
“Good Enough” Systems: Tolerating
(most) Hardware Errors in Software

Karthik Pattabiraman

University of British Columbia (UBC)

 Joint work with Jiesheng Wei (UBC), Song Liu (Northwestern),
 Thomas Moscibroda (MSR), and Benjamin Zorn (MSR)

1

Motivation: Hardware Errors

Device wear-outs (e.g., NBTI)
Manufacturing/Design defects

Intel Sandy
Bridge
chipset bug,
2011

Soft-errors Timing errors

2

Motivation: Variations and Errors
  Variation of device times

  Higher spread of device
variations for future
generations of technology

  Feature size Vs MTTU
  Increase in number of bits

correlated with decrease in
MTTU of the chip

Source (CCC study on cross-layer reliability): www.relxlayer.org (March 2011)

3

Hardware Errors: Traditional “Solutions”

  Guard-banding   Duplication

Average Worst-case

Guard-banding wastes
power and performance
as gap between average
and worst-case widens
due to variations

Guard-band

Hardware duplication
(DMR) can result in 2X
slowdown and/or energy
consumption

4

Our approach

Architecture

Operating System/
 Virtual Machine

Application

Devices/Circuits

User interacts with the
application

Software

Hardware

User

Allow errors across the
hardware-software
boundary, but ensure user
experience is not adversely
affected

5

Why Software ?

Device/Circuit Level

Architectural Level

Operating System Level

Application Level

Errors get progressively filtered as we go up the system stack

Impactful Errors

Overheads

6

Critical Data
  Software has high-level redundancy in data

  Can tolerate limited amounts of data corruption
  Provided certain critical data is not corrupted

Corruption
due to h/w

errors

Critical
Data

Application
Data

Identified by
programmer
or by the
compiler

7

The “Good Enough” Revolution

Source: WIRED Magazine (Sep 2009) – Robert Kapps
http://www.wired.com/gadgets/miscellaneous/magazine/17-09/ff_goodenough

People prefer “cheap and good-enough”
over “costly and near-perfect”

8

“Good Enough” Computer Systems

  Just reliable enough to get the job done
  Do not provide the illusion of perfection to end user
  But do not fail catastrophically or cause severe errors
  Depends on the application and its context of use

9

Talk Outline
  Motivation and Approach

  Good Enough Software Systems

  Flikker [ASPLOS 2011] with S.Liu, T. Moscibroda and B. Zorn

  BlockWatch [submitted] with J. Wei

  Future Work and Conclusions

10

Flikker: Smartphones

Smartphones becoming ubiquitous

DRAM Memory
consumes up to
30% of power

Responsiveness is
important

Can drain
the battery
even when
idle

11

Flikker: DRAM Refresh

error rate power

refresh cycle [s] 64 mSec

Where we
are today

Where we
want to be

X sec

The
opportunity

The cost

12

Flikker: Approach

  Critical / non-critical data partitioning

crit non-crit

crit non-crit

High refresh
No errors

Low refresh
Some errors

Flikker DRAM

Important for
application
correctness
e.g., meta-data, key
data structures

Does not
substantially impact
app correctness
e.g., multimedia
data, soft state

13

Flikker: Hardware Implementation

  Divide memory bank
into high refresh part
and low refresh parts

  Size of high-refresh
portion can be
configured at runtime

  Small modification of the
Partial Array Self-Refresh
(PASR) mode

High
Refresh

Low
Refresh ¾

½

¼

⅛

Flikker DRAM Bank

⅟16

1

14

Flikker: Software Implementation

Programmer
Allocator

Operating System

High Refresh Rows

Low Refresh Rows

Flikker
D

R
A

M

critical object

non-critical object

critical page

non-critical page

virtual
pages physical

pages

Minor changes to the memory allocator and the Operating System (OS)

15

Flikker: Mobile Applications

  mpeg2 (video decoding)
  c4 (connect 4, four-in-a-row)
  rayshade (ray-traced images)
  vpr (Stochastic optimization)
  parser (Natural-language processing)

16

Flikker: Experimental Setup

  Performance (architectural simulator)
  Impact of data partitioning (loss of locality) < 0.5%
  Took less than one day to partition each application

  Overall DRAM power (simulator, model)
  Active power, Idle power
  Usage profile (95% idle, 5% active) [Karlson’09]

  Fault injection simulation (Pin)
  Simulate a self-refresh period, and inject errors
corresponding to DRAM error model [Venkatesan-05]

17

Flikker: Configurations

code stack global heap
baseline

code stack global heap
ideal

code stack global heap
aggressive

code stack global heap
conservative

code stack global heap
crazy

custom
allocator

compiler
support

critical non-critical 18

Flikker: Power Reduction Results
  Estimate the portion of high refresh part based
on the percentage of critical pages in application

  Overall savings: 20 to 25% of memory power

19

Flikker: Fault-injection Results
  c4: always perfect
  mpeg2, rayshade: some degraded output
  vpr, parser: some failed in aggressive and crazy

20

Flikker: Rayshade Degraded SNR

Original Flikker - 78.9dB

2 X Zoom

21

Flikker: Summary
  First software technique to intentionally lower

hardware memory reliability for energy savings
  Minimal changes to hardware – based on PASR mode
  Minor changes to applications to identify critical data

  Reduced the overall DRAM memory power by 20-25%
with negligible loss of reliability and performance

  Future work:
  Extension to data center applications (e.g., Internet Search)
  Extension to faulty processor components

22

Talk Outline
  Motivation and Approach

  Good Enough Software Systems

  Flikker [ASPLOS 2011] with S.Liu, T. Moscibroda and B. Zorn

  BlockWatch [submitted] with J. Wei

  Future Work and Conclusions

23

BlockWatch: Motivation
  Software will become more parallel (due to multi-cores)
  Can we leverage the parallel nature of software to

provide error checking for free (or nearly free) ?
  Idea: Exploit similarity in control data of parallel programs
  Arises as a result of high-level models (e.g., SPMD)

Error ?

24

BlockWatch: Why Control Data ?
  Control-data: Any data that influences a branch

decision, i.e., backward slices of condition variables

  Errors in control-data are more likely to lead to egregious
outputs and catastrophic failures [Thaker-IISWC-2006]

int findAverage(int a[], int n) {
 int sum = 0;

 for (int i = 0; i < n; ++i) {
 sum = sum + a[i];

 }
 return (sum / n);
}

Average

a[]

25

BlockWatch: Approach
  Identify patterns of control-data similarity in

parallel programs

  Extract the similarity through static analysis
  No false-positives (and hence no spurious detection)
  Insert instrumentation to check the similarity

  Check similarity at runtime
  Monitor executed in a separate thread
  In case of error, halt program and restart

26

BlockWatch: Example
long im = DEFAULT_N;
void slave() {
 int i, private, procID;
 //procid is the thread id
 if (procID == 0) {
 …
 }
 for (i = 0; i <= im - 1; i ++) {
 ...
 }

 if (gp[procid].num>im-1)
 private = 1;
 else
 private = -1;

 if (private >0){
 ...
}

ThreadID

Invariant: Exactly one thread
takes the branch (thread 0).

27

BlockWatch: Example
long im = DEFAULT_N;
void slave() {
 int i, private, procID;
 //procid is the thread id
 if (procID == 0) {
 …
 }
 for (i = 0; i <= im - 1; i ++) {
 ...
 }

 if (gp[procid].num>im-1)
 private = 1;
 else
 private = -1;

 if (private >0){
 ...
}

Shared

Invariant: All threads either take
the branch (OR) do not take the
branch, i.e., they execute the
same number of loop iterations.

28

BlockWatch: Example
long im = DEFAULT_N;
void slave() {
 int i, private, procID;
 //procid is the thread id
 if (procID == 0) {
 …
 }
 for (i = 0; i <= im - 1; i ++) {
 ...
 }

 if (gp[procid].num>im-1)
 private = 1;
 else
 private = -1;

 if (private >0){
 ...
}

None

29

BlockWatch: Example
long im = DEFAULT_N;
void slave() {
 int i, private, procID;
 //procid is the thread id
 if (procID == 0) {
 …
 }
 for (i = 0; i <= im - 1; i ++) {
 ...
 }

 if (gp[procid].num>im-1)
 private = 1;
 else
 private = -1;

 if (private >0){
 ...
}

Partial

Invariant: All threads which have
the same value of private will take
the branch, while others will not.

30

BlockWatch: Experimental Setup
  Implemented using the LLVM compiler

  Two passes: one for analysis and one for instrumentation
  Monitor implemented using a lock-free queue/hash-table

  Evaluated on seven SPLASH2 benchmark programs
  Range from 1000 to 11000 lines of C code
  Between 50 and 95% of the branches exhibit similarity

  32-core machine (four eight core nodes) machine
  AMD Opteron 6120 processors at 2 Ghz each

31

BlockWatch: Performance Results

  Average overhead is about 16% for 32 threads on 32 cores

2.10

2.37

2.15

1.72

1.36

1.16

0.00

0.50

1.00

1.50

2.00

2.50

1 2 4 8 16 32

G
eo

m
et

ri
c

m
ea

n
of

sl

ow
do

w
ns

Thread number

32

BlockWatch: Coverage Evaluation
  Built a fault-injector using the PIN tool from Intel

  Injected faults in all branches executed by the program
  Uniformly over the number of executed conditional branches
  Faults = single bit-flip in branch condition variable

  Monitored program after injecting fault for SDCs
  Coverage = 1 – Prob. of SDC

  Measured false-positives by executing without faults
  No false-positives observed for any benchmark

33

BlockWatch: Coverage Results

  SDC coverage goes up from 85-90% without BlockWatch
to 99-100% with BlockWatch (for 32 threads)
  For all applications except Raytrace (81% to 84%)

99% 100% 100% 100% 99% 99% 100% 100% 99% 100%

81% 84%

98% 99% 97% 97%

50%

60%

70%

80%

90%

100%

4
threads

32
threads

4
threads

32
threads

4
threads

32
threads

4
threads

32
threads

4
threads

32
threads

4
threads

32
threads

4
threads

32
threads

4
threads

32
threads

continuous
ocean

FFT FMM non-continuous
ocean

radix raytrace water-nsquared average

C
ov

er
ag

e

Benchmark programs

Without BLOCKWATCH (baseline) With BLOCKWATCH (detected SDCs)

34

BlockWatch: Summary
  BlockWatch leverages similarity in parallel

programs for detecting errors in control data
  Identifies 3 kinds of similarity in control data
  Extracts the similarity through static analysis
  Dynamically checks similarity through a monitor

  Evaluated on a 32 core system with SPLASH2
  Performance overhead is about 16% for 32 threads
  Error coverage is between 98 and 100% for 32 threads
  No false-positives incurred for any of the programs

35

Talk Outline
  Motivation and Approach

  Good Enough Software Systems

  Flikker [ASPLOS 2011] – with S.Liu, T. Moscibroda and B. Zorn

  BlockWatch [submitted] – with J. Wei

  Conclusions and Future Work

36

Conclusions
  “Good Enough Software Systems” is a promising

approach for dealing with hardware errors
  Software needs to be engineered to deal with hardware errors
  Only need to be good enough to satisfy user’s requirements
  Can achieve substantial power and performance benefits

  Two systems based on critical data in programs
  Flikker: Leverages slack in DRAM refresh rates
  BlockWatch: Leverages parallel program’s similarity

37

Future Work: Identifying Critical Data
Automatically

  Based on Dynamic Dependence Graph (DDG)
  Use of heuristics to estimate error propagation
  Critical data to minimize error propagation [PRDC 2010]
  Algorithms for static analysis and error containment

38

Code Fragment Node

mov R1, #5 1

mov R2, #6 2

mov R3, #7 3

ld R4, R1, Array_Addr 4

ld R5, R2, Array_Addr 5

ld R6, R3, Array_Addr 6

mult R7, R5, R4 7

4

Intermittent
Error

Crash Node

1 2

5

7

Array_Addr

#5 #6

3

6

#7

.

.

.

4

Future Work: Reasoning about resilience

  Formal verification techniques for software typically
assume that the hardware is error free

  Need techniques to abstract hardware errors to software
  Use of model-checking [DSN’08], Hoare logics [CSF’11]

Software Errors –
Design and

environmental errors

Software
Programs

Hardware Errors –
Permanent and
Transient errors

Circuits/
Architecture

39

Vision: Software as Immune system

40

  Software systems that
anticipate and handle
hardware errors
  Detect and diagnose

source of the errors

  Recover from errors by
reconfiguring the software
  JIT recompilation
  OS scheduling
  Algorithmic resilience

Source: mcld.co.uk

Thank you

http://www.ece.ubc.ca/~karthikp
Contact: karthikp@ece.ubc.ca

41

Partial Array Self Refresh (PASR)
 Self-refresh: low power, keep the data

 PASR: only refresh part of the memory
array, configured among discrete levels
[Samsung], [Micron]

 Cons: less DRAM available in idle periods

42 42

DRAM Error Rate

Figure from [Bhalodia, Master Thesis, 2005]

Refresh cycle [s] 1s: 4x10-8

43

Fault-injection Result: SNR

  Signal-to-Noise-Ratio (SNR): the ratio of signal
energy and noise energy

  SNR in logarithm scale: 3dB means double the ratio
  mpeg2 encoder -> decoder: 35 dB
  Flikker yields very high SNR

Configuration mpeg2 rayshade

conservative 95.48 101.1

aggressive 88.34 72.84

crazy 88.04 73.63

Average SNR of degraded output of mpeg2 and rayshade [dB].

The impact of Flikker is negligible. 44

DRAM Refresh is Expensive

  Refresh power consumption
  Performance penalty

  Refresh penalty increases with capacity  
[Stuecheli, MICRO’10]

  Variation in retention time [Venkatesan, HPCA’06]

Figure from [Venkatesan, HPCA’06] 45

Memory Footprint Breakdown

  Global data is not partitioned

0%

20%

40%

60%

80%

100%

mpeg2 c4 rayshade vpr parser

Application Footprint Breakdown
noncrit-heap global crit-heap stack code

46

Self-refresh Power Model

  Self-refresh power is not just power spent on refresh
 Pself-refresh= Prefresh + Pother

  Assume Prefresh is proportional to refresh rate

error rate
power

refresh cycle [s]

47

Power Saving vs. Error Rate

¼ array high refresh

1s

48

BlockWatch: Static Analysis
  Used SSA-based analysis to identify similarity types
  Context sensitive analysis to track similarity types

  Using dynamic context to resolve the runtime checks

49

global g;
void foo() {

 goo(1);
 if (test)

 goo(2);
}

void goo(int callSite) {
 for (i = 0; i < 5; ++i)
 if (i < g)

}
checkBranch(TAKEN, i, callSite);

inserted

inserted

inserted

BlockWatch: Monitor Implementation

Thread 1 Branch
k … Exit

… Branch k … Exit

Thread n Branch
k … Exit

Monitor
thread … Monitor Exit …

…

Uses a lock free queue and hash-table to check branches - Asynchronous

50

