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Background
● Meltdown allows an unprivileged app to read ALL memory of a victim machine
● Official name: CVE-2017-5754 “Rogue Data Cache Load” (RDCL)
● Caused by a race condition in out-of-order CPU’s
● NSA potentially knew about this since 1995
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Virtual Memory
● Memory is organized into pages

○ Page sizes range from 4KB to up 1GB

● Virtual addresses are mapped to physical addresses
○ Usually through page tables, but there are other mechanisms (such as hashing)

● Each page has attributes
○ Describes permissions (WX), supervisor (S) and caching ©

● MMU performs virtual to physical translations
● Translations are cached in TLB (translation lookaside buffer)
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Background: Virtual Memory

MMU
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Cache Organization
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Cache Organization
● Reading from main memory is slow!

○ In the range of 400-800ns
○ Therefore we want to avoid main memory as much as possible

● So we cache (make a copy) of any data in a smaller, faster memory
○ Much faster - in the range of 10-100ns
○ Faster memories are more expensive

● We can make a hierarchy with different attributes
○ Capacity
○ Access time
○ Mapping (Direct, Associativity)
○ Multiple ways

● Cache is not part of the Instruction Set Architecture!
○ It is part of the microarchitecture
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Out-of-order Execution
● CPUs are made up of many hardware blocks

○ Prefetchers
○ Decoders
○ Functional units (Integer units, floating point units, etc)
○ Register file
○ Reservation stations
○ Many more

● Not all hardware is used for each instruction
● Some instructions wait even though there are no direct dependencies
● Some instructions will execute before later instructions
● We want to work as fast as possible



CPU Architecture - Simplified



Real Life



Memory Read (sequential)
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FETCH x4
74 69 6f 6e
72 72 6f 72
72 64 3a 30
67 65 50 61
64 6f 77 73
77 69 6e 6d
6a 65 63 74
64 6f 77 6e

DECODE DECODE DECODE DECODE

EXECUTE EXECUTE
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data



Dependent Operations

uint32_t probe[256];

uint8_t A = *(uint_t*)ptr;
uint32_t val = probe[A];



How Far?

83 c4 02             add    $0x2,%sp
ff 46 fc             incw   -0x4(%bp)
83 7e fc 19          cmpw   $0x19,-0x4(%bp)
7c ed                jl     1e <fn000010+0xe>
b8 38 00             mov    $0x38,%ax
50                   push   %ax
e8 00 00             call   38 <fn000010+0x28>
83 c4 02             add    $0x2,%sp
b8 61 00             mov    $0x61,%ax
50                   push   %ax
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Linux Memory Management
● The operating system abstracts the hardware

○ We can make assumptions without understanding the details of the hardware

● Makes sure we can get physical memory when we need it
● Use the hardware (MMU) to protect our memory from other programs

Start End Size Description

0000000000000000 00007fffffffffff 128 TB user-space virtual memory

0000800000000000 ffff7fffffffffff ~16 EB empty

ffff800000000000 ffffffffffffffff 128 TB Kernel-space virtual memory



640K ought to be 
enough for anyone

Let’s use 64-bit 
addressing, just 
in case

*This conversation may not have actually taken place



Linux Virtual Address Space Layout (w/o KPTI)
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Linux Direct Map
● All physical memory is directly mapped in kernel virtual memory space
● Basis for phys2virt and virt2phys macros
● Used primarily for drivers and ‘mm’ functions
● This makes memory manipulation code small, fast and efficient
● This is also a big security risk!

Start End Size Description

ffff888000000000 ffffc87fffffffff 64 TB Direct Map
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The Exploit
● We want to read kernel memory - how?

Two conditions must hold

1. Mapping of physical page in our virtual address space 
2. Permission bit to allow unprivileged access to page 
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The Exploit
● We want to read kernel memory - how?

Two conditions must hold

1. Mapping of physical page in our virtual address space✓

2. Permission bit to allow unprivileged access to page ✗



The Exploit in C

char val;
char probe[4096 * 256]; the probe array
unsigned long rcx = 0xffff80000000000; pointer to a kernel address
unsigned long rax = 0;

rax = *(byte*)rcx; (no permission!)
rax <<= 12; shift the secret value by the page size
val = probe[rax]; secret value becomes index into probe array



The Exploit
xor rax, rax
retry:
mov al, byte [rcx] rcx is a pointer to a kernel address

(no permission!)
shl rax, 0xc shift the secret value by the page size 

secret value becomes index into probe array
jz retry
mov rbx, qword [rbx + rax] rbx is the base address of the probe array



FETCH x4
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val = probe[rax]

There is a side 
effect!

The Exploit



The Exploit
unsigned long rax = 0;
char probe[4096 * 256]; the probe array
unsigned long rcx = 0xffff80000000000; pointer to a kernel address
char val;

rax = *(byte*)rcx; Exception!

rax <<= 12;
val = probe[rax];

Already scheduled and 
perhaps executed



Flush + Reload
● Make sure the cache is empty (clflush)
● Perform attack
● Read all entries in the probe array, and measure access time
● One measurement might stand out!
● Index of cached page is the value of the secret byte



Accessing All Memory
● Now we know how to access kernel memory!

○ Not very fast, but it works

● But how to access memory of another process?
○ Linux manages all processes (including their hierarchy) in a linked list
○ The head of this task list is stored in the init_task structure

● Use the direct memory map
○ Must find the page tables belonging to another process
○ Perform a page walk to find the physical page for a particular virtual address
○ Access that physical page through the direct map



Performance
● Flush-Reload is the bottleneck of the attack
● Instead of 8 bits (=256 entries), send 1 bit (=2 entries) of information

○ Much faster
○ Less reliable (noise bias to ‘0’)

● Can read memory at rates between 4KB/s - 500KB/s
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The Fix
● KPTI - Kernel Page Table Isolation
● Based on KAISER patches
● Removes kernel mappings from user process virtual memory
● Requires a pair of page tables for each process

○ One for user space
○ One for kernel space

● Drastically increases overhead during context switch



Linux Virtual Address Space Layout (with KPTI)

Kernel entry
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The Damage
● Measurements are very dependent on the number of syscalls
● The overhead was measured to be 0.28% according to KAISER's original 

authors
● a Linux developer measured it to be roughly 5% for most workloads and up to 

30% in some cases
● for database engine PostgreSQL the impact on read-only tests on an Intel 

Skylake processor was 16–23% (without PCID)
● Redis slowed by 6–7%

● Linux kernel compilation slowed down by 5% on Haswell



The Damage



Making It Hurt Slightly Less
● PCIDs allow a logical processor to cache information for multiple 

linear-address spaces
● Allows us to bypass the TLB flush on syscall entry/exit

● PostgreSQL read-only tests on an Intel Skylake processor was 7–17% (or 
16–23% without PCID)



Conclusions
● Even the most commonly used, professionally made chips have bugs
● Operating systems can (sometimes) be used to mask these bugs
● Even so, the bugs are costly!

Meltdown
Spectre
L1TF
RIDL
Fallout
MDS
More??
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