The Devastation of
Meltdown

J.Nider 2021-11

Background
Virtual Memory
Oo00 Execution
Linux Memory Management
The Exploit
The Fix
The Damage

Background

e Meltdown allows an unprivileged app to read ALL memory of a victim machine
e Official name: CVE-2017-5754 “Rogue Data Cache Load” (RDCL)

e Caused by a race condition in out-of-order CPU’s

e NSA potentially knew about this since 1995

CND=0ID

Background
Virtual Memory
Oo00 Execution
Linux Memory Management
The Exploit
The Fix
The Damage

Virtual Memory

e Memory is organized into pages
o Page sizes range from 4KB to up 1GB
e \irtual addresses are mapped to physical addresses
o Usually through page tables, but there are other mechanisms (such as hashing)
e Each page has attributes
o Describes permissions (WX), supervisor (S) and caching ©
e MMU performs virtual to physical translations
e Translations are cached in TLB (translation lookaside buffer)
63
P PP
X| key ignored Address ignored | G| A|D|A|C|W S
T DT

Background: Virtual Memory

0x000A2000
0x10061000
— 0x000A3000
0x10062000
0x000A4000
0x10063000 MMU
0x10064000 0xAD941000
0x10065000 0xB1124000
0x10066000
0xB1125000

Virtual Addresses Physical Addresses

Cache Organization

Main Memory }

Cache Organization

e Reading from main memory is slow!
o In the range of 400-800ns
o Therefore we want to avoid main memory as much as possible
e So we cache (make a copy) of any data in a smaller, faster memory
o Much faster - in the range of 10-100ns
o Faster memories are more expensive
e \We can make a hierarchy with different attributes
o Capacity
o Access time
o Mapping (Direct, Associativity)
o Multiple ways
e Cache is not part of the Instruction Set Architecture!
o ltis part of the microarchitecture

Background
Virtual Memory
Oo00 Execution
Linux Memory Management
The Exploit
The Fix
The Damage

Out-of-order Execution

e CPUs are made up of many hardware blocks
o Prefetchers
Decoders
Functional units (Integer units, floating point units, etc)
Register file
Reservation stations
Many more

Not all hardware is used for each instruction

Some instructions wait even though there are no direct dependencies
Some instructions will execute before later instructions

We want to work as fast as possible

o O O O O

CPU Architecture - Simplified

CPU

Input Unit %}-

ALU

T 0

Control Unit

[, > Output Unit

Iy

Main Memory

Real Life

Mo e
= RPM W, F
EEEES e
v 1 d - 5 =oN
Mismada PMIC Artitar ! =
[(=] e s [33] Jume) [|2 57 | =] <
t I f s N T b=
NIV PP (O (200 MSGRAM(!MBI | B TR A0
< VI¥[T ¥ > [uscmmneg = oy
E HO RPM Processor @‘_ M
JPEG | FEG MOP4
veEs | Eo | Boe Codac 5._. E s
| g GPOsTimes | (=] > it o

RPM Boot ROM |
(958}

Code RAM (1258) |€—

Scorplon® SS AME

Socue
Timers (2}

SomionMP Sub. System

==

)

T Crir o ¥ L P4 Teeei

DM _

e 2 0Hs BAM
2Cacha
(256 K8) e L
(LI Caa:' P A 11 | soofzul et
Kl EnclOec Lo —
> [G [Mo P
ARM1126 I TCM (&x8)
"
Paph IF _.Ig 5 Calisto GPS
-
T
[o g) QTR SS8
Timers. o
= I ot
- . £l (COSP4)
= §
N Parphersd x g Pasiedon 2 Madem Smart Penpheral System (SPS)
) 3o Core -
Cormbo
Modem Sub-Sy=em -\./- "I e |

8

Cre PR 1aPU (%

Chip Peripheral 8§

Memory Read (sequential)

mov rbx, gword

[rbx + rax]

[

FETCH

2

DECODE

2

T

EXECUTE

stall

RETIRE

instructions > FETCH x4

Y Y v v

DECODE DECODE DECODE DECODE

data > EXECUTE EXECUTE

v
RETIRE

Dependent Operations

uint32 t probe[256];

uint8 t A = *(uint t*)ptr;
uint32 t val = probel[A];

How Far?

83
ff
83
7cC
b8
50
el
83
b8
50

cd
46
Te
ed
38

00
c4
ol

02
fc
fc

00

00

02
00

19

add S0x2,%sp

incw -0x4 (%bp)

cmpw $0x19,-0x4 (%bp)

jl le <fn000010+0xe>
mov S0x38, 3ax

push sax

call 38 <fn000010+0x28>
add $0x2, $sp

mov S0x61l, $ax

push Fax

Linux Memory Management

Linux Memory Management

e The operating system abstracts the hardware

o We can make assumptions without understanding the details of the hardware
e Makes sure we can get physical memory when we need it

e Use the hardware (MMU) to protect our memory from other programs

Start End Size Description
0000000000000000 | O000Q7fffffffffff | 128 TB user-space virtual memory
0000800000000000 | fEff7fEffffEE£EEE | ~16 EB empty

f£££800000000000 | ffffffffffffffff | 128 TB Kernel-space virtual memory

N 640K ought to be
™ | enough for anyone

Let’s use 64-bit
addressing, just
in case

*This conversation may not have actually taken place

Linux Virtual Address Space Layout (w/o KPTI)

OXFFFF...FFFF

0x0000...0000

Kernel Space

User Space

System accessible mappings

=

User accessible mappings

=

Linux Direct Map

All physical memory is directly mapped in kernel virtual memory space
Basis for phys2virt and virt2phys macros

Used primarily for drivers and ‘mm’ functions

This makes memory manipulation code small, fast and efficient

This is also a big security risk!

Start End Size Description

ff£f£888000000000 | ffffc87fffffffff | 64 TB Direct Map

Background
Virtual Memory
Oo00 Execution
Linux Memory Management
The Exploit
The Fix
The Damage

The Exploit

e \We want to read kernel memory - how?

Two conditions must hold

1. Mapping of physical page in our virtual address space

2. Permission bit to allow unprivileged access to page

The Exploit

e \We want to read kernel memory - how?

Two conditions must hold

1. Mapping of physical page in our virtual address space \/

2. Permission bit to allow unprivileged access to page

The Exploit

e \We want to read kernel memory - how?

Two conditions must hold

1. Mapping of physical page in our virtual address space \/

2. Permission bit to allow unprivileged access to page X

The Exploitin C

char val;
char probe[4096 * 256]; the probe array
unsigned long rcx = 0Oxff£f£80000000000; pointerto a kernel address

unsigned long rax = 0;

rax = * (byte*)rcx; (no permission!)
rax <<= 12; shift the secret value by the page size
val = probe[rax]; secret value becomes index into probe array

The Exploit

XOr rax, rax

retry:
mov al, byte [rcx] rcx is a pointer to a kernel address
(no permission!)
shl rax, 0xc shift the secret value by the page size
secret value becomes index into probe array
Jz retry

mov rbx, gword [rbx + rax] rbxisthe base address of the probe array

The Exploit
| val = probe[rax] instructions > FETCH x4

Y Y v v

There is a side

effect!

DECODE DECODE DECODE DECODE

I | I |
Y Y

E:> EXECUTE EXECUTE

v
RETIRE

The Exploit

unsigned long rax = 0;
char probe[4096 * 256]; the probe array

unsigned long rcx = 0xffff80000000000; pointerto a kernel address
char val;

rax = * (byte*)rcx; Exception!

rax <<= 12; Already scheduled and

val = probe[rax]; perhaps executed

Flush + Reload

Make sure the cache is empty (clflush)

Perform attack

Read all entries in the probe array, and measure access time
One measurement might stand out!

Index of cached page is the value of the secret byte

Access time

0 50 100 150 200 250
Page

Accessing All Memory

e Now we know how to access kernel memory!
o Not very fast, but it works

e But how to access memory of another process?
o Linux manages all processes (including their hierarchy) in a linked list
o The head of this task list is stored in the init_task structure

e Use the direct memory map
o Must find the page tables belonging to another process

o Perform a page walk to find the physical page for a particular virtual address
o Access that physical page through the direct map

Performance

e Flush-Reload is the bottleneck of the attack

e Instead of 8 bits (=256 entries), send 1 bit (=2 entries) of information
o Much faster
o Less reliable (noise bias to ‘0’)

e Can read memory at rates between 4KB/s - 500KB/s

Background
Virtual Memory
Oo00 Execution
Linux Memory Management
The Exploit
The Fix
The Damage

The Fix

KPTI - Kernel Page Table Isolation
Based on KAISER patches
Removes kernel mappings from user process virtual memory

Requires a pair of page tables for each process
o One for user space
o One for kernel space

e Drastically increases overhead during context switch

Linux Virtual Address Space Layout (with KPTI)

OXFFFF...FFFF

Kernel Space

User Space User Space

0x0000...0000

User Page Table Kernel Page Table

Background
Virtual Memory
Oo00 Execution
Linux Memory Management
The Exploit
The Fix
The Damage

The Damage

e Measurements are very dependent on the number of syscalls

e The overhead was measured to be 0.28% according to KAISER's original
authors

e a Linux developer measured it to be roughly 5% for most workloads and up to
30% in some cases

e for database engine PostgreSQL the impact on read-only tests on an Intel
Skylake processor was 16—23% (without PCID)

e Redis slowed by 6—7%

e Linux kernel compilation slowed down by 5% on Haswell

The Damage

Security

Enhancements

New
Features

[

Mis-

configu rations]

P - - - -

% Change in Latency Relative to v4.0

‘.
L]

1 Spectre patc;}q

Meltdown patchl

1
1 Harden usercopy
1 Rand. SLAB freelist

User pagefault handling

Hugepages disab
ON-0p. cgroup mem.

I Missing CPU idle states
I outdated TLB layout spec.

Root causes

‘Forced context trackingp{ : : | . i i | | |

O—IANMITNONOD

1 T T T 1 1 T T T 1 T T I T 1 T T T 1 1 T T T 1 1 T 1

Or-NMITNONOOOANMITNONOANOAANMITNONONO

A RS S B B B S B S s

MmmMmmmmMmMmmmMmmMmm
Linux Kernel Versions

150%
125%
100%
75%
50%
25%
0%
-25%
-50%

Making It Hurt Slightly Less

e PCIDs allow a logical processor to cache information for multiple
linear-address spaces

e Allows us to bypass the TLB flush on syscall entry/exit

e PostgreSQL read-only tests on an Intel Skylake processor was 7—17% (or
16—23% without PCID)

Conclusions

e Even the most commonly used, professionally made chips have bugs
e Operating systems can (sometimes) be used to mask these bugs
e Even so, the bugs are costly!

Meltdown
Spectre
L1TF
RIDL
Fallout
MDS
More??

References

https://sosp19.rcs.uwaterloo.ca/slides/ren.pdf

https://meltdownattack.com/meltdown.pdf

https://www.kernel.org/doc/Documentation/x86/x86 64/mm.txt

https://en.wikipedia.org/wiki/Kernel page-table isolation

https://sosp19.rcs.uwaterloo.ca/slides/ren.pdf
https://meltdownattack.com/meltdown.pdf
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://en.wikipedia.org/wiki/Kernel_page-table_isolation

