
Towards Improving the Reliability 
of JavaScript-based Web 2.0 

Applications 

Karthik Pattabiraman1 

Frolin Ocariza Jr.1  

Benjamin Zorn2 

1 University of British Columbia (UBC), 2Microsoft Research (MSR) 



Web 2.0 Application: Amazon.com 

2 

Amazon’s 
own ad 

Menu 
bar 

Shopping 
cart 

Third 
party 
gadget  ad Web 2.0 applications allow rich UI functionality within a single web page 



Web 2.0 Application: JavaScript 

3 

Significant amount of JavaScript code executing in the browser 



Web 2.0 Application: Amazon.com 

4 

Web Apps experience errors, yet they continue to execute ! 



Web 2.0 Applications: Problems 

5 

JS had to “look like Java” only less so, be 
Java’s dumb kid brother or boy-hostage 
sidekick. Plus, I had to be done in ten 
days or something worse than JS would 
have happened 
 – Brendan Eich (Inventor of JavaScript) 

Loose semantics Multiple Parties JavaScript 



0.1 

1 

10 

100 

1000 

10000 

100000 

Eval Calls (from Richards et al. [PLDI-2010]) 

JavaScript: “Good” or “Evil” ? 

6 

Versus 

Real web applications do not stick to the “good” parts 

E
v
a 
l 
s 



Studies of JavaScript Web Applications 

7 

Performance and parallelism: 
JSMeter [Ratanaworabhan-2010], 
[Richards-2009], [Fortuna-2011] 

Reliability 

? 
Security and Privacy: 
[Yue-2009], Gatekeeper
[Guarnieri-2009], [Jang-2010] 

pe
rf

or
m

an
ce

 

se
cu

ri
ty

 

re
lia

bi
lit

y 

Goal: Study the reliability of web applications in the “wild” 



Why Reliability Matters ? 

8 

  Snapshot of iFeng.com: Leading media website in China 

an error occurred when processing this directive 



Web Apps’ Reliability: Challenges 

9 

  Lack of specifications 
  Distinguish correct and incorrect executions 
  No specification of correct behavior 

  Lack of tool support 
  Automatically find application errors   

JSER 



Overview: Evaluating JavaScript Reliability 

JSER: Error messages DoDOM: DOM Invariants 

10 

  Studied error messages 
printed to the JS console  

  Extracted invariant DOMs 
over multiple executions 

JSER 

DoDOM 



This Talk 

11 

  Motivation and Approach 

  Two approaches for evaluating JS Reliability 
  Error messages – JSER [Under submission] 
  DOM Invariants – DoDOM [ISSRE 2010] 

  Future Directions and Conclusions 



JSER: JavaScript Error Messages 

12 

  Any exception thrown by JS code is logged to JS console 

Multiple 
exceptions 



JSER: Why Error Messages ? 

13 

  No false positives unlike static analysis 

  Challenging to analyze JavaScript statically 

  Capture interactions with the DOM 

Vs. 
JSER 



JSER: Tools 

14 

  Chose 50 web applications from the Alexa top 100 

  Created test suites for normal interactions in Selenium 

  Capture JavaScript Errors printed to Firebug console 



JSER: Research Questions 

15 

Do errors occur in web apps 
and if so, what categories do 
they fall in ? 

How do errors vary by 
speed of testing ? Are 
they all deterministic ? 

How do errors correlate 
with static and dynamic 
characteristics of the app? 



Errors and their classification: Method 

16 

1.  Description of error message 

2.  Line of code corresponding to error 

3.  Domain number and line number 

Two errors are different if any attribute is different  



Errors and their classification: Results 

17 

  Average of 4 distinct error messages for each app 
  Standard dev: 3 
  Max: 16 (Cnet) 
  Min: 0 (Google) 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 

Total Distinct Errors 



Errors and their classification: Results 

18 

  94 % of errors fall into four predominant categories 

54% 

9% 

27% 

4% 
6% 

Distribution of Error Messages 

# of Permission Denied Errors 

# of Null Exception Errors 

# of Undefined Symbol Errors 

# of Syntax Errors 

# of Miscellaneous Errors 



Errors and their classification: 
Permission Denied Example 

19 

advertisement 

• Error Message: Permission denied for http://view.atdmt.com to call method 
Location.toString on http://www.imdb.com 

• Explanation: Triggered by appearance of advertisement. Leads to SOP violation. 

Bottom Line: JS errors may appear as a result of code written by others 

Taken from 
imdb.com 

54% 

9% 

27% 

4% 6% 



Errors and their classification: 
Undefined Symbol Example 

Taken from 
cnn.com 

• Error Message: cnn_onMemFBInit() is undefined 

if (CNN_ISMemInit && CNN_IsFBInit) cnn_onMemFBInit(); 

• Explanation: Both CNN_IsMemInit and CNN_IsFBInit set to true 

• Bottom Line: JS code is difficult to maintain 

// this probably isn’t needed anymore 

20 

54% 

9% 

27% 

4% 6% 



Errors and their classification: 
Null Exception Example 

Taken from 
amazon.com 

• Error Message: document.getElementById(“inappDiv”) is null 
document.getElementById(“inappDiv”).style.display = ‘none’; 

• Explanation:  inappDiv was only defined for users who are logged in 

• Bottom Line: JS code may depend on the DOM 

Causes error 
on click 

21 

54% 

9% 

27% 

4% 6% 



Errors and their classification: 
Syntax Error Example 

Taken from 
about.com 

• Error Message: unterminated string literal 
zGPU = ‘http://movies.about.com/od/onlinemovies 
Movies_Available_on_the_Internet.html’” 

• Bottom Line: JS code is sometimes not well-tested 

54% 

9% 

27% 

4% 6% 



Errors and their classification: Insights 

23 

  Errors can occur due to third-party code 
  Permission denied errors 

  Errors can occur due to the DOM 
  Null exception errors 

  JavaScript code can be difficult to maintain 
  Undefined symbol errors 

  JavaScript code is sometimes not well-tested 
  Syntax errors 



Research Questions 

24 

Do errors occur in web apps 
and if so, what categories do 
they fall in ? 

How do errors vary 
by speed of testing ? 
Are they all 
deterministic ? 

How do errors correlate 
with static and dynamic 
characteristics of the app? 



Effect of Testing Speed: Method 

25 

  Varied testing speed for replaying events in Selenium 
  Performed three executions in each testing speed 

0 ms 1000 ms 

Fast Medium Slow 

500 ms 



Effect of Testing Speed: Example 

26 

Error Message (shortened) F 
1 

F 
2 

F 
3 

M 
1 

M 
2 

M 
3 

S 
1 

S 
2 

S 
3 

Permission Denied for 
view.atdmt.com to call <fname> on 

marquee.blogs.cnn.com 

4 4 4 1 3 3 2 2 3 

Permission Denied for 
view.atdmt.com to call <fname> on 

www.cnn.com 

20 17 20 22 22 16 25 20 16 

Permission Denied for 
ad.doubleclick.net to call  <fname> 

on www.cnn.com 

8 16 13 3 6 4 7 12 11 

targetWindow.cnnad showAd is not 
a function 

0 2 5 0 0 0 0 0 0 

window.parent.CSIManager is un- 
defined 

0  0 0 0 0 0 1 1 0 



Effect of Testing Speed: Frequencies 

27 

  All three testing modes expose similar error frequencies 
  Slow mode exposes the most number of errors ! 

Total distinct errors 

Fast Mode Medium Mode Slow Mode 



Effect of Testing Speed: Example 

28 

Error Message (shortened) F 
1 

F 
2 

F 
3 

M 
1 

M 
2 

M 
3 

S 
1 

S 
2 

S 
3 

Permission Denied for 
view.atdmt.com to call <fname> on 

marquee.blogs.cnn.com 

4 4 4 1 3 3 2 2 3 

Permission Denied for 
view.atdmt.com to call <fname> on 

www.cnn.com 

20 17 20 22 22 16 25 20 16 

Permission Denied for 
ad.doubleclick.net to call  <fname> 

on www.cnn.com 

8 16 13 3 6 4 7 12 11 

targetWindow.cnnad showAd is not 
a function 

0 2 5 0 0 0 0 0 0 

window.parent.CSIManager is un- 
defined 

0  0 0 0 0 0 1 1 0 



Effect of Testing Speed: Non-Determinism 

29 

  More than 70% of distinct errors are non-deterministic 

Total non-deterministic errors 



Effect of Testing Speed: Insights 

30 

  Different modes expose different no. of errors 

  Different reasons for errors 
  Fast/Medium Modes: Due to rapid page transitions 
  Slow Mode: Due to errors in advertisements 

  More than 70% of errors are non-deterministic 



Research Questions 

31 

Do errors occur in web apps 
and if so, what categories do 
they fall in ? 

How do errors vary by 
speed of testing ? Are 
they all deterministic ? 

How do errors 
correlate with static 
and dynamic 
characteristics of the 
app? 



Static/Dynamic Correlations 

Static Characteristics Dynamic Characteristics 

32 

  Number of called functions 

  Number of eval calls 

  Properties deleted 

  Object inheritance overridings 

•  Alexa Rank 

•  Bytes of JavaScript code 

•  Number of domains 

•  Domains containing JS 

From Richards et al. [PLDI – 2010] Measured using Phoenix & Firebug plugins 



Static/Dynamic Correlations: Summary 

Static Characteristics Dynamic Characteristics 

33 

  Number of called functions 

  Number of eval calls 

  Properties deleted 

  Object inheritance overridings 

•  Alexa Rank 

•  Bytes of JavaScript code 

•  Number of domains 

•  Domains containing JS  

From Richards et al. [PLDI – 2010] Measured using Phoenix & Firebug plugins 



Research Questions: Answers 

34 

Do errors occur in web apps and 
what categories do they fall in ? 

How do errors vary by 
speed of testing ? Are 
they all deterministic ? 

How do errors correlate 
with static and dynamic 
characteristics of the app? 

Average of four errors in 
each app. Errors fall into 
four well-defined categories 

Errors vary by speed of 
testing. Majority of errors 
are non-deterministic 

Correlated with no of 
domains, no of domains 
with JS, Alexa rank 



Implications of the Results 

35 

  Programmers 
  Need to make code robust against other code/scripts 
  Make sure interactions with DOM are checked 

  Testers 
  Perform integration testing to see effects of ads 
  Need to test at multiple testing speeds, multiple times 

  Static analysis tool developers 
  Target most common classes of errors  
  Need to model the DOM in the analysis 



This Talk 

36 

  Motivation and Approach 

  Two approaches for evaluating JS Reliability 
  Error messages – JSER [Under submission] 
  DOM invariants – DoDOM [ISSRE 2010] 

  Future Directions and Conclusions 



Motivation 

37 

  Error Messages are limited in representativeness 
  Not all errors result in error messages 

  Goal: Detect errors that do not result in messages 
  Do not require programmer intervention 

  Challenges 
  Non-determinism in application 



Example: HTML 

38 

<html> 
<head> 
          <title> …. </title>  
        <script> …. </script>  

       <script> … </script> 
</head> 
<body> 

 <div> <A> …. </A> <text> … </text> <hl> … </hl> </div> 
    <div>  

  <div>…. </div>  
  <ul> <li>…</li> <li>…</li><li> … </li> </ul>  
  <p> … </p>  
 </div> 

  <div> … </div> 
</body> 
</html> 



Example: DOM 

39 

document 

div div div 

<A> text h1 

div ul p 

head 

title script script script 

li li li <A> text h1 

Buggy 

Correct 



Example: Invariant DOM 

40 

document 

div div div 

<A> text h1 

div ul p 

head 

title script script script 

li li li <A> text h1 

Detected 

Allowed 

Invariant portion of 
DOM 



DoDOM: Contributions 
  DOM invariants can be learned dynamically 

  Automated tool called DoDOM 

  Invariants exist in many Web 2.0 applications 
  Stabilize within a few executions 

  Invariants are useful for error detection  
  Both for event errors and domain failures 

41 



DoDOM: Approach 

42 

Record a trace of interactions with the web app 

Replay the recorded trace on the web app 

Capture the series of DOM-trees after each replay 

Extract invariant DOM-trees from the executions 



DoDOM: Invariant Extraction 

43 

Execution 1 Execution 2 Execution 3 Execution 4 

Invariant DOM 



DoDOM: Error Detection 

44 

Mul$ple	
  	
  
replays	
  

Original 
DOM 

Invariant 
DOM 

Error 
occurs 

Faulty 
DOM 

Compare 
invariant 
and faulty 
DOMs 

Difference 
= Detection 



DoDOM: Invariant DOM Sequences 

45 

Event Sequence 

Invariant  
DOM trees 

Event Sequence: Sequence of events recorded in a trace 

DOM Tree Sequence: Sequence of DOM trees after each event 

Event 1 Event 2 Event N … 



Experimental Setup 

46 

  Focused mainly on results from Slashdot web app 
  User interaction by reading and expanding comments 
  Gathered a trace of 13 events with DoDOM 

  Did a replay of the trace 58 times (with DoDOM) 



Results: Invariant DOM 

47 

5050 

5100 

5150 

5200 

5250 

5300 

5350 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

N
um

be
r 

of
 D

O
M

 N
od

es
 

Event Number 

Number of Nodes in the DOM Tree 

Training set = 2 
Training set = 4 
Training set = 6 
Training set = 8 
Training set = 10 

Convergence of DOM-trees with a training set size of 6 (10%) 



Results: Fault Injection Experiments 

Event Errors Domain Failures 

48 

  Dropped events from the 
trace one at a time 

  100% detection for events 
that impact the DOM 

  Blocked domains one at a 
time using NoScript 

  Only one of five domains 
impacted the DOM 

E1 E2 E3 En 

Trace 

E1 E2 E3 En 

Fault-injected Trace 

… 

… 



DoDOM: Summary 

49 

  DOM invariants can be learned dynamically 
  Automated tool called DoDOM 

  DOM Invariants exist in many Web applications 
  Stabilize within a few executions 

  DOM Invariants are useful for error detection  
  Both for simple event errors and domain failures 



This Talk 

50 

  Motivation and Approach 

  Two approaches for evaluating JS Reliability 
  Error messages - JSER[Under submission] 
  DOM invariants – DoDOM [ISSRE 2010] 

  Future Directions and Conclusions 



Future Directions 

51 

  Static analysis to augment dynamic analysis 
  Seed with errors found by dynamic analysis 
  Prioritize errors based on past experience 

  Analyze the impact of an error message 
  Does it impact application’s functionality ? 
  Does it affect other users of the application ? 

  Fault Injection 
  Inject realistic faults in the application 
  Study its robustness under faults 



Conclusions 

52 

  Web 2.0 applications’ reliability is challenging 

  Measured the reliability of web apps in the “wild” 
as a first step to improving their reliability 
  JSER: Based on error messages 
  DoDOM: Based on DOM invariants 

http://www. …… 


