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Web 2.0 Application: Amazon.com 
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Amazon’s 
own ad 

Menu 
bar 

Shopping 
cart 

Third 
party 
gadget  ad Web 2.0 applications allow rich UI functionality within a single web page 



Web 2.0 Application: JavaScript 
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Significant amount of JavaScript code executing in the browser 



Web 2.0 Application: Amazon.com 
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Web Apps experience errors, yet they continue to execute ! 



Web 2.0 Applications: Problems 
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JS had to “look like Java” only less so, be 
Java’s dumb kid brother or boy-hostage 
sidekick. Plus, I had to be done in ten 
days or something worse than JS would 
have happened 
 – Brendan Eich (Inventor of JavaScript) 

Loose semantics Multiple Parties JavaScript 
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Eval Calls (from Richards et al. [PLDI-2010]) 

JavaScript: “Good” or “Evil” ? 
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Versus 

Real web applications do not stick to the “good” parts 
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Studies of JavaScript Web Applications 
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Performance and parallelism: 
JSMeter [Ratanaworabhan-2010], 
[Richards-2009], [Fortuna-2011] 

Reliability 

? 
Security and Privacy: 
[Yue-2009], Gatekeeper
[Guarnieri-2009], [Jang-2010] 
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Goal: Study the reliability of web applications in the “wild” 



Why Reliability Matters ? 
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  Snapshot of iFeng.com: Leading media website in China 

an error occurred when processing this directive 



Web Apps’ Reliability: Challenges 
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  Lack of specifications 
  Distinguish correct and incorrect executions 
  No specification of correct behavior 

  Lack of tool support 
  Automatically find application errors   

JSER 



Overview: Evaluating JavaScript Reliability 

JSER: Error messages DoDOM: DOM Invariants 
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  Studied error messages 
printed to the JS console  

  Extracted invariant DOMs 
over multiple executions 

JSER 

DoDOM 



This Talk 
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  Motivation and Approach 

  Two approaches for evaluating JS Reliability 
  Error messages – JSER [Under submission] 
  DOM Invariants – DoDOM [ISSRE 2010] 

  Future Directions and Conclusions 



JSER: JavaScript Error Messages 
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  Any exception thrown by JS code is logged to JS console 

Multiple 
exceptions 



JSER: Why Error Messages ? 
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  No false positives unlike static analysis 

  Challenging to analyze JavaScript statically 

  Capture interactions with the DOM 

Vs. 
JSER 



JSER: Tools 
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  Chose 50 web applications from the Alexa top 100 

  Created test suites for normal interactions in Selenium 

  Capture JavaScript Errors printed to Firebug console 



JSER: Research Questions 
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Do errors occur in web apps 
and if so, what categories do 
they fall in ? 

How do errors vary by 
speed of testing ? Are 
they all deterministic ? 

How do errors correlate 
with static and dynamic 
characteristics of the app? 



Errors and their classification: Method 
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1.  Description of error message 

2.  Line of code corresponding to error 

3.  Domain number and line number 

Two errors are different if any attribute is different  



Errors and their classification: Results 
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  Average of 4 distinct error messages for each app 
  Standard dev: 3 
  Max: 16 (Cnet) 
  Min: 0 (Google) 
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Errors and their classification: Results 
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  94 % of errors fall into four predominant categories 

54% 

9% 

27% 

4% 
6% 

Distribution of Error Messages 

# of Permission Denied Errors 

# of Null Exception Errors 

# of Undefined Symbol Errors 

# of Syntax Errors 

# of Miscellaneous Errors 



Errors and their classification: 
Permission Denied Example 
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advertisement 

• Error Message: Permission denied for http://view.atdmt.com to call method 
Location.toString on http://www.imdb.com 

• Explanation: Triggered by appearance of advertisement. Leads to SOP violation. 

Bottom Line: JS errors may appear as a result of code written by others 

Taken from 
imdb.com 

54% 

9% 

27% 

4% 6% 



Errors and their classification: 
Undefined Symbol Example 

Taken from 
cnn.com 

• Error Message: cnn_onMemFBInit() is undefined 

if (CNN_ISMemInit && CNN_IsFBInit) cnn_onMemFBInit(); 

• Explanation: Both CNN_IsMemInit and CNN_IsFBInit set to true 

• Bottom Line: JS code is difficult to maintain 

// this probably isn’t needed anymore 
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54% 

9% 

27% 

4% 6% 



Errors and their classification: 
Null Exception Example 

Taken from 
amazon.com 

• Error Message: document.getElementById(“inappDiv”) is null 
document.getElementById(“inappDiv”).style.display = ‘none’; 

• Explanation:  inappDiv was only defined for users who are logged in 

• Bottom Line: JS code may depend on the DOM 

Causes error 
on click 
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54% 

9% 

27% 

4% 6% 



Errors and their classification: 
Syntax Error Example 

Taken from 
about.com 

• Error Message: unterminated string literal 
zGPU = ‘http://movies.about.com/od/onlinemovies 
Movies_Available_on_the_Internet.html’” 

• Bottom Line: JS code is sometimes not well-tested 

54% 

9% 

27% 

4% 6% 



Errors and their classification: Insights 
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  Errors can occur due to third-party code 
  Permission denied errors 

  Errors can occur due to the DOM 
  Null exception errors 

  JavaScript code can be difficult to maintain 
  Undefined symbol errors 

  JavaScript code is sometimes not well-tested 
  Syntax errors 



Research Questions 
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Do errors occur in web apps 
and if so, what categories do 
they fall in ? 

How do errors vary 
by speed of testing ? 
Are they all 
deterministic ? 

How do errors correlate 
with static and dynamic 
characteristics of the app? 



Effect of Testing Speed: Method 
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  Varied testing speed for replaying events in Selenium 
  Performed three executions in each testing speed 

0 ms 1000 ms 

Fast Medium Slow 

500 ms 



Effect of Testing Speed: Example 
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Error Message (shortened) F 
1 

F 
2 

F 
3 

M 
1 

M 
2 

M 
3 

S 
1 

S 
2 

S 
3 

Permission Denied for 
view.atdmt.com to call <fname> on 

marquee.blogs.cnn.com 

4 4 4 1 3 3 2 2 3 

Permission Denied for 
view.atdmt.com to call <fname> on 

www.cnn.com 

20 17 20 22 22 16 25 20 16 

Permission Denied for 
ad.doubleclick.net to call  <fname> 

on www.cnn.com 

8 16 13 3 6 4 7 12 11 

targetWindow.cnnad showAd is not 
a function 

0 2 5 0 0 0 0 0 0 

window.parent.CSIManager is un- 
defined 

0  0 0 0 0 0 1 1 0 



Effect of Testing Speed: Frequencies 
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  All three testing modes expose similar error frequencies 
  Slow mode exposes the most number of errors ! 

Total distinct errors 

Fast Mode Medium Mode Slow Mode 



Effect of Testing Speed: Example 
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Error Message (shortened) F 
1 

F 
2 

F 
3 

M 
1 

M 
2 

M 
3 

S 
1 

S 
2 

S 
3 

Permission Denied for 
view.atdmt.com to call <fname> on 

marquee.blogs.cnn.com 

4 4 4 1 3 3 2 2 3 

Permission Denied for 
view.atdmt.com to call <fname> on 

www.cnn.com 

20 17 20 22 22 16 25 20 16 

Permission Denied for 
ad.doubleclick.net to call  <fname> 

on www.cnn.com 

8 16 13 3 6 4 7 12 11 

targetWindow.cnnad showAd is not 
a function 

0 2 5 0 0 0 0 0 0 

window.parent.CSIManager is un- 
defined 

0  0 0 0 0 0 1 1 0 



Effect of Testing Speed: Non-Determinism 
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  More than 70% of distinct errors are non-deterministic 

Total non-deterministic errors 



Effect of Testing Speed: Insights 
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  Different modes expose different no. of errors 

  Different reasons for errors 
  Fast/Medium Modes: Due to rapid page transitions 
  Slow Mode: Due to errors in advertisements 

  More than 70% of errors are non-deterministic 



Research Questions 
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Do errors occur in web apps 
and if so, what categories do 
they fall in ? 

How do errors vary by 
speed of testing ? Are 
they all deterministic ? 

How do errors 
correlate with static 
and dynamic 
characteristics of the 
app? 



Static/Dynamic Correlations 

Static Characteristics Dynamic Characteristics 
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  Number of called functions 

  Number of eval calls 

  Properties deleted 

  Object inheritance overridings 

•  Alexa Rank 

•  Bytes of JavaScript code 

•  Number of domains 

•  Domains containing JS 

From Richards et al. [PLDI – 2010] Measured using Phoenix & Firebug plugins 



Static/Dynamic Correlations: Summary 

Static Characteristics Dynamic Characteristics 
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  Number of called functions 

  Number of eval calls 

  Properties deleted 

  Object inheritance overridings 

•  Alexa Rank 

•  Bytes of JavaScript code 

•  Number of domains 

•  Domains containing JS  

From Richards et al. [PLDI – 2010] Measured using Phoenix & Firebug plugins 



Research Questions: Answers 
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Do errors occur in web apps and 
what categories do they fall in ? 

How do errors vary by 
speed of testing ? Are 
they all deterministic ? 

How do errors correlate 
with static and dynamic 
characteristics of the app? 

Average of four errors in 
each app. Errors fall into 
four well-defined categories 

Errors vary by speed of 
testing. Majority of errors 
are non-deterministic 

Correlated with no of 
domains, no of domains 
with JS, Alexa rank 



Implications of the Results 
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  Programmers 
  Need to make code robust against other code/scripts 
  Make sure interactions with DOM are checked 

  Testers 
  Perform integration testing to see effects of ads 
  Need to test at multiple testing speeds, multiple times 

  Static analysis tool developers 
  Target most common classes of errors  
  Need to model the DOM in the analysis 



This Talk 
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  Motivation and Approach 

  Two approaches for evaluating JS Reliability 
  Error messages – JSER [Under submission] 
  DOM invariants – DoDOM [ISSRE 2010] 

  Future Directions and Conclusions 



Motivation 
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  Error Messages are limited in representativeness 
  Not all errors result in error messages 

  Goal: Detect errors that do not result in messages 
  Do not require programmer intervention 

  Challenges 
  Non-determinism in application 



Example: HTML 

38 

<html> 
<head> 
          <title> …. </title>  
        <script> …. </script>  

       <script> … </script> 
</head> 
<body> 

 <div> <A> …. </A> <text> … </text> <hl> … </hl> </div> 
    <div>  

  <div>…. </div>  
  <ul> <li>…</li> <li>…</li><li> … </li> </ul>  
  <p> … </p>  
 </div> 

  <div> … </div> 
</body> 
</html> 



Example: DOM 
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document 

div div div 

<A> text h1 

div ul p 

head 

title script script script 

li li li <A> text h1 

Buggy 

Correct 



Example: Invariant DOM 
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document 

div div div 

<A> text h1 

div ul p 

head 

title script script script 

li li li <A> text h1 

Detected 

Allowed 

Invariant portion of 
DOM 



DoDOM: Contributions 
  DOM invariants can be learned dynamically 

  Automated tool called DoDOM 

  Invariants exist in many Web 2.0 applications 
  Stabilize within a few executions 

  Invariants are useful for error detection  
  Both for event errors and domain failures 

41 



DoDOM: Approach 
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Record a trace of interactions with the web app 

Replay the recorded trace on the web app 

Capture the series of DOM-trees after each replay 

Extract invariant DOM-trees from the executions 



DoDOM: Invariant Extraction 
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Execution 1 Execution 2 Execution 3 Execution 4 

Invariant DOM 



DoDOM: Error Detection 
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Mul$ple	
  	
  
replays	
  

Original 
DOM 

Invariant 
DOM 

Error 
occurs 

Faulty 
DOM 

Compare 
invariant 
and faulty 
DOMs 

Difference 
= Detection 



DoDOM: Invariant DOM Sequences 
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Event Sequence 

Invariant  
DOM trees 

Event Sequence: Sequence of events recorded in a trace 

DOM Tree Sequence: Sequence of DOM trees after each event 

Event 1 Event 2 Event N … 



Experimental Setup 
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  Focused mainly on results from Slashdot web app 
  User interaction by reading and expanding comments 
  Gathered a trace of 13 events with DoDOM 

  Did a replay of the trace 58 times (with DoDOM) 



Results: Invariant DOM 
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Event Number 

Number of Nodes in the DOM Tree 

Training set = 2 
Training set = 4 
Training set = 6 
Training set = 8 
Training set = 10 

Convergence of DOM-trees with a training set size of 6 (10%) 



Results: Fault Injection Experiments 

Event Errors Domain Failures 

48 

  Dropped events from the 
trace one at a time 

  100% detection for events 
that impact the DOM 

  Blocked domains one at a 
time using NoScript 

  Only one of five domains 
impacted the DOM 

E1 E2 E3 En 

Trace 

E1 E2 E3 En 

Fault-injected Trace 

… 

… 



DoDOM: Summary 
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  DOM invariants can be learned dynamically 
  Automated tool called DoDOM 

  DOM Invariants exist in many Web applications 
  Stabilize within a few executions 

  DOM Invariants are useful for error detection  
  Both for simple event errors and domain failures 



This Talk 
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  Motivation and Approach 

  Two approaches for evaluating JS Reliability 
  Error messages - JSER[Under submission] 
  DOM invariants – DoDOM [ISSRE 2010] 

  Future Directions and Conclusions 



Future Directions 
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  Static analysis to augment dynamic analysis 
  Seed with errors found by dynamic analysis 
  Prioritize errors based on past experience 

  Analyze the impact of an error message 
  Does it impact application’s functionality ? 
  Does it affect other users of the application ? 

  Fault Injection 
  Inject realistic faults in the application 
  Study its robustness under faults 



Conclusions 
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  Web 2.0 applications’ reliability is challenging 

  Measured the reliability of web apps in the “wild” 
as a first step to improving their reliability 
  JSER: Based on error messages 
  DoDOM: Based on DOM invariants 

http://www. …… 


