α > 1, that is,

α > max

(
1 ,
‖Ã11B̃1B̃

†
2 − B̃1B̃

†
2Ã22 + Ã12‖

‖Ã12‖

)
(21)

is a feasible solution, i.e. a solution that weakens the coupling
between the two subsystems. However, we resort to

α = max

(
1 ,
‖Ã11B̃1B̃

†
2 − B̃1B̃

†
2Ã22 + Ã12‖

‖Ã12‖

)
+ ε (22)

with a small ε ∈ R+ in order to solve (19) and at the same
time avoid potential numerical issues that may be caused by
large values of α.

But how large can α (as given in Theorem 1) be? Consider

µ :=
‖Ã11(B̃1B̃

†
2)− (B̃1B̃

†
2)Ã22 + Ã12‖

‖Ã12‖
(23)

in more detail. We formalize an upper bound on µ in terms
of the distance of B̃1B̃

†
2 from the optimal solution

X = arg min
Q∈Rk×(n−k)

‖Ã11Q−QÃ22 + Ã12‖. (24)

Notice that under the conditions in Lemma 1, X is simply the
solution of the Sylvester equation Ã11X−XÃ22 +Ã12 = 0.

Lemma 4: Let X be given as in (24). Then,

‖Ã11X −XÃ22 + Ã12‖ ≤ ‖Ã12‖. (25)

Proof: By contradiction. The hypothesis ‖Ã12‖ <
‖Ã11X −XÃ22 + Ã12‖ would imply that X = 0 can never
be a solution. Since there are no constraints in (24) imposing
this restriction, we conclude that ‖Ã11X −XÃ22 + Ã12‖ ≤
‖Ã12‖.

Now define an auxiliary variable

∆ := B̃1B̃
†
2 −X. (26)

Substituting for B̃1B̃
†
2 in (23) and using results of Lemma 4

we obtain

µ ≤ ‖Ã11∆−∆Ã22‖+ ‖Ã12‖
‖Ã12‖

≤ ‖∆‖ ·

(
‖Ã11‖+ ‖Ã22‖
‖Ã12‖

)
+ 1. (27)

Consequently we can observe that

lim
‖∆‖→0

α = 1 + ε. (28)

In other words, the closer B̃1B̃
†
2 is to the optimal solution

X of (24), the smaller α needs to be. This in turn ensures a
better-conditioning of the transformation matrix

T := T−1
3 T−1

2 =

[
α−1I −α−1B̃1B̃

†
2

0 I

]
(29)

which then causes less distortion of the transformed target set
given by T−1Xf , T = T1T2T3. (Notice that κ(T−1) = κ(T)
according to Lemma 3 due to orthogonality of T1.)

Finally let us remark that, if necessary, a maximal value for
α can be prescribed by first choosing (e.g. heuristically) an
appropriate/tolerable upper bound on the condition number
κ(T), and then increasing α until that bound is reached.

Notice that regardless of the value of α, the transforma-
tions are always invertible.

B. Reachability in Lower Dimensions

In the new coordinate space we now have[
ẏ1

ẏ2

]
=

[
Ã11 Π

0 Ã22

] [
y1

y2

]
+

[
0

B̃2

]
u (30)

with y = T−1x, T = T1T2T3, and Π and α as given in (18)
and (16), respectively.

It is clear that y2 ∈ R(n−k) evolves independently of y1 ∈
Rk since

ẏ2 = Ã22y2 + B̃2u. (31)

However, y1 is affected by y2 through Π. That is, we have

ẏ1 = Ã11y1 + Π y2. (32)

Reachability analysis in y-coordinates can be performed
on each lower-dimensional subsystem separately:

Algorithm 1 Reachability in lower dimensions
1: Yf ← T−1Xf
2: for i← 1, 2 do
3: Yif ← proj(Yf , i) . project onto i-th subspace
4: end for
5: For subsystem #2:
6: Y2

t ← Reach(Y2
f ) . using Definition 1

7: For subsystem #1:
8: Treat Π y2 as disturbance
9: ξ ← supy2∈Y2

t
‖y2‖

10: Compute upper-bound ‖Π y2‖ ≤ ‖Π‖ · ξ
11: Y1

t
consrv.←− Reach(Y1

f ) . using Definition 2
12: return (Y1

t ,Y2
t )

Notice that in the new coordinate space, the reachable
set in the subspace of the trivially-uncontrollable subsystem
(32) is computed without the need for solving a differential
game. In fact for this subsystem the unidirectional coupling
is treated as disturbance and consequently this disturbance
together with the dynamics strive to enlarge the reachable
(unsafe) set as much as possible. Therefore using Cauchy’s
formula we have the following set-valued formulation of the
reachable set in the upper subspace

Y1
t = eÃ11tY1

f ⊕
∫ t

0

eÃ11(t−r)D(r)dr, for t ≤ 0 (33)

where ⊕ denotes the Minkowski sum. Here the input (distur-
bance) draws from the set D, a compact infinity norm ball



of radius ‖Π‖ξ centered around the origin. Let y1,0 ∈ Y1
f

and y1 ∈ Y1
t , then for t ≥ 0

‖y1 − e−Ã11ty1,0‖ ≤
∫ t

0

e‖Ã11‖(t−r)‖Π‖ξdr (34)

=
e‖Ã11‖t − 1

‖Ã11‖
‖Π‖ξ (35)

≤

( ∞∑
s=1

ts
(
σ(Ã11)

√
k
)s−1

s!

)
‖Π‖ξ =: η

(36)

where σ(·) is the largest singular value operator, and k is the
dimension of the trivially-uncontrollable subsystem. Now let
B(0, η) denote an infinity norm ball of radius η centered
around the origin. Therefore we have

Y1
t ⊆ eÃ11tY1

f ⊕ B(0, η), for t ≤ 0. (37)

The right hand side of (37) provides an upper-bound for how
much Y1

t can grow in backward time. In particular, the choice
of k, the magnitude of the unidirectional coupling ‖Π‖, the
supremum of the reachable set in the lower subspace ξ (=
supy2∈Y2

t
‖y2‖), and the largest singular value of the upper

subsystem σ(Ã11) affect the conservatism of the reachable
set Y1

t . Moreover, given k and t, the flexibility of the Schur
form in placing the eigenvalues in any order along the block-
diagonals of Ã can be exploited to make this subsystem
evolve with slower dynamics. Through various tests we were
able to confirm that doing so could potentially prevent the
excessive growth of Y1

t by influencing both eÃ11t and η.
The overapproximation of the actual reachable set of the

full-order system in Rn can be obtained using the following
corollary.

Corollary 1 (cf. [12]): Let Yit , i = {1, 2}, denote the
computed lower-dimensional overapproximative reachable
set of subsystem i. Then the transformation of the intersec-
tion of the back-projection of these sets onto Rn overapprox-
imates the actual full-order reachable set Xt of system (2).
That is,

X̂t := T
(

(Y1
t ×R2) ∩ (Y2

t ×R1)
)
⊇ Xt, (38)

where T=T1T2T3 is the transformation matrix and Ri is the
appropriately dimensioned subspace of the i-th subsystem.

C. Extension to Hybrid Systems

The extension of our method to hybrid dynamical systems
is fairly straight forward [14]. Consider the hybrid automaton
(Q,X, f,U ,Σ, R), with discrete modes Q = {qi}, continu-
ous states x ∈ X, continuous control inputs u ∈ U , discrete
control inputs σ ∈ Σ, vector field f : Q × X × U → X,
(qi, x, u) 7→ Aix+Biu, and transition function R : Q×X×
U × Σ→ Q× X.

Let Xf (qi) (a set of continuous states in mode qi) be
the target set and W(qi) the reachable set. Also, let Ti
be the transformation matrix for mode qi obtained from
the complexity reduction approach described previously. As
in [20], reachability calculations proceed in each mode in

parallel such that for mode qi the reach-avoid operation
becomes

TiReach
(
T−1
i Xf (qi), T

−1
i W(qi)

)
. (39)

In case of a switched system with two modes qi and qj
and an identity reset map, the backward reachable set Xt can
be directly calculated as

Xt = TjReach
(
qj , T

−1
j TiReach

(
qi, T

−1
i Xf (qi)

))
(40)

where Ti and Tj are the transformation matrices for modes qi
and qj respectively. Reachability analysis is then performed
on lower-dimensional subsystems in each mode according to
Algorithm 1.

IV. NUMERICAL EXAMPLE

Although the complexity reduction scheme presented here
can be used in conjunction with any reachability technique,
we demonstrate the applicability and practicality of our
method using an example that employs the Level Set Toolbox
(LS) [21]. While the LS has mainly been used for systems of
low dimensionality, [22], our complexity reduction approach
can facilitate its use for a class of higher dimensional systems
for which safety controller synthesis and handling of non-
convex or arbitrarily-shaped sets is important.

The following computations are performed on a dual core
Intel-based machine with 2.8 GHz CPU, 6 MB of cache and
3 GB of RAM running single-threaded 32-bit MATLAB 7.5.

A. 4D Aircraft Dynamics

Consider longitudinal aircraft dynamics ẋ = Ax+Bδe,

A=

−0.0030 0.0390 0 −0.3220
−0.0650 −0.3190 7.7400 0
0.0200 −0.1010 −0.4290 0

0 0 1 0

, B=

 0.0100
−0.1800
−1.1600

0


with state x = [u, α, θ̇, θ]T ∈ R4 comprised of deviations in

aircraft speed, angle of attack, pitch-rate, and pitch angle
respectively, and with input δe ∈ [−13.3◦, 13.3◦] ⊂ R
the elevator deflection. These matrices represent stability
derivatives of a Boeing 747 aircraft cruising at an altitude
of 40 kft with speed 774 ft/sec [23]. We define a target
(unsafe) set Xf such that in the transformed coordinate space
Yf = {y ∈ R4 | ‖y‖ > 0.15, y = T−1x, x ∈ Xf} where T
is the transformation matrix obtained through our method.

We decompose the system into two 2D subsystems. The
reachability calculations are performed over a grid with
41 nodes in each dimension for tf = 3 seconds. The com-
putation time for the actual and the transformation-based
reachable sets (including decomposition and projections)
were 17352.0 and 33.5 seconds, respectively—a significant
reduction.

Since the computed sets are 4D, we plot a series of 3D
snapshots of these 4D objects at specific values of y4 (Fig. 1).
The aircraft flight envelope (safe) is represented by the area
inside the shaded regions.



Fig. 1. Transformation-based (solid dark) vs. actual (transparent light) safe
sets in the transformed coordinate space for the aircraft example (4D)

V. CONCLUSIONS

In this paper we presented a complexity reduction tech-
nique based on structure decomposition for LTI dynamics.
We showed that this decomposition has considerable poten-
tial for reducing the computational efforts in reachability
analysis, especially for reachability tools that are computa-
tionally intensive (e.g. the Level Set Toolbox).

In comparison to the algorithmic approach presented in
[14], we showed that using a one-time-operation (through a
series of transformations) we can guarantee that the resulting
subsystems are unidirectionally weakly coupled across which
the input is disjoint. However, we observe a trade-off be-
tween the degree of coupling (which is directly proportional
to the conservatism in the computation of reachable set)
and the condition of the transformation matrix T . While
weakening the coupling term, care must be taken so that
the transformation does not distort the target set in the new
coordinate space.
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