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Presentation Outline

• Introduction
• Framework
• New methodology
• Test cases 
• Conclusions
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Motivation
• Evolution of power systems

– Generation capacity 171GW (‘60), 1049 GW (‘06)
• De-regulated environment (only US)

– Capacity margin 
25% (‘05) 
18.8% (‘06) 
15.5% (‘08)

– Transmission lines 
High Voltage  
237,009 km (‘93)
255,250 km (‘02)

– Revenue all sectors
198.2b $ (‘93) 
270.4b $ (‘04)
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Motivation (cont.)

• Previous operational paradigm
– Reliability oriented

• New operational paradigm
– Revenue oriented

• Power systems stability analysis
– Off-line vs. real-time simulation

• Research opportunity
– Dynamic location of limits 
– Support allocation of investment
– Locally coordinated operation
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UBC power systems group simulation projects: 
Integration and evolution
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Framework

• The problem
– Limitation of current Transient Stability analysis tools

• Fast time-domain (FTD)
• Prony spectral analysis
• Transient rotor angle analysis

• EMTP extended capabilities
– Step by step trajectory analysis
– Non-linearities modelling
– Modelling accuracy
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Framework (cont.)

(TSAT) Trapezoidal, 10 ms FTD



New Methodology

Eigenvalue analysis from EMTP solution
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State-space formulation continuous time

and for the single input/output discrete system

Multiple input/multiple output

Output of the system

Dynamics of the system
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Discrete state-space formulation

Classical form – Forward Euler

Output of the system

Dynamics of the system
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EMTP solution

Trapezoidal 
rule
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Output equation

Dynamic part

Discrete state-space from EMTP
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branch voltage and current

updating formula 

Discrete time state-space equation of basic 
elements - Inductor

thus, the discrete state-space equation of a self inductor
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Discrete time state-space equation of basic 
elements – Series RL and RC
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Treatment of series branches

branch history terms
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Where

and the relationship between branch and node voltages is given by the incidence matrix

the Transition matrix [A] is then given by

Treatment of series branches (cont.)
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Treatment of parallel branches

We can keep the identity of 
each component or treat them 
as a new equivalent aggregated
parallel RLC.

The general formulas are maintained and we define [A] as for the single branch case
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Treatment of Non-linear elements

• Non-linear elements can be made up of 
piecewise linear segments.

• A change of piecewise segment 
corresponds 
to a new set 
of eigenvalue. 
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Hybrid real-time/soft real-time simulator layout
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Discrete to continuous time mapping

For Trapezoidal

The continuous time eigenvalues can be 
reconstructed from the discrete ones by
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Automatic EMTP time step selection scheme
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Discretization time considerations

• Linearization of differential equations: 
Nyquist frequency.

• Non-linear elements: small time step for 
accurate representation of region change.

• As long as eigenvalue frequency is below 
the Nyquist freq. reconstructed cont. time 
eigenvalues are “exact”



Test cases
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Comparison of state-space formulation between 
continuous and discrete time domains

continuous time state-space system equations

selecting VR(t) and VC(t) as states
vin(t) as input and VL(t) as output
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Discrete time state-space system equation

the branch histories

the discrete transition  matrix [A] for the RLC series  computed from the nodal eq.
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Continuous time eigenvalues

Discrete time eigenvalues

Reconstructed Continuous time eigenvalues
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Eigenvalue trajectory of a RLC series with a non lineal L
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Eigenvalue trajectory of a RLC series with a non lineal L (cont.)
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Identification of segmentation areas - Latency application

Continues time domain

Continues time eigenvalues
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Identification of segmentation areas - Latency application (cont.)
Discrete time domain

Reconstructed Continues time eigenvaluesDiscrete time eigenvalues
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Identification of segmentation areas - Latency application (cont.)
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Voltage collapse of a radial system

Continuous time eigenvalues Load increment profile
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Voltage collapse of a radial system (cont.)

Discrete time eigenvalues Voltage collapse
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Voltage collapse of a radial system (cont.)

Reconstructed Continuous time eigenvalues Voltage collapse
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Voltage collapse of a radial system (cont.)

Anticipation of voltage drop from eigenvalue trajectory

250ms (A1) ;  300ms (B) ; 200ms (C) ; 450ms (D)

40-60 ms 500kV interrupter operation / 120-200 ms DAG 1000 km (optic/microwave)



Conclusions
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Research Contributions

The description and implementation of a new and 
original power system stability assessment 

methodology that identifies the system’s 
eigenvalues trajectories in a real-time EMTP 

solution incorporating the effect of switching and 
non-linear behaviour.
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Research Contributions (cont.)
Advantages of Discrete state-space formulation from EMTP

• Trajectory tracking of non-linear elements eigenvalues moment by 
moment.

• In the context of OVNI, the capability of identifying suitable network 
partitioning schemes for application of multi-step integration solution 
in a hybrid power system simulator environment.

• Visualization of eigenvalues trajectories in discrete time domain for 
the purpose of assessing power system’s dynamic behaviour.

• Automatic selection of discretization step from discrete time 
eigenvalue information

• Extension of EMTP capabilities to perform transient and voltage 
stability studies
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Possible application extensions & future work
• Distributed intelligent control solutions based on embedded OVNI and 

eigenvalue trajectories.

• Integration of discrete state space eigenvalue methodology with 
Latency.

• Discrete state space eigenvalue methodology within UBC’s OVNI-
NET simulator for stability analysis and determination of segmentation 
schemes.

• Discrete state space eigenvalue methodology within UBC - JIIRP’s 
I2Sim simulator for identification of trajectories of critical 
interdependencies among Critical Infrastructures.

• Development of new Visualization tools to provide simplified 
information about stability system trajectory to control center 
operators.
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Thank you




