
Architecture Specification for Vector Extension to Nios II ISA

Revision 0.8

Draft only, do not distriute widely

Jason Yu

System-On-Chip Research Lab,

Electrical & Computer Engineering,

University of British Columbia

jasony@ece.ubc.ca

May 9, 2008

1



CONTENTS 2

Contents

1 Introduction 4

1.1 Configurable Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Memory Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Vector Register Set 6

2.1 Vector Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Vector Scalar Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Vector Flag Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Vector Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Multiply-Accumulators for Vector Sum Reduction . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Vector Lane Local Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Instruction Set 10

3.1 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Flag Register Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11



CONTENTS 3

4 Instruction Set Reference 12

4.1 Integer Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Logical Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Fixed Point Instructions (Future Extension) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4 Memory Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5 Vector Processing Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.6 Vector Flag Processing Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.7 Miscellaneous Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Instruction Formats 23

5.1 Vector Register and Vector Scalar Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Vector Memory Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Instruction Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3.1 Arithmetic/Logic Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3.2 Fixed Point Instructions (Future extension) . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.3 Flag and Miscellaneous Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.4 Memory Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



1 INTRODUCTION 4

1 Introduction

A vector processor is a single-instruction-multiple-data (SIMD) array of virtual processors (VPs). The

number of VPs is the same as the vector length (VL). All VPs execute the same operation specified by a

single vector instruction. Physically, the VPs are grouped in parallel datapaths called vector lanes, each

containing a section of the vector register file and a complete copy of all functional units.

This vector architecture is defined as a co-processor unit to the Altera Nios II soft processor. The ISA is

designed with the Altera Stratix III family of FPGAs in mind. The architecture of the Stratix III FPGA

drove many of the design decisions such as number of vector registers and the supported DSP features.

The instruction set in this ISA borrows heavily from the VIRAM instruction set, which is designed as vector

extensions to the MIPS-IV instruction set. A subset of the VIRAM instruction set is adopted, complemented

by several new instructions to support new features introduced in this ISA.

Differences of this ISA from the VIRAM ISA are:

• increased number of vector registers,

• different instruction encoding,

• configurable processor parameters,

• sequential memory consistency instead of VP-consistency,

• no barrier instructions to order memory accesses,

• new multiply-accumulate (MAC) units and associated instructions (vmac, vccacc, vcczacc),

• new vector lane local memory and associated instructions (vldl, vstl),

• new adjacent element shift instruction (vupshift),

• new vector absolute difference instruction (vabsdiff),

• no support for floating point arithmetic,

• fixed point arithmetic not yet implemented, but defined as a future extension,

• no support for virtual memory or speculative execution.



1 INTRODUCTION 5

Table 1: List of configurable processor parameters

Parameter Description Typical
NLane Number of vector lanes 4–128
MVL Maximum vector length 16–512
VPUW Processor data width (bits) 8,16,32
MemWidth Memory interface width (bits) 32, 64, 128
MemMinWidth Minimum accessible data width in memory 8,16,32
MACL MAC chain length (0 is no MAC) 0,1,2,4
LMemN Local memory number of words 0–1024
LMemShare Shared local memory address space within lane On/Off
Vmult Vector lane hardware multiplier On/Off
Vupshift Vector adjacent element shifting On/Off
Vmanip Vector manipulation instructions (vector insert/extract) On/Off

1.1 Configurable Architecture

This ISA specifies a set of features for an entire family of soft vector processors with varying performance and

resource utilization. The ISA is intended to be implemented by a CPU generator, which would generate an

instance of the processor based on a number of user-selectable configuration parameters. An implementation

or instance of the architecture is not required to support all features of the specifcation. Table 1 lists the

configurable parameters and their descriptions, as well as typical values. These parameters will be referred

to throughout the specification.

NLane and MVL are the the primary determinants of performance of the processor. They control the number

of parallel vector lanes and functional units that are available in the processor, and the maximum length

of vectors that can be stored in the vector register file. MVL will generally be a multiple of NLane. The

minimum vector length should be at least 16. VPUW and MemMinWidth control the width of the VPs and

the minimum data width that can be accessed by vector memory instructions. These two parameters have a

significant impact on the resource utilization of the processor. The remaining parameters are used to enable

or disable optional features of the processor.



2 VECTOR REGISTER SET 6

1.2 Memory Consistency

The memory consistency model used in this processor is sequential consistency. Order of vector and scalar

memory instructions is preserved according to program order. There is no guarantee of ordering between

VPs during a vector indexed store, unless an ordered indexed store instruction is used, in which case the

VPs access memory in order starting from the lowest vector element.

2 Vector Register Set

The following sections describe the register states in the soft vector processor. Control registers and dis-

tributed accumulators will also be described.

2.1 Vector Registers

The architecture defines 64 vector registers directly addressable from the instruction opcode. Vector register

zero (vr0) is fixed at 0 for all elements.

2.2 Vector Scalar Registers

Vector scalar registers are located in the scalar core of the vector processor. As this architecture targets a

Nios II scalar core, the scalar registers are defined by the Nios II ISA. The ISA defines thirty-two 32-bit

scalar registers. Vector-scalar instructions and certain memory operations require a vector register and a

scalar register operand. Vector scalar register values can also be transferred to and from vector registers or

vector control registers using the vext.vs, vins.vs, vmstc, vmcts instructions.



2 VECTOR REGISTER SET 7

Table 2: List of vector flag registers

Hardware Name Software Name Contents

$vf0 vfmask0 Primary mask; set to 1 to disable VP operation
$vf1 vfmask1 Secondary mask; set to 1 to disable VP operation
$vf2 vfgr0 General purpose
... ... ...
$vf15 vfgr13 General purpose
$vf16 Integer overflow
$vf17 Fixed point saturate
$vf18 Unused

... ...
$vf29 Unused

$vf30 vfzero All zeros
$vf31 vfone All ones

2.3 Vector Flag Registers

The architecture defines 32 vector flag registers. The flag registers are written to by comparison instructions

and are operated on by flag logical instructions. Almost all instructions in the instruction set support

conditional execution using one of two vector masks, specified by a mask bit in most instruction opcodes.

The vector masks are stored in the first two vector flag registers. Writing a value of 1 into a VP’s mask

register will cause the VP to be disabled for operations that specify the mask register. Table 2 shows a

complete list of flag registers.

2.4 Vector Control Registers

Table 3 lists the vector control registers in the soft vector processor. The registers in italics hold a static

value that is initialized at compile time, and is determined by the configuration parameters of the specific

instance of the architecture.

The vindex control register holds the vector element index that controls the operation of vector insert

and extract instructions. The register is writeable. For vector-scalar insert/extract, vindex specifies which

data element within the vector register will be written to/read from by the scalar core. For vector-vector

insert/extract, vindex specifies the index of the starting data element for the vector insert/extract operation.



2 VECTOR REGISTER SET 8

Table 3: List of control registers

Hardware Name Software Name Description

$vc0 VL Vector length
$vc1 VPUW Virtual processor width
$vc2 vindex Element index for insert (vins) and extract (vext)
$vc3 vshamt Fixed point shift amount
... ... ...
$vc28 ACCncopy Number of vccacc/vcczacc to sum reduce MVL vector
$vc29 NLane Number of vector lanes
$vc30 MVL Maximum vector length
$vc31 logMVL Base 2 logarithm of MVL
$vc32 vstride0 Stride register 0
... ... ...
$vc39 vstride7 Stride register 7
$vc40 vinc0 Auto-increment Register 0
... ... ...
$vc47 vinc7 Auto-increment Register 7
$vc48 vbase0 Base register 0
... ... ...
$vc63 vbase15 Base register 15

The ACCncopy control register specifies how many times the copy-from-accumulator instructions (vccacc,

vcczacc) needs to be executed to sum-reduce an entire MVL vector. If the value is not one, multiple

multiply-accumulate and copy-from-accumulator instructions will be needed to reduce a MVL vector. Its

usage will be discussed in more detail in Section 2.5.

2.5 Multiply-Accumulators for Vector Sum Reduction

The architecture defines distributed MAC units for multiplying and sum reducing vectors. The MAC units

are distributed across the vector lanes, and the number of MAC units can vary across implementations. The

vmac instruction multiplies two inputs and accumulates the result into accumulators within the MAC units.

The vcczacc instruction sum reduces the MAC unit accumulator contents, copies the final result to element

zero of a vector register, and zeros the accumulators. Together, the two instructions vmac and vcczacc

perform a multiply and sum reduce operation. Multiple vectors can be accumulated and sum reduced by

executing vmac multiple times. Since the MAC units sum multiplication products internally, they cannot be

used for purposes other than multiply-accumulate-sum reduce operations.



2 VECTOR REGISTER SET 9

+

+

+

+

r esu l t  0

resu l t  0

r e s u l t  n / 4 / M A C L

resu l t  1

V e c t o r

R e g i s t e r  F i l e

M A C  u n i t s

M A C L

M A C  u n i t s

M A C L

r esu l t n / 4 / M A C L M A C

c h a i n

M A C

c h a i n

Figure 1: Connection between distributed MAC units and the vector register file

Depending on the number of vector lanes, the vcczacc instruction may not be able to sum reduce all MAC

unit accumulator contents. In such cases it will instead copy a partially sum-reduced result vector to the

destination register. Figure 1 shows how the MAC units generate a result vector and how the result vector is

written to the vector register file. The MAC chain length is specified by the MACL parameter. The vcczacc

instruction sets VL to the length of the partial result vector as a side effect, so the partial result vector

can be again sum-reduced using the vmac, vcczacc sequence. The ACCncopy control register specifies how



3 INSTRUCTION SET 10

many times vcczacc needs to be executed (including the first) to reduce the entire MVL vector to a single

result in the destination register.

2.6 Vector Lane Local Memory

The soft vector architecture supports a vector lane local memory. The local memory is partitioned into

private sections for each VP if the LMemShare option is off. Turning the option on allows the local memory

block to be shared between all VPs in a vector lane. This mode is useful if all VPs need to access the same

lookup table data, and allows for a larger table due to shared storage. With LMemShare, the VL for a local

memory write must be less than or equal to NLane to ensure VPs do not overwrite each other’s data.

The address and data width of the local memory is VPUW, and the number of words in the memory is given

by LMemN. The local memory is addressed in units of VPUW wide words. Data to be written into the

local memory can be taken from a vector register, or the value from a scalar register can be broadcast to

all local memories. A scalar broadcast writes a data value from a scalar register to the VP local memory at

an address given by a vector register. This facilitates filling the VP local memory with fixed lookup tables

computed by the scalar unit.

3 Instruction Set

The following sections describe in detail the instruction set of the soft vector processor, and different varia-

tions of the vector instructions.

3.1 Data Types

The data widths supported by the processor are 32-bit words, 16-bit halfwords, and 8-bit bytes, and both

signed and unsigned data tyes. However, not all operations are supported for 32-bit words. Most notably,



3 INSTRUCTION SET 11

32-bit multiply-accumulate is absent.

3.2 Addressing Modes

The instruction set supports three vector addressing modes:

1. Unit stride access

2. Constant stride access

3. Indexed offsets access

The vector lane local memory uses register addressing with no offset.

3.3 Flag Register Use

Almost all instructions can specify one of two vector mask registers in the opcode to use as an execution

mask. By default, vfmask0 is used as the vector mask. Writing a value of 1 into the mask register will cause

that VP to be disabled for operations that use the mask. Some instructions, such as flag logical operations,

are not masked.

3.4 Instructions

The instruction set includes the following categories of instructions:

1. Vector Integer Arithmetic Instructions

2. Vector Logical Instructions

3. Vector Fixed-Point Arithmetic Instructions

4. Vector Flag Processing Instructions

5. Vector Processing Intructions

6. Memory Instructions



4 INSTRUCTION SET REFERENCE 12

4 Instruction Set Reference

The complete instruction set is listed in the following sections, separated by instruction type. Table 4

describes the possible qualifiers in the assembly mnemonic of each instruction.

Table 4: Instruction qualifiers

Qualifier Meaning Notes

op.vv Vector-vector Vector arithmetic instructions may take one source operand
from a scalar register. A vector-vector operation takes two-
vector source operands; a vector-scalar operation takes its sec-
ond operand from the scalar register file; a scalar-vector opera-
tion takes its first operand from the scalar register file. The .sv
instruction type is provided to support non-commutative opera-
tions.

op.vs Vector-scalar
op.sv Scalar-vector

op.b 1B Byte
The saturate instruction, and all vector memory instructions need
to specify the width of integer data.

op.h 2B Halfword
op.w 4B Word

op.1 Use vfmask1 as the mask By default, the vector mask is taken from vfmask0. This qualifier
selects vfmask1 as the vector mask.

In the following tables, instructions in italics are not yet implemented.

4.1 Integer Instructions

Name Mnemonic Syntax Summary

Absolute Value vabs .vv[.1] vD, vA Each unmasked VP writes into vD the
absolute value of vA.

Absolute Differ-
ence

vabsdiff .vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP writes into vD the
absolute difference of vA and vB/rS.

Add vadd

vaddu

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP writes into vD
the signed/unsigned integer sum of vA
and vB/rS.

Subtract vsub

vsubu

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each unmasked VP writes into vD
the signed/unsigned integer result of
vA/rS minus vB/rS.

Multiply Hi vmulhi

vmulhiu

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP multiplies vA and
vB/rS and stores the upper half of the
signed/unsigned product into vD.



4 INSTRUCTION SET REFERENCE 13

Name Mnemonic Syntax Summary

Multiply Low vmullo

vmullou

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP multiplies vA and
vB/rS and stores the lower half of the
signed/unsigned product into vD.

Integer Divide vdiv

vdivu

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each unmasked VP writes into vD the
signed/unsigned result of vA/rS di-
vided by vB/rS, where at least one
source is a vector.

Shift Right
Arithmetic

vsra .vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each unmasked VP writes into vD
the result of arithmetic right shifting
vB/rS by the number of bits specified
in vA/rS, where at least one source is
a vector.

Minimum vmin

vminu

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP writes into vD the
minimum of vA and vB/rS.

Maximum vmax

vmaxu

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP writes into vD the
maximum of vA and vB/rS.

Compare Equal,
Compare Not
Equal

vcmpe

vcmpne

.vv[.1] vF, vA, vB

.vs[.1] vF, vA, rS

Each unmasked VP writes into vF the
boolean result of comparing vA and
vB/rS

Compare Less
Than

vcmplt

vcmpltu

.vv[.1] vF, vA, vB

.vs[.1] vF, vA, rS

.sv[.1] vF, rS, vB

Each unmasked VP writes into vF the
boolean result of whether vA/rS is less
than vB/rS, where at least one source
is a vector.

Compare Less
Than or Equal

vcmple

vcmpleu

.vv[.1] vF, vA, vB

.vs[.1] vF, vA, rS

.sv[.1] vF, rS, vB

Each unmasked VP writes into vF the
boolean result of whether vA/rS is less
than or equal to vB/rS, where at least
one source is a vector.

Multiply Accu-
mulate

vmac

vmacu

.vv[.1] vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP calculates the
product of vA and vB/rS. The prod-
ucts of vector elements are summed,
and the summation results are added
to the distributed accumulators.



4 INSTRUCTION SET REFERENCE 14

Name Mnemonic Syntax Summary

Compress Copy
from Accumula-
tor

vccacc vD The contents of the distributed ac-
cumulators are reduced, and the re-
sult written into vD. Only the bottom
VPUW bits of the result are written
into vD. If the number of accumula-
tors is greater than MACL, multiple
partial results will be generated by the
accumulate chain, and they are com-
pressed such that the partial results
form a contiguous vector in vD. If the
number of accumulators is less than
or equal to MACL, a single result is
written into element zero of vD. This
instruction is not masked and the ele-
ments of vD beyond the partial result
vector length are not modified. Ad-
ditionally, VL is set to the number of
elements in the partial result vector as
a side effect.

Compress Copy
and Zero Accu-
mulator

vcczacc vD The operation is identical to vccacc,
except the distributed accumulators
are zeroed as a side effect.

4.2 Logical Instructions

Name Mnemonic Syntax Summary

And vand .vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP writes into vD the
logical AND of vA and vB/rS.

Or vor .vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP writes into vD the
logical OR of vA and vB/rS.

Xor vxor .vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP writes into vD the
logical XOR of vA and vB/rS.

Shift Left Logi-
cal

vsll .vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each unmasked VP writes into vD the
result of logical left shifting vB/rS by
the number of bits specified in vA/rS,
where at least one source is a vector.

Shift Right Log-
ical

vsrl .vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each unmasked VP writes into vD the
result of logical right shifting vB/rS
by the number of bits specified in
vA/rS, where at least one source is a
vector.

Rotate Right vrot .vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each unmasked VP writes into vD
the result of rotating vA/rS right by
the number of bits specified in vB/rS,
where at least one source is a vector.



4 INSTRUCTION SET REFERENCE 15

4.3 Fixed Point Instructions (Future Extension)

Name Mnemonic Syntax Summary

Saturate vsat

vsatu







.b

.h

.w







[.1] vD, vA Each unmasked VP places into vD
the result of saturating vA to
a signed/unsigned integer narrower
than the VP width. The result is
sign/zero-extended to the VP width.

Saturate Signed

to Unsigned

vsatsu







.b

.h

.w







[.1] vD, vA Each unmasked VP places into vD the
result of saturating vA from a signed
VP width value to an unsigned value
that is as wide or narrower than the
VP width. The result is zero-extended
to the VP width.

Saturating Add vsadd

vsaddu

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP writes into vD
the signed/unsigned integer sum of vA
and vB/rS. The sum saturates to the
VP width instead of overflowing.

Saturating Sub-

tract

vssub

vssubu

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each unmasked VP writes into vD
the signed/unsigned integer subtrac-
tion of vA/rS and vB/rS, where at
least one source is a vector. The dif-
ference saturates to the VP width in-
stead of overflowing.

Shift Right and

Round

vsrr

vsrru

[.1] vD, vA Each unmasked VP writes into vD
the right arithmetic/logical shift of
vD. The result is rounded as per the
fixed-point rounding mode. The shift
amount is taken from vcvshamt.

Saturating Left

Shift

vsls

vslsu

[.1] vD, vA Each unmasked VP writes into vD the
signed/unsigned saturating left shift
of vD. The shift amount is taken from
vcshamt.

Multiply High vxmulhi

vxmulhiu

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP computes the
signed/unsigned integer product of
vA and vB/rS, and stores the up-
per half of the product into vD after
arithmetic right shift and fixed-point
round. The shift amount is taken from
vcvshamt

Multiply Low vxmullo

vxmullou

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP computes the
signed/unsigned integer product of vA
and vB/rS, and stores the lower half of
the product into vD after arithmetic
right shift and fixed-point round. The
shift amount is taken from vcvshamt



4 INSTRUCTION SET REFERENCE 16

Name Mnemonic Syntax Summary

Copy from Ac-
cumulator and
Saturate

vxccacc [.1] vD The contents of the distributed ac-
cumulators are reduced, and the re-
sult written into vD. Only the bottom
VPUW bits of the result are written
into vD. If the number of accumula-
tors is greater than MACL, multiple
partial results will be generated by the
accumulate chain, and they are com-
pressed such that the partial results
form a contiguous vector in vD. If the
number of accumulators is less than
or equal to MACL, a single result is
written into element zero of vD. This
instruction is not masked and the ele-
ments of vD beyond the partial result
vector length are not modified. Ad-
ditionally, VL is set to the number of
elements in the partial result vector as
a side effect.

Compress Copy

from Accumu-

lator, Saturate

and Zero

vxcczacc vD[.1] The operation is identical to vxccacc,
except the distributed accumulators
are zeroed as a side effect.



4 INSTRUCTION SET REFERENCE 17

4.4 Memory Instructions

Name Mnemonic Syntax Summary

Unit Stride
Load

vld

vldu







.b

.h

.w







[.1] vD, vbase

[,vinc]

The VPs perform a contiguous vec-
tor load into vD. The base address
is given by the control register vbase,
and must be aligned to the width of
the data being accessed. The signed
increment vinc (default is vinc0) is
added to vbase as a side effect. The
width of each element in memory is
given by the opcode. The loaded
value is sign/zero-extended to the VP
width.

Unit Stride
Store

vst







.b

.h

.w







[.1] vA, vbase

[,vinc]

The VPs perform a contiguous vector
store of vA. The base address is given
by vbase (default vbase0), and must
be aligned to the width of the data
being accessed. The signed increment
in vinc (default is vinc0) is added to
vbase as a side effect. The width of
each element in memory is given by
the opcode. The register value is trun-
cated from the VP width to the mem-
ory width. The VPs access memory
in order.

Constant Stride
Load

vlds

vldsu







.b

.h

.w







[.1] vD, vbase,

vstride [,vinc]

The VPs perform a strided vector load
into vD. The base address is given
by vbase (default vbase0), and must
be aligned to the width of the data
being accessed. The signed stride is
given by vstride (default is vstride0).
The stride is in terms of elements, not
in terms of bytes. The signed incre-
ment vinc (default is vinc0) is added
to vbase as a side effect. The width
of each element in memory is given
by the opcode. The loaded value is
sign/zero-extended to the VP width.



4 INSTRUCTION SET REFERENCE 18

Name Mnemonic Syntax Summary

Constant Stride
Store

vsts







.b

.h

.w







[.1] vA, vbase,

vstride [,vinc]

The VPs perform a contiguous store
of vA. The base address is given by
vbase (default vbase0), and must be
aligned to the width of the data being
accessed. The signed stride is given
by vstride (default is vstride0). The
stride is in terms of elements, not in
terms of bytes. The signed increment
in vinc (default is vinc0) is added to
vbase as a side effect. The width of
each element in memory is given by
the opcode. The register value is trun-
cated from the VP width to the mem-
ory width. The VPs access memory
in order.

Indexed Load vldx

vldxu







.b

.h

.w







[.1] vD, vOff,

vbase

The VPs perform an indexed-vector
load into vD. The base address is
given by vbase (default vbase0), and
must be aligned to the width of the
data being accessed. The signed off-
sets are given by vOff and are in units
of bytes, not in units of elements. The
effective addresses must be aligned to
the width of the data in memory. The
width of each element in memory is
given by the opcode. The loaded
value is sign/zero-extended to the VP
width.

Unordered

Indexed Store

vstxu







.b

.h

.w







[.1] vA, vOff

vbase

The VPs perform an indexed-vector
store of vA. The base address is given
by vbase (default vbase0). The signed
offsets are given by vOff. The offsets
are in units of bytes, not in units of el-
ements. The effective addresses must
be aligned to the width of the data
being accessed. The register value is
truncated from the VP width to the
memory width. The stores may be
performed in any order.

Ordered In-
dexed Store

vstx







.b

.h

.w







[.1] vA, vOff

vbase

Operation is identical to vstxu, except
that the VPs access memory in order.



4 INSTRUCTION SET REFERENCE 19

Name Mnemonic Syntax Summary

Local Memory
Load

vldl .vv[.1] vD, vA Each unmasked VP performs a
register-indirect load into vD from the
vector lane local memory. The ad-
dress is specified in vA/rS, and is in
units of VPUW. The data width is the
same as VP width.

Local Memory
Store

vstl .vv[.1] vA, vB

.vs[.1] vA, rS

Each unmasked VP performs a
register-indirect store of vB/rS into
the local memory. The address is
specified in vA, and is in units of
VPUW. The data width is the same
as VP width. If the scalar operand
width is larger than the local memory
width, the upper bits are discarded.

Flag Load vfld vF, vbase [,vinc] The VPs perform a contiguous vector
flag load into vF. The base address is
given by vbase, and must be aligned to
VPUW. The bytes are loaded in little-
endian order. This instruction is not
masked.

Flag Store vfst vF, vbase [,vinc] The VPs perform a contiguous vector
flag store of vF. The base address is
given by vbase, and must be aligned
to VPUW. A multiple of VPUW bits
are written regardless of vector length
(or more precisely, ⌈(V L/V PUW ) ∗
V PUW ⌉ flag bits are written). The
bytes are stored in little-endian order.
This instruction is not masked.

4.5 Vector Processing Instructions

Name Mnemonic Syntax Summary

Merge vmerge .vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each VP copies into vD either vA/rS
if the mask is 0, or vB/rS if the mask
is 1. At least one source is a vector.
Scalar sources are truncated to the VP
width.

Vector Insert vins .vv vD, vA The leading portion of vA is inserted
into vD. vD must be different from
vA. Leading and trailing entries of vD
are not touched. The lower vclogmvl

bits of vector control register vcvindex

specifies the starting position in vD.
The vector length specifies the num-
ber of elements to transfer. This in-
struction is not masked.



4 INSTRUCTION SET REFERENCE 20

Vector Extract vext .vv vD, vA A portion of vA is extracted to the
front of vD. vD must be different from
vA. Trailing entries of vD are not
touched. The lower vclogmvl bits of
vector control register vcvindex speci-
fies the starting position in vD. The
vector length specifies the number of
elements to transfer. This instruction
is not masked.

Scalar Insert vins .vs vD, rS The contents of rS are written into
vD at position vcvindex. The lower
vclogmvl bits of vcvindex are used. This
instruction is not masked and does not
use vector length.

Scalar Extract vext

vextu

.vs rS, vA Element vcvindex of vA is written into
rS. The lower vclogmvl bits of vcindex

are used to determine the element in
vA to be extracted. The value is
sign/zero-extended. This instruction
is not masked and does not use vector
length.

Compress vcomp [.1] vD, vA All unmasked elements of vA are con-
catenated to form a vector whose
length is the population count of the
ask (subject to vector length). The re-
sult is placed at the front of vD, leav-
ing trailing elements untouched. vD
must be different from vA.

Expand vexpand [.1] vD, vA The first n elements of vA are writ-
ten into the unmasked positions of vD,
where n is the population count of
the mask (subject to vector length).
Masked positions in vD are not
touched. vD must be different from
vA.

Vector Element
Shift

vupshift vD, vA The contents of vA are shifted up by
one element, and the result is written
to vD (vD[i] = vA[i+1]). The first el-
ement in vA is wrapped to the last
element (MVL-1) in vD. This instruc-
tion is not masked and does not use
vector length.



4 INSTRUCTION SET REFERENCE 21

4.6 Vector Flag Processing Instructions

Name Mnemonic Syntax Summary

Scalar Flag In-
sert

vfins .vs vF, rS The boolean value of rS is written into
vF at position vcvindex. The lower
vclogmvl bits of vcvindex are used. This
instruction is not masked and does not
use vector length.

And vfand .vv vFD, vFA, vFB

.vs vFD, vFA, rS

Each VP writes into vFD the logical
AND of vFA and vFB/rS. This in-
struction is not masked, but is subject
to vector length.

Or vfor .vv vFD, vFA, vFB

.vs vFD, vFA, rS

Each VP writes into vFD the logical
OR of vFA and vFB/rS. This instruc-
tion is not masked, but is subject to
vector length.

Xor vfxor .vv vFD, vFA, vFB

.vs vFD, vFA, rS

Each VP writes into vFD the logical
XOR of vFA and vFB/rS. This in-
struction is not masked, but is subject
to vector length.

Nor vfnor .vv vFD, vFA, vFB

.vs vFD, vFA, rS

Each VP writes into vFD the logical
NOR of vFA and vFB/rS. This in-
struction is not masked, but is subject
to vector length.

Clear vfclr vFD Each VP writes zero into vFD. This
instruction is not masked, but is sub-
ject to vector length.

Set vfset vFD Each VP writes one into vFD. This in-
struction is not masked, but is subject
to vector length.

Population

Count

vfpop rS, vF The population count of vF is placed
in rS. This instruction is not masked.

Find First One vfff1 rS, vF The location of the first set bit of vF
is placed in rS. This instruction is not
masked. If there is no set bit in vF,
then the vector length is placed in rS.

Find Last One vffl1 rS, vF The location of the last set bit of vF
is placed in rS. The instruction is not
masked. If there is no set bit in vF,
then the vector length is placed in rS.

Set Before First

One

vfsetbf vFD, vFA Register vFD is filled with ones up to
and not including the first set bit in
vFA. Remaining positions in vF are
cleared. If vFA contains no set bits,
vFD is set to all ones. This instruction
is not masked.



4 INSTRUCTION SET REFERENCE 22

Set Including

First One

vfsetif vFD, vFA Register vFD is filled with ones up to
and including the first set bit in vFA.
Remaining positions in vF are cleared.
If vFA contains no set bits, vFD is
set to all ones. This instruction is not
masked.

Set Only First

One

vfsetof vFD, vFA Register vFD is filled with zeros ex-
cept for the position of the first set
bit in vFA. If vFA contains no set bits,
vFD is set to all zeros. This instruc-
tion is not masked.

4.7 Miscellaneous Instructions

Name Mnemonic Syntax Summary

Move Scalar to
Control

vmstc vc, rS Register rS is copied to vc. Writing
vcvpw changes vcmvl, vclogmvl as a

side effect.
Move Control to
Scalar

vmcts rS, vc Register vc is copied to rS.



5 INSTRUCTION FORMATS 23

5 Instruction Formats

The Nios II ISA uses three instruction formats.

R - T y p e A O P X O P

3 1 2 7 2 6 2 2 2 1 1 7 1 6 6 5 0

5 1 1 6

B

5

C

5

A I M M 1 6 O P

3 1 2 7 2 6 2 2 2 1 6 5 0

5 1 6 6

B

5

I - T y p e

I M M 2 6 O P

3 1 6 5 0

2 6 6

J - T y p e

The defined vector extension uses up to three 6-bit opcodes from the unused/reserved Nios II opcode space.

Each opcode is further divided into two vector instruction types using the OPX bit in the vector instruction

opcode. Table 11 lists the Nios II opcodes used by the soft vector processor instructions.

Table 11: Nios II Opcode Usage

Nios II Opcode OPX Bit Vector Instruction Type

0x3D
0 Vector register instructions
1 Vector scalar instructions

0x3E
0 Fixed point instructions
1 Vector flag, transfer, misc

0x3F
0 Vector memory instructions
1 Unused except for vstl.vs

5.1 Vector Register and Vector Scalar Instructions

The vector register format (VR-type) covers most vector arithmetic, logical, and vector processing instruc-

tions. It specifies three vector registers, a 1-bit mask select, and a 7-bit vector opcode. Instructions that

take only one source operand use the vA field. Two exceptions are the vector local memory load and store

instructions, which also use VR-type instruction format.



5 INSTRUCTION FORMATS 24

V R - T y p e v D v A v B F U N C O PM A S K O P X

3 1 2 6 2 5 2 0 1 9 1 4 1 3 1 2 1 1 6 5 0

6 6 6 1 1 6 6

Table 12: Scalar register usage as source or destination register

Instruction Scalar register usage

op.vs Source
op.sv Source

vins.vs Source
vext.vs Destination
vmstc Source
vmcts Destination

Scalar-vector instructions that take one scalar register operand have two formats, depending on whether the

scalar register is the source (SS-Type) or destination (SD-Type) of the operation.

S S - T y p e v D v A r S F U N C O PM A S K O P X

3 1 2 6 2 5 2 0 1 9 1 4 1 3 1 2 1 1 6 5 0

6 6 5 1 1 6 6

0

1 5

1

0v Ar S F U N C O PM A S K O P X

1 9 1 42 5 2 03 1 2 6 1 3 1 2 1 1 6 5 0

665 1 1 6 6

0

2 7

1

S D - T y p e

Table 12 lists which instructions use scalar register as a source and as a destination.

5.2 Vector Memory Instructions

Separate vector memory instructions exist for the different addressing modes. Each of unit stride, constant

stride, and indexed memory access has its own instruction format: VM, VMS, and VMX-type, respectively.



5 INSTRUCTION FORMATS 25

V M - T y p e v R F U N C O PM A S K O P X

3 1 2 6 2 5 1 9 1 8 1 4 1 3 1 2 1 1 6 5 0

V M X - T y p e v A  /  v D v O f f s e t B A S E F U N C O PM A S K O P X

3 1 2 6 2 5 2 0 1 9 1 4 1 3 1 2 1 1 6 5 0

V M S - T y p e

0

1 8

B A S E

2 22 3

I N C

v R

0

F U N C O PM A S K O P X

3 1 2 6 2 5 1 9 1 8 1 4 1 3 1 2 1 1 6 5 0

B A S E

2 22 3

I N C

6 3 4 5 1 1 6 6

6 3 4 5 1 1 6 6

6 6 1 5 1 1 6 6

S T R I D E

Scalar store to vector lane local memory uses the SS-type instruction format with all zeros in the vD field.

Vector load and store to the local memory use the VR-type instruction format.

5.3 Instruction Encoding

5.3.1 Arithmetic/Logic Instructions

Table 13 lists the function field encodings for vector register instructions. Table 14 lists the function field

encodings for scalar-vector and vector-scalar (non-commutative vector-scalar operations). These instructions

use the vector-scalar instruction format.

Table 13: Vector register instruction function field encoding (OPX=0)

[2:0] Function bit encoding for .vv
[5:3] 000 001 010 011 100 101 110 111
000 vadd vsub vmac vand vor vxor
001 vaddu vsubu vmacu vabsdiff
010 vsra vcmpeq vsll vsrl vrot vcmplt vdiv vcmple
011 vmerge vcmpneq vcmpltu vdivu vcmpleu
100 vmax vext vins vmin vmulhi vmullo
101 vmaxu vminu vmulhiu vmullou
110 vccacc vupshift vcomp vexpand vabs
111 vcczacc



5 INSTRUCTION FORMATS 26

Table 14: Scalar-vector instruction function field encoding (OPX=1)

[2:0] Function bit encoding for .vs
[5:3] 000 001 010 011 100 101 110 111
000 vadd vsub vmac vand vor vxor
001 vaddu vsubu vmacu vabsdiff
010 vsra vcmpeq vsll vsrl vrot vcmplt vdiv vcmple
011 vmerge vcmpneq vcmpltu vdivu vcmpleu
100 vmax vext vins vmin vmulhi vmullo
101 vmaxu vextu vminu vmulhiu vmullou

[2:0] Function bit encoding for .sv
[5:3] 000 001 010 011 100 101 110 111
110 vsra vsub vsll vsrl vrot vcmplt vdiv vcmple
111 vmerge vsubu vcmpltu vdivu vcmpleu

5.3.2 Fixed Point Instructions (Future extension)

Table 15 lists the function field encodings for fixed point arithmetic instructions. These instructions are

provided as a specification for future fixed point arithmetic extension.

Table 15: Fixed point instruction function field encoding (OPX=0)
[2:0] Function bit encoding for fixed-point instructions

[5:3] 000 001 010 011 100 101 110 111
000 vsadd vssub vsat vsrr vsls vxmulhi vxmullo

001 vsaddu vssubu vsatu vsrru vslsu vxmulhiu vxmullou

010 vxccacc vsatsu

011 vxcczacc

100 vsadd.sv vssub.sv vxmulhi.sv vxmullo.sv

101 vsaddu.sv vssubu.sv vxmulhiu.sv vxmullou.sv

110 vssub.vs

111 vssubu.vs

5.3.3 Flag and Miscellaneous Instructions

Table 16 lists the function field encoding for vector flag logic and miscellaneous instructions.



5 INSTRUCTION FORMATS 27

Table 16: Flag and miscellaneous instruction function field encoding (OPX=1)
[2:0] Function bit encoding for flag/misc instructions

[5:3] 000 001 010 011 100 101 110 111
000 vfclr vfset vfand vfnor vfor vfxor
001 vfff1 vffl1

010 vfsetof vfsetbf vfsetif

011 vfins.vs vfand.vs vfnor.vs vfor.vs vfxor.vs
100
101 vmstc vmcts
110
111

5.3.4 Memory Instructions

Table 17 lists the function field encoding for vector memory instructions. The vector-scalar instruction

vstl.vs is the only instruction that has opcode of 0x3F and OPX bit of 1.

Table 17: Memory instruction function field encoding

[2:0] Function bit encoding for memory instructions (OPX=0)
[5:3] 000 001 010 011 100 101 110 111
000 vld.b vst.b vlds.b vsts.b vldx.b vstxu.b vstx.b
001 vldu.b vldsu.b vldxu.b
010 vld.h vst.h vlds.h vsts.h vldx.h vstxu.h vstx.h
011 vldu.h vldsu.h vldxu.h
100 vld.w vst.w vlds.w vsts.w vldx.w vstxu.w vstx.w
101
110 vldl vstl vfld vfst
111

[2:0] Function bit encoding for memory instructions (OPX=1)
[5:3] 000 001 010 011 100 101 110 111
110 vstl.vs


