
Vector Processing as a Soft-core CPU Accelerator

Jason Yu
jasony@ece.ubc.ca

Guy Lemieux
lemieux@ece.ubc.ca

Christopher Eagleston
ceaglest@ece.ubc.ca

Department of Electrical and Computer Engineering
University of British Columbia
Vancouver, Canada V6T 1Z4

ABSTRACT

The currently accepted method of accelerating applications
in FPGA soft processor systems is to design a custom hard-
ware accelerator. This paper suggests the alternative ap-
proach of adding a vector processing core to the soft pro-
cessor as a general-purpose accelerator. The approach has
the benefit of a purely software-oriented development model.
With no hardware design experience needed, a software pro-
grammer can make area-versus-performance tradeoffs by scal-
ing the number of functional units or vector lanes. This
paper shows that a vector processing architecture maps ef-
ficiently into an FPGA and provides a scalable amount of
performance for a reasonable amount of area. Three con-
figurations of the soft vector processor with different per-
formance levels are estimated to achieve scalable speedup
ranging from 3–29× for 6–30× the area of a Nios II/s pro-
cessor on three benchmark kernels. The results compare
favourably to accelerators designed using Altera’s C2H com-
piler, a C-to-hardware tool that is also easy to use.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)—array and vector proces-
sors, single-instruction-stream, multiple-data-stream proces-
sors (SIMD)

General Terms

Measurement, Performance, Design

Keywords

C2H, FPGA, application specific, configurable, data-level
parallelism, embedded processor, soft processor

1. INTRODUCTION
Designers of FPGA-based systems find soft-core proces-

sors very convenient because software programming is far

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’08, February 24-26, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-934-0/08/02 ...$5.00.

simpler than hardware design, thus shortening time-to-market
and development costs. However, the amount of compute
performance available from soft-core processors is strictly
limited. For example, Altera’s Nios II [1] is available in only
three performance levels, the most sophisticated of which is
a single-issue, in-order RISC pipeline. Hence, embedded ap-
plications that have plenty of data-level parallelism in tight,
computationally-intensive inner loops [2] are performance-
limited by the processor design itself.

Three ways of accelerating FPGA-based applications with
plenty of data parallelism are: 1) use FPGA logic fabric to
design a custom hardware accelerator, or 2) build a soft-core
multiprocessor system and write parallel code, or 3) change
the processor design to have more parallelism. The first ap-
proach requires some level of hardware design experience,
even with high-level tools like Altera’s C2H compiler [3],
which compiles user-specified functions in the application
into co-processors in a Nios II-based system. The second
approach requires worrying about the complexity of par-
allel debugging and coping with incoherent memory. The
third approach would provide all soft-core users with an im-
proved, scalable processor core. However, traditional super-
scalar and VLIW techniques are not viable due to overheads
implementing wide issue logic and multiple register file write
ports. Instead, a different type of processor design is needed.

Another way to improve soft-core processors for data-
parallel applications is to adopt a SIMD or vector architec-
ture. In this paper, we show that this type of architecture
maps well to FPGA devices after the vector registers are
partitioned across several memories—a technique described
in [4]. Unlike existing soft-core CPUs which have limited
configurability, a soft-core vector processor can have a large
number of control parameters which strongly influence per-
formance and area. For example, the datapath width can be
configured to 8, 16, or 32 bits, and performance can be scaled
to the desired level by selecting the number of parallel func-
tional units or vector lanes. Excluding unused instructions
or microarchitectural features allows further customization.

The key benefit of using a soft-core vector architecture is
achieving high performance with reduced development ef-
fort and faster time-to-market. We found that vector pro-
cessing achieves performance benefits similar to a custom
hardware accelerator but with zero hardware design effort.
We also found the process of writing vector assembly code
to be simpler than performance-tuning a custom accelerator,
even with a high-level tool like C2H; presumably, a vector-
izing compiler would make this even easier. Unlike custom
accelerators, a vector processor can even serve multiple ap-

plications with the same hardware instance. This can reduce
the need for several hardware development iterations or the
need to store multiple device configurations.

The benefits of using a vector processor are more about
rapid development than ultra-high performance. It is likely
that higher performance could be obtained using any num-
ber of alternatives, including a traditional custom CPU,
DSP, GPU, or even hand-crafted RTL in an FPGA. How-
ever, a custom CPU or GPU is not always available on the
circuit board, and hand-crafting an RTL accelerator is very
time-consuming. Hence, for comparison purposes, we use
C2H to rapidly produce custom accelerators. Furthermore,
we do not suggest that end-users each develop their own
soft-core vector processor, as that is a complex task that
should be adopted by the FPGA vendor or 3rd party ven-
dors. Also, although we write vector assembly code by hand,
we presume that a vectorizing compiler would be provided
by the vendor to facilitate even more rapid design.

The remainder of the paper is organized as follows. Sec-
tion 2 gives background on vector processing. Section 3
describes the soft vector processor architecture. Section 4
illustrates how the benchmark kernels are written for the
soft vector processor. Section 5 gives performance estimates
for the processor, and Section 6 presents some of our sug-
gestions to FPGA architecture to ease implementation and
improve performance of soft-core vector processors.

1.1 Related Work
Many previous attempts to implement vector processors in

FPGAs targetted only a specific application, or were proto-
types of ASIC implementations. Two vector processors that,
similar to this work, were specifically designed for FPGAs
are described in [5, 6]. The first vector processor [5] con-
sists of two identical vector processors located on two Xilinx
XC2V6000 FPGA chips. Each vector microprocessor runs
at 70MHz, and contains a simplified scalar processor with
16 instructions, a vector unit consisting of 8 vector regis-
ters, 8 lanes (each containing a 32-bit floating-point unit),
and supports a maximum vector length (MVL) of 64. Eight
vector instructions are supported, but only matrix multi-
plication was demonstrated on the system. Although our
vector processor lacks floating-point support, it presents a
more complete solution consisting of full scalar unit (Nios II)
and a full vector unit (based on VIRAM instructions) that
supports over 45 distinct vector instructions plus variations.

The second vector processor [6] was designed for Xilinx
Virtex-4 SX and operated at 169MHz. It contains 16 in-
teger processing lanes and 17 on-chip memory banks con-
nected to a MicroBlaze [7] processor through fast simplex
links (FSL). It is not clear how many vector registers were
supported. Compared to the MicroBlaze, speedups of 4–
10× were demonstrated with four applications (FIR, IIR,
matrix multiply, and 8×8 DCT). The processor implemen-
tation seems fairly complete.

Mainstream processors have also adopted vector or vector-
like computing models. Vector-inspired SIMD extensions
are supported by virtually all recent microprocessors from
Intel, IBM, and some MIPS processors in the form of multi-
media instruction extensions. SIMD extensions are oriented
towards short vectors, with typically 128-bit wide multime-
dia register for storing vectors. In general, they lack sup-
port for strided memory access patterns and more complex
memory manipulation instructions, with the result of devot-

ing many instructions to address transformation and data
manipulation to support the few instructions that do the
actual computation [8]. Full vector architecture mitigates
these effects by providing a rich set of memory access and
data manipulation instructions, and longer vectors to keep
functional units busy and reduce overhead [9]. The Torrent
T0 [4] and VIRAM [10] are single-chip vector microproces-
sors that support a complete vector architecture and are im-
plemented as custom ASICs. They share the most similarity
in processor architecture to this work.

Automatic co-processor generation has recently become
popular. Besides the Altera C2H compiler, Cascade [11] by
Critical Blue is another tool that generates a customized co-
processor to a main processor for SoC, structured ASIC and
FPGA platforms. The Cascade co-processor has a VLIW ar-
chitecture, which differs from C2H’s custom-hardware and
loop-pipelining-based co-processors. Cascade generates a
co-processor by analyzing the compiled object code of an
application, and connects it to the main processor via the
bus interface of the main processor. Similar to this work,
the co-processor is scalable in performance and area. The
co-processor has options to configure the instruction format
and control the amount of instruction decode logic. A sin-
gle co-processor can also be reused to accelerate multiple
non-overlapping portions of an application. This work dif-
fers by adopting a tightly-coupled vector processor architec-
ture, which is more suited to the architecture of FPGAs.
The CHiMPS compiler from Xilinx Labs [12] also generates
hardware from software. Although little is published about
CHiMPs, it appears to use a streaming dataflow model and
deep pipelining for performance.

FPGAs excel in configurability, and configurable soft pro-
cessors abound in both academic and industrial spaces. The
SPREE [13] framework can generate application-specific soft
processors with selectable features such as pipeline organi-
zation, multiplier and shifter implementation. The Altera
Nios II and the Xilinx MicroBlaze are both configurable
RISC soft processor cores designed for use on an FPGA with
options to integrate custom-designed hardware accelerators.

2. VECTOR PROCESSING INTRODUCTION
Vector processors have traditionally excelled in scientific

and engineering applications. Recently, vector microproces-
sors have also been shown to be more effective in embedded
media applications such as the EEMBC suite [14] than su-
perscalar and VLIW processors [15]. Below, we introduce
the vector processing model using a FIR-filter example.

The vector processing model operates on vectors of data.
Each vector instruction specifies one operation on the entire
vector, generating tens of operations on independent data
elements and producing tens of results at a time. Data to
be operated on is stored in a large vector register file that
can hold a moderate number of vector registers, each con-
taining a large number of data elements. Entire vectors can
be gathered from main memory to the vector register file
through vector load instructions, and scattered to memory
through vector store instructions. Data elements do not
have to be located in adjacent memory locations. Vector
architectures support strided memory access, which accesses
data elements in memory with a constant size separation be-
tween elements, and indexed memory access, which accesses
data elements by adding a variable offset for each element
to a common base address.

Vector instructions are controlled by a vector length (VL)
register, which specifies the number of elements within the
vector to operate on. The vector length register, together
with mechanisms such as vector flags, provide conditional
execution in a vector instruction set. A vector architecture
contains a vector unit and a separate scalar unit. The scalar
unit executes non-vectorizable portions of the program, and
most control flow instructions.

Vector processing is a simple programming model suited
to describing data-level parallelism. Consider an 8-tap finite
impulse response (FIR) filter

y[n] =

7
X

k=0

x[n − k]h[k],

which can be implemented in MIPS asembly code as shown
in Figure 1. The loop will iterate 8 times for the 8-tap filter,
executing a total of 65 instructions.

movi r4, 8
.L5:

ldw r7, 0(r5)
ldw r3, 0(r6)
addi r4, r4, −1
addi r5, r5, −4
mul r2, r7, r3
addi r6, r6, 4
add r16, r16, r2
bne r4, zero, .L5

Figure 1: 8-tap FIR filter MIPS assembly

The same FIR filter implemented in vector code is shown
in Figure 2. The example assumes a vector ISA similar
to that of VIRAM. A total of 11 instructions are needed
including setting up base addresses and control registers,
and loading a new sample after producing a result. One
common operation in vector processing is reduction of the
data elements in a vector register. In the FIR filter example,
the multiplication products need to be sum-reduced to the
final result. Multiply-accumulators in the DSP blocks of an
FPGA can be used for sum reduction, and they are utilized
by the vmac instruction to accumulate the multiplication
results. The multiply-accumulator is a special feature of
this vector processor further discussed in Section 3.1.

vmstc vbase0, r1 ; Load base address
vmstc vbase1, r2
vmstc VL, r3 ; Set VL to num data
vld v0, vbase0 ; Load input vector
vmstc VL, r4 ; Set VL to num taps
vld v2, vbase1 ; Load filter coefficients

vmac v0, v2 ; Multiply−accumulate
; up to 16 values

vcczacc v3 ; Copy from accumulator and zero
veshift v0, v0 ; Vector element shift
ldw r5, 0(r1) ; Load newest sample
vins.vs v0, r5 ; Insert sample to vector register

Figure 2: 8-tap FIR filter vector assembly

P C

I

D

A L U

I n s t r u c t i o n

M e m o r y 3 2

S c a l a r C o r e

M e m o r y

I n t e r f a c e

M e m o r y U n i t

F I F O q u e u e

1 W r i t e p o r t

2 R e a d p o r t s

V e c t o r L a n e

M a i n

M e m o r y

1 2 8

Figure 3: Scalar and vector core interaction

3. SOFT VECTOR ARCHITECTURE
The soft vector architecture specifies a family of soft vec-

tor processors with varying performance and resource uti-
lization, and different features to suit different applications.
A software generator uses a number of parameters to gener-
ate an application- or domain-specific instance of the proces-
sor. The configurability gives designers flexibility to trade-
off performance and resource utilization, and to further fine-
tune resource usage by removing unneeded processor fea-
tures and instruction support. Table 1 lists the configurable
parameters and features of the processor architecture de-
scribed in this paper. Five configuration instances of the soft
vector processor are shown and will be further discussed in
Section 5.2. Our particular soft vector processor is tailored
to the Altera Stratix III FPGA architecture. The sizes of
embedded memory blocks, functionality of the hard-wired
DSP blocks, and mix of logic and other resources in the
Stratix III family drove many of our design decisions.

Figures 3 and 4 illustrate the soft vector processor. The
architecture consists of a scalar core, a vector processing
unit, and a memory interface unit. The scalar core is the
single-threaded version of the UTIIe [16], a 32-bit Nios II-
compatible soft processor with a four-stage pipeline. The
scalar core and vector unit share the same instruction mem-
ory and instruction fetch logic. Vector instructions are 32-
bit, and can be freely mixed with scalar instructions in the
instruction stream. The scalar and vector units can execute
different instructions concurrently, but will coordinate via
the FIFO queues for instructions that require both cores,
such as instructions with both scalar and vector operands.

The vector processing unit is shown in detail in Figure 4.
The vector unit is composed of a number of vector lanes,

Table 1: List of configurable processor parameters

Vector Processor Configuration
Parameter Description Typical V4F V8F V16F V16M32 V16W16
NLane Number of vector lanes 4–128 4 8 16 16 16
MVL Maximum vector length 16–512 16 32 64 64 64
VPUW Processor data width (bits) 8,16,32 32 32 32 32 16
MemMinWidth Minimum accessible data width in memory 8,16,32 8 8 8 32 8
MultW Multiplier width (bits, 0 is off) 0,8,16,32 16 16 16 16 16
MACL MAC chain length (0 is no MAC) 0,1,2,4 1 2 4 0 4
LMemN Local memory number of words 0–1024 256 256 256 256 0
LMemW Local memory width (bits) 8,16,32 32 32 32 32 0
LMemShare Shared local memory address space within lane On/Off Off Off Off On Off

with the number specified by the NLane parameter. Each
vector lane has a complete copy of the functional units, a
partition of the vector register file and vector flag registers,
a load-store unit, and a local memory if parameter LMemN
is greater than zero. The internal data width of the vec-
tor processing unit, and hence width of the vector lanes,
is determined by the parameter VPUW. All vector lanes
receive the same control signals and operate independently
without communication for most vector instructions. NLane
is the primary determinant of the processor’s performance.
With additional vector lanes, a fixed-length vector can be
processed in fewer cycles, improving performance. In the
current implementation, NLane must be a power of 2.

The soft vector processor uses a vector register file that
is distributed across vector lanes. This differs from tradi-
tional vector architectures which employ a large, centralized
vector register file with many ports. The vector register file
is element-partitioned — each vector lane has its own regis-
ter file that contains all the vector registers, but only a few
data elements of each vector register [4]. The partitioning
scheme naturally divides the vector register file into parts
that can be implemented using the smaller memory blocks
on the FPGA. It also allows SIMD-like access to multiple
data elements in the vector register file by the vector lanes.
Furthermore, the distributed vector register file saves area
compared to a large, multi-ported vector register file. The
abundance of these small memory blocks (and multipliers)
makes modern FPGAs good at implementing vector proces-
sors. Each vertical dark-gray stripe in Figure 4 represents a
vector register spanning all lanes. The ISA defines 64 vector
registers. Assigning four 32-bit elements of each register to
each lane fills one M9K RAM; this is duplicated to provide
two read ports. For this reason, MVL is typically 4 times
NLane for a 32-bit VPUW, and most vector instructions
that use the full vector length execute in 4 clock cycles.

The memory interface unit handles memory accesses for
both scalar and vector units. Scalar and vector memory
accesses occur in program order. Vector memory instruc-
tions are processed independently from vector arithmetic in-
structions by the memory unit, allowing their execution to
be overlapped. Load and store data are buffered by FIFO
queues within the load-store unit of each vector lane. The
memory unit generates addresses for vector memory accesses
after receiving and decoding a memory instruction, and con-
trols the memory alignment crossbar to align data to and
from memory. The memory alignment crossbar supports
memory accesses in granularity of word, halfword and byte,

with the configurable parameter MemMinWidth specifying
the smallest width data that can be accessed for all vec-
tor memory addressing modes. The memory crossbar can
align up to 16 data elements per cycle for unit stride and
constant stride loads, and 4 elements per cycle for stores.
Indexed offset accesses execute at one data element per cy-
cle. The vector operation bypass path allows the memory
alignment crossbar to be used for vector manipulation in-
structions such as extracting part of a vector. The memory
system is intended to be connected to an external 128-bit
DDR-SDRAM module, which is suited for burst reading and
writing of long vectors, or to large on-chip SRAMs.

The soft vector processor adopts a vector instruction set
similar to the VIRAM instruction set, including 45 vector
integer arithmetic, logical, memory, and vector and flag ma-
nipulation instructions. For nearly all instructions, the in-
struction opcode selects one of two mask registers to provide
conditional execution. Complex execution masks are formed
by special instructions that manipulate several flag registers.
Some flag registers are general-purpose, while others hold
condition codes from vector comparisons and arithmetic.

3.1 FPGA-Specific Vector Extensions
We extended the VIRAM-based vector architecture to

take advantage of on-chip memory blocks and hardware MAC
units common in FPGAs. The on-chip memory blocks are
used in the AES benchmark, and the MAC units in the sam-
ple FIR filter and motion estimation benchmark.

A local memory is generated for each vector lane if LMemN
is greater than zero. This local memory is non-coherent, and
exists in a separate address space from main memory. Each
vector lane supplies the address to access its own local mem-
ory. Like the distributed vector register file, it is normally
split into 4 separate sections — one for each of the four data
elements in a vector lane. However, if LMemShare is On,
the four sections are merged, and the entire local memory
becomes shared between all the elements that reside in the
same lane. This mode is intended for table-lookup applica-
tions that share the same table contents between data ele-
ments. The memories can also be written by the scalar pro-
cessor through a broadcast operation that writes the same
value to all local memories (possibly to different addresses).
LMemW specifies the data width of this memory.

In addition to the multipliers in the vector ALUs, the
MAC feature of the Stratix III DSP blocks is used to con-
struct distributed multiply-accumulators, also shown in Fig-
ure 4. The MAC units are especially useful for accumulat-

+

M A C

+

M A C

A L U

L o a d - s t o r e

un i t

L o c a l

m e m o r y

V e c t o r

r e g i s t e r

e l e m e n t s

V e c t o r f l a g s

M e m o r y i n t e r f a c e

V e c t o r r e g i s t e r p a r t i t i o n i n g

S c a l a r r e g i s t e r i n p u t

A l i g n m e n t

1 2 8

V e c t o r o p

b y p a s s

A L U

L o a d - s t o r e

un i t

L o c a l

m e m o r y

V e c t o r

r e g i s t e r

e l e m e n t s

V e c t o r f l a g s

M A C

c h a i n

V e c t o r

c o n t r o l

r e g i s t e r s

M e m o r y

un i t

D D R - S D R A M

o r o n - c h i p S R A M

M A C c h a i n r e s u l t

(o p t i o n a l)

Sh i f t

c h a i n

(o p t i o n a l)

Figure 4: Vector co-processor system block diagram

ing multi-dimensional data. The vmac instruction multiply-
accumulates 4 pairs of inputs from 4 vector lanes inside each
MAC unit. Furthermore, the cascade chain in the Stratix III
DSP blocks allows cascade adding of partial accumulation
results across several accumulators, speeding up the other-
wise inefficient vector reduction operation. MACL specifies
the number of accumulators chained together to produce one
accumulation result. The vcczacc instruction cascade adds
the accumulator results in the MAC chain, copies the final
result (partial results if the cascade chain does not span all
MAC units) to a vector register, and zeros the accumulators.

4. DESIGN EXAMPLES
Three benchmarks representative of data-parallel embed-

ded applications are chosen to demonstrate the ease-of-use
and advantages of scalable vector processing. For each of
the examples below, the V8F configuration of the soft vector
processor is presumed. The assembly code for other configu-
rations may be slightly different due to a different maximum
vector length.

4.1 Block Matching Motion Estimation
Block matching motion estimation removes temporal re-

dundancy within frames to provide coding systems with a
high compression ratio. The algorithm divides each luma
frame into blocks of size N × N , and matches each block
in the current frame with candidate blocks of the same size
within a search area in the reference frame. The best matched
block has the lowest distortion among all candidate blocks,
and the displacement of the block, or the motion vector, is

used to encode the video sequence. The metric is typically
sum of absolute differences (SAD),

SAD(m, n) =

N−1
X

i=0

N−1
X

j=0

|c(i, j) − s(i + m, j + n)|.

A full search block matching algorithm (FSBMA) matches
the current block c to all candidate blocks in the reference
frame s within a search range [−p, p− 1], and finds the mo-
tion vector of the block with minimum SAD among (2p)2

search positions. Figure 5 shows example C code for the
motion estimation kernel.

In a vector processor implementation, one of the dimen-
sions is handled by vectorizing (removing) the innermost
loop. With 8 lanes and MVL of 32, two windows separated
by 16 pixels can be matched against the current block simul-
taneously, cutting the number of iterations in half. Figure 6
shows the vector code for the inner loop, plus vector code
in the next outer loop to extract and accumulate results
after processing the entire 16 × 16 window. The assembly
code uses the MAC chain to reduce partial results in differ-
ent accumulators to one final result as part of the vcczacc

instruction. The “.1” instruction extension indicates condi-
tional execution using vf1 as the mask. The mask selects
which of the two partial sums from the two windows to accu-
mulate. This simple implementation requires 6 instructions
in the innermost loop. To further improve performance, the
number of memory accesses can be greatly reduced by un-
rolling the loop so entire rows of pixels can be loaded at a
time from the reference frame, and so pixels from the cur-

for(l=0; l<nVERT; l++)
for(k=0; k<nHORZ; k=++) {

answer = 0;
for(j=0; j<16; j++)

for(i=0; i<16; i++)
answer += abs(x[j][i] − y[l+j][k+i]);

result[l][k] = answer;
}

Figure 5: Motion estimation C code

vmov v1, vzero ; Zero sum
vmstc r11, vbase0 ; Load x base
vmstc r8, vbase1 ; Load y base

.L16: ; Innermost loop over rows
vld.b v2, vbase0, vinc0 ; vinc0 = WINDOWSIZE
vld.b v3, vbase1, vinc1 ; vinc1 = XSIZE
vabsdiff v4, v2, v3
vadd v1, v1, v4 ; Accumulate to sum
addi r12, r12, 1 ; j++
bge r13, r12, .L16 ; Loop again if (j<=15)

vfmov vf1, vf2 ; Flag to mask data values
vmac.1 v1, vone ; Accumulate across sum
vcczacc v5 ; Copy from accumulators
vext.vs r5, v5 ; Extract result to scalar core

Figure 6: Motion estimation vector assembly

rent block are loaded only once. To slide the window hor-
izontally, the rows from the reference frame can be shifted
using vector element shift. The unshifted rows of pixels can
also be kept in the large number of vector registers to avoid
additional pixel loads when the window shifts vertically to
the next row.

4.2 Image Median Filter
The median filter is commonly used in image processing to

reduce noise in an image and is particularly effective against
impulse noise. It replaces each pixel with the median value
of surrounding pixels within a window. Figure 8 shows ex-
ample C code for a simple median filtering algorithm by
calculating the median of a 5×5 image region. It essentially
performs a bubble sort, stopping early when the top half is
sorted to locate the median.

S l i d i n g w i n d o w

O u t p u t p i x e l

Figure 7: Vectorizing the image median filter

for (i=0; i<=12; i++) {
min = array[i];
for (j=i; j<=24; j++) {

if (array[j] < min) {
temp = min;
min = array[j];
array[j] = temp;

}
}

}

Figure 8: 5 × 5 median filter C code

vmstc vbase0, r1 ; load address of array[j]
vld.b v1, vbase0 ; vector load array[j]
vld.b v2, vbase1 ; vector load min
vcmpltu vf1, v1, v2 ; compare, set vector flags
vmov.1 v3, v2 ; copy min to temp
vst.b.1 v1, vbase1 ; vector store array[j] to min
vst.b.1 v3, vbase0 ; store temp to array[j]

Figure 9: Median filter inner loop vector assembly

One method to vectorize this kernel by exploiting outer-
loop parallelism is shown in Figure 7. Each strip represents
one row of MVL number of pixels, and each row is loaded
into a separate vector register. The window of pixels that
is being processed will then reside in the same data element
over 25 vector registers. After initial setup, the same filter-
ing algorithm can then be used. The vector processor uses
masked execution to implement conditionals, and will exe-
cute all instructions inside the conditional block every itera-
tion. Figure 9 shows the inner loop vector assembly, exclud-
ing address calculation and loop control scalar instructions.
vbase1 is initialized in the outer loop to the address of min.
This implementation of the median filter can generate as
many results at a time as MVL supported by the proces-
sor. V8F will generate 32 results at once, achieving a large
speedup over scalar processing. This example highlights the
importance of outer-loop parallelism, which the vector ar-
chitecture, with help from the programmer, can exploit.

4.3 AES Encryption
The 128-bit AES Encryption algorithm [17] is a block ci-

pher, and has a fixed block size of 128 bits. Each block of
data can be logically arranged into a 4 × 4 matrix of bytes,
termed the AES state. A 128-bit key implementation, which
consists of 10 encryption rounds, will be illustrated in this
example. Each round in the algorithm consists of four steps:
SubBytes, ShiftRows, MixColumns, and AddRoundKey.

The first 3 steps can be implemented efficiently on 32-bit
processors using a single 1 KB lookup table. A single round
is then accomplished through four table-lookups, three byte
rotations, and four EXOR operations [18].

The vector assembly code for loading data and for two
rotate-lookup steps of a round transformation is shown in
Figure 10. An implementation on the soft vector processor
can first initialize all local memories with the substitution
lookup table through broadcast from the scalar core. The
AES state can be loaded from memory with four stride-four,
load word instructions, which will load the four columns of
multiple 128-bit AES blocks into four vector registers. Each

vlds v1, vbase0, vstride4, vinc1 ; stride 4 word load one
; AES state column (4 times)

; Begin encryption round loop
vlds v12, vbase1, vstride0, vinc1 ; stride 0 word load one

; round key column (4 times)
vmov v8, v4 ; copy last column of AES state
vsrl.vs v8, v8, r3 ; shift right 24 bits
vldl v8, v8 ; S−box table lookup
vrot.vs v8, v8, r8 ; rotate byte
vmov v7, v3 ; copy 3rd column of AES state
vsrl.vs v7, v7, r2 ; shift right 16 bits
vand.vs v7, v7, r7 ; mask with 0x000000ff
vldl v7, v7 ; S−box table lookup
vrot.vs v7, v7, r8 ; rotate byte
vxor v8, v8, v7 ; XOR 2 columns

Figure 10: Vector assembly for loading AES data

and performing AES encryption round

AES block will then reside within a single vector lane, across
the four vector registers. All the loaded AES blocks perform
parallel table-lookup using the local memories. Assuming
the round keys have already been generated, a total of 92
instructions are needed to perform the round transforma-
tion in the implementation. By exploiting outer-loop paral-
lelism in the round transformation and encrypting blocks in
parallel, the vector processor achieves speedup over scalar
processing. A vector processor with 8 lanes has MVL of 32,
and can encrypt 32 blocks or 4096 bits of data in parallel.

5. PERFORMANCE ESTIMATE
In this section, the three kernels are analyzed to produce

performance estimates under idealized assumptions on the
vector processor, Nios II, and Nios II with C2H compiler.

All of the instructions for the vector processor have been
implemented and tested individually. We have simulated
70% of the instructions under more rigorous testing condi-
tions, and are proceeding to verify the processor in hard-
ware. We present our results as “estimates” that may be
subject to minor fluctuation due to the incomplete testing
and idealized assumptions made to simplify analysis.

5.1 Methodology
Performance of the different systems is estimated from in-

struction count, clock cycle count, and operating frequency.
Instruction counts are obtained from compiling the kernels
using the Nios II version of gcc (nios2-elf-gcc 3.4.1), with
optimization O3, and manually counting the number of re-
sulting assembly instructions. The vector assembly code
is hand-written by substituting vector instructions into the
Nios II assembly sources where applicable. Performance of
the C2H compiler is calculated for the main loop from loop
latency and cycles per loop iteration (CPLI) given in the
compiler performance report.

The benchmarks include only the main loop section of the
kernels. The median filtering kernel calculates one output
pixel from the 5 × 5 window. The motion estimation ker-
nel calculates SAD values for each position of a [−16, +15]
search range and stores the values into an array. It makes no
comparisons between the values. The AES encryption kernel
computes all rounds of encryption on 128 bits of data. Only
the instruction and cycle counts for one intermediate round

Table 2: Vector instruction cycle model

Instruction Class Instruction Cycles
Non-memory ⌈V L/NLane⌉
Local memory ⌈V L/NLane⌉
Memory store ⌈V L/NLane⌉
Memory load 2 + ⌈V L/min(NLane,MaxElem)⌉+

⌈V L/NLane⌉
= 2 + 2 ∗ ⌈V L/NLane⌉

MaxElem 128/ElemWidth(bits)

Table 3: Resource usage
Stratix III (C3) ALM DSP Elements M9K Fmax
EP3SL50 device 19,000 216 108 –
EP3SL340 device 135,000 576 1040 –
Nios II/s 489 8 4 153
UTIIe 324 0 3 193
UTIIe+V4F 5215 21 32 115
UTIIe+V8F 7011 34 53 114
UTIIe+V16F 10,266 58 95 113
UTIIe+V16M32 7384 34 93 112
UTIIe+V16W16 6743 54 69 109
UTIIe+V32M32 14,436 66 177 108
UTIIe+V32W16 10,298 102 127 107
Stratix II (C3) ALM DSP Elements M4K Fmax
Nios II/s + C2H
Median Filtering 825 8 4 147
Motion Estimation 972 10 4 121
AES Encryption 2480 8 6 119

of the 10-round algorithm is reported, as the final round is
handled differently and is not within the main loop.

An Idealized Nios II processor is used as the baseline for
performance comparison, while a Nios II/s processor is used
for area and Fmax estimates. It is configured with 1 KB
instruction cache, 64 KB each of on-chip program and data
memory and no debug core. Area estimates are obtained
from compiling the Nios II processors and the soft vector
processor prototypes in Quartus II 7.2, and Fmax estimates
are obtained from TimeQuest using the Slow 85C model.

We assume single-cycle execution of Nios II assembly in-
structions in both the Idealized Nios II and the vector pro-
cessor; this presumes perfect caching and branch prediction.
Vector instructions are separated into different classes, each
taking a different number of cycles. Table 2 shows the num-
ber of cycles needed for each vector instruction class. Mem-
ory store instructions take the same number of cycles as non-
memory instructions due to write buffering. The first non-
constant term in memory load cycles models the number cy-
cles needed to transfer data from memory to the load buffer.
MaxElem is the maximum number of data elements that can
be transferred per cycle through the 128-bit memory inter-
face. The second term models transferring data from load
buffer to the vector register file. Note that the number of
memory load cycles simplifies to 2 + 2 ∗ ⌈V L/NLane⌉ when
NLane is the limiting factor. The architecture can overlap
execution of vector arithmetic and vector memory instruc-
tions, or Nios II and vector instructions, but this enhance-
ment is not considered by this simple performance model.

5.2 Vector Performance
Table 3 shows the estimated resource usage of several con-

figurations generated for the benchmarks and illustrates the

Table 4: Performance summary

Proposed Vector Architecture
Idealized Nios II Nios II + C2H V4F V8F V16F

Fmax (MHz)
Median Filtering 153 147 115 114 113
Motion Estimation 153 121 115 114 113
AES Encryption Round 153 119 115 114 113
Dynamic Instruction Count
Median Filtering (per pixel) 5,375 n/a 275 137 69
Motion Estimation (per SAD value) 2,481,344 n/a 113,856 62,733 62,768
AES Encryption Round (per 128-bit block) 94 n/a 5.9 2.9 1.5
Clock Cycles
Median Filtering (per pixel) 5,375 2,101 784 392 196
Motion Estimation (per SAD value) 2,481,344 694,468 492,736 260,050 160,682
AES Encryption Round (per 128-bit block) 94 25 23 12 6
Speedup
Median Filtering (per pixel) 1 2.5 5.2 10.2 20.2
Motion Estimation (per SAD value) 1 2.8 3.8 7.1 11.4
AES Encryption Round (per 128-bit block) 1 2.9 3.1 6.1 12.0

scalable nature of the soft vector processor. Vx in the vector
processor name specifies the number of lanes: V4 has 4 vec-
tor lanes with MVL=16, V8 has 8 lanes with MVL=32, and
V16 has 16 lanes with MVL=64. VxF configurations have
full support of all features. The Wx tag indicates the bit
width of the vector datapath, i.e. W16 is 16 bits. The M32
tag indicates that only 32-bit words are supported for vector
memory accesses (no bytes or halfwords). The flexible mem-
ory interface which supports bytes, halfwords, and words is
the single largest component, using 35% of the ALMs in the
V16F processor. The complex control logic of the mem-
ory interface, needed to support arbitrary strided access,
forms the critical path that prevents higher Fmax. Reduc-
ing the memory interface to 32-bit word access only, as in
the V16M32 configuration, leads to a large savings in area.

Table 4 shows estimated performance of the three sample
VxF processors on the benchmarks measured by instruc-
tion count, clock cycle count, and speedup over the Ideal-
ized Nios II baseline. All three vector configurations show
significant speedup, where greater performance is obtained
when more vector lanes are used. The instruction count and
clock cycle per result decreases for median filtering and AES
encryption as more vector lanes are added, since more re-
sults are computed in parallel. In particular, the fractional
instruction counts for AES encryption result from dividing
the total instructions by the number of blocks encrypted in
parallel. For the vectorized motion estimation kernel, V L is
16 for V4, and is 32 for both V8 and V16 when processing
two search areas simultaneously. Instruction and cycle count
per result decreases going from V4 to V8 due to parallel
processing of two search areas. The V16 configuration also
processes two search areas, but requires more instructions
to sum a vector across more lanes. Overall, however, V16
produces additional speedup because the extra lanes reduce
clock cycles needed to process the same vector length.

The soft vector processor achieves scalable speedup in all
three benchmarks with performance proportional to resource
usage. The vector assembly code is also able to take advan-
tage of more vector lanes to improve performance with little
or no modification.

5.3 C2H “Push-button” Performance
The resources and performance results for C2H-generated

hardware accelerators of the three benchmarks are also shown
in Tables 3 and 4, respectively. These C2H numbers repre-
sent results achieveable by “push-button” acceleration with
the compiler, with no modification to the original C code.1

The “push-button”C2H acceleration results are similar to
those of the V4F processor, but they do not match those of
the larger vector processor configurations.

5.4 C2H “Extra-effort” Performance
Applying vector processing concepts and loop unrolling

makes it possible to increase C2H performance at the ex-
pense of increased resources. However, to get good per-
formance, it is necessary to understand how it maps C to
hardware.

The documentation clearly shows how each C statement
is translated to hardware. While this is helpful to hardware
designers, it is potentially confusing to software designers.
Dependent assignment statements form a pipelined datap-
ath, with every complex operator or assignment statement
being registered. This pipelined datapath is automatically
scheduled by the compiler. Every memory reference (load
or store) turns into a dedicated port to the memory sys-
tem. These ports automatically compete for memory access
through arbiters in the Avalon system fabric.

The current C2H implementation also has some limita-
tions. Instead of unrolling loops to form deeper or wider
pipelines, C2H turns iteration into a state machine. In lim-
ited situations, C2H can generate parallel memories if they
are entirely used by the accelerator and never accessed by
the software portion. However, it does not automatically
partition data across parallel memory banks, so memory ar-
bitration quickly becomes a bottleneck. Fixing this requires
manual effort: multiple memory banks must be created in
SOPC Builder, and data partitioned using pragmas in C.

1Stratix II was used for the C2H estimates because Quar-
tus II does not yet support C2H hardware accelerators for
Stratix III-based designs. We expect results to be similar to
Stratix II due to the similar ALM architecture.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Normalized Resource (ALM/ALM)

S
p
e
e
d
u
p

Median Filter Vector (VxW16)

AES Vector (VxM32)

Motion Est. Vector (VxW16)

Median Filter C2H

AES C2H

Motion Est. C2H

Figure 11: Speedup versus resource utilization

In this section, we performed manual loop unrolling, but we
did not perform data partitioning because it is cumbersome
and time-consuming.

For the median filter, we used the same technique as the
vector assembly code to find up to 64 medians in parallel.
This creates a memory bottleneck because each iteration
requires 64 new data items to be read, and 64 new values to
be written back.

For motion estimation, we moved the horizontal-move outer
loop inside and unrolled it. This results in one pixel of the
moving block being compared to up to 32 possible horizontal
locations in parallel, creating 32 accumulators for the SAD
operation. One pixel datum is loaded from memory to reg-
ister once, then re-used 32 times by the 32 accumulators.
Hardware knowledge is needed to know that the 32 accu-
mulators will be inferred to hold the intermediate results.
However, reading from 32 possible horizontal locations cre-
ates a memory bottleneck.

For AES, we knew memory access to the large lookup
tables would be a bottleneck. To solve this, we added 4
memory blocks for the 256-entry, 32-bit table lookups in
the Nios II system. We replicated the AES engine up to
four times, but these contended for the same lookup table
memories. Memory access remains a bottleneck; resolving
it would require a dedicated copy of all tables for each en-
gine. Alternatively, unrolling the 10 AES rounds would also
require 10× copies of the table memories.

5.5 C2H versus Vector
The C2H compiler results for the three benchmarks are

compared against the soft vector processor results in Fig-
ure 11. The figure shows speedup versus ALM usage over
the Nios II baseline for the various C2H and vector proces-
sor configurations. Speedup versus area “push-button” C2H
results are shown as 3 solid-gray markers. The thin/gray
lines show the performance improvement when“extra-effort”
is expended with C2H, which required some hardware de-
sign knowledge. Notice that performance saturates as mem-
ory access becomes the bottleneck. Additional performance
would require additional hardware-aware design effort and a

change to the Nios II memory system. Also, if these different
applications must run on the same FPGA device, a custom
memory system for each application might be needed. This
could overwhelm the on-chip memory resources, at which
point multiple device configurations would be needed.

In contrast, the bold/dark lines show the how the vector
processor results are scalable and obtained with the same
unified memory system and zero hardware design effort. To
save resources, application-specific configurations of the vec-
tor processor were created. Median filtering and motion es-
timation do not require any 32-bit vector processing, so the
VxW16 configurations are used. The AES encryption ker-
nel only requires 32-bit word memory access, so the VxM32
configurations, which lack byte and halfword memory access
crossbars, are used. The C2H co-processors achieved 3–11×
speedup over the baseline Nios II processor using 2–14× the
number of ALMs. The soft vector processor achieved 3–29×
speedup using 6–30× the number of ALMs.

As a rough comparison of effort, it took approximately
3 days to learn to use the C2H compiler, modify the three
benchmark kernels so they compile, and apply the simple
loop unrolling software optimization. It took another full
day to apply the single hardware optimization for the AES
benchmark of adding the additional memories. With the
vector processor, it took 2 days to design vectorized algo-
rithms and assembly code for all three kernels. After the
initial learning to think in vector, it took less than half a
day to design a revised AES vector algorithm (which we
had to do) and rewrite the assembly.

6. ARCHITECTURAL SUGGESTIONS
The architecture of FPGAs is well-suited for SIMD and

vector computing. While targetting the Stratix III, we noted
a few architectural features that could be improved in this
family to create better soft vector processors.

High-performance register files usually need 2 read ports
and 1 write port. The read ports are implemented by dupli-
cating the register file memory. For a small 32-bit soft-core
processor, this is a modest overhead, but duplicating the
large register file of a vector processor is costly.

DSP blocks in Stratix III are optimized for 16-bit fixed-
point operations. The narrow data types forced us to restrict
certain instructions, such as multiply-accumulate, to only
16-bit inputs even in the 32-bit processor. A MAC unit that
can switch between 16 and 32-bit inputs would be useful.

The cascade adder chain in the Stratix III DSP blocks
is useful for the accumulate reduction operation. However,
we could not use the shift chain at the DSP block inputs
because the shift mode cannot be dynamically selected at
runtime. This prevents the shift chain from being useful in
the vector architecture. Stratix II supported this feature.

From prototyping the soft vector processor, the single
structure that consumes the most resources is the byte-level
crossbar to rearrange data from vector lanes to their correct
positions in the 128-bit datapath to memory. This is needed
for strided memory access, as well as writes to non-128-bit
aligned memory locations. Since datapath structures are so
prevelant in this design, datapath-oriented FPGA structures
could reduce resource usage and improve clock speed.

7. CONCLUSION
Soft-core CPUs offer limited performance for data-parallel

applications. This type of parallelism can be exploited in
an FPGA using custom hardware accelerators. As an al-
ternative, vector processing can also accelerate this type of
parallelism. The key advantage of the vector approach is
that it can be employed by software developers without any
hardware design knowledge. Also, a single vector processing
unit can be used to accelerate several different tasks with the
same FPGA bitstream. In contrast, a custom accelerator is
usually good for only one task, requiring the designer to
design and integrate several accelerators for multiple tasks.

Sophisticated tools like Altera’s C2H compiler greatly sim-
plify the design of custom-built accelerators. However, fully
exploiting the tool requires some hardware design knowl-
edge. Memory bandwidth is frequently a bottleneck, and
solving this currently requires manual intervention at the
hardware design level. While a custom memory system can
be defined for each application, this can become increasingly
cumbersome when several accelerators are required simulta-
neously. Ultimately, this may result in the need for several
device configurations as well.

In contrast, vector processing can be used as a purely
software-oriented solution to many problems. This does not
eliminate the usefulness or need for a tool like C2H, but it
provides a viable alternative when hardware designers are
busy on other projects. A soft-core vector processor is most
suitable when rapid development time is required, or when
a hardware designer is not available, or when several differ-
ent applications must share a single accelerator or a single
FPGA bitstream. It offers a simple programming model
that can be readily understood by software developers with
little or no hardware design knowledge. It is also easy to
scale performance with little or no change to the software
by only modifying a few simple processor parameters. Scal-
ing the number of vector lanes naturally offers both more
memory bandwidth (at the register file) and more functional
units. Scaling performance with C2H required more exten-
sive hardware and software changes to match the computa-
tional power to the available memory bandwidth.

The FPGA-based soft vector processor architecture pro-
posed in this paper efficiently maps to a Stratix III FPGA.
Three specific changes were made to better exploit FPGAs:
the register file was partitioned across multiple vector lanes,
MAC hardware units were used to improve accumulate re-
duction operations, and local memory blocks were added in
each vector lane to accelerate table-lookup applications. The
first optimization was necessary to create an area-efficient
register file, while the latter two are used to improve bench-
mark performance. The ability to customize several aspects
of a soft vector processor for the needed applications pro-
vides further ability to trim area.

Acknowledgments

The authors would like to thank Blair Fort for providing
the UTIIe processor for this research. We would also like
to thank Ralph Wittig and Jorn Janneck for their helpful
feedback on early drafts of this work. This research was
partially supported by funding from NSERC.

8. REFERENCES
[1] Nios II. [Online]. Available:

http://www.altera.com/products/ip/processors/nios2/ni2-
index.html

[2] K. Diefendorff and P. Dubey, “How multimedia
workloads will change processor design,” Computer,
vol. 30, no. 9, pp. 43–45, September 1997.

[3] D. Lau, O. Pritchard, and P. Molson, “Automated
generation of hardware accelerators with direct
memory access from ANSI/ISO standard C functions,”
in IEEE Symp. on Field-Programmable Custom
Computing Machines, April 2006, pp. 45–56.

[4] K. Asanovic, “Vector microprocessors,” Ph.D.
dissertation, EECS Department, University of
California, Berkeley, 1998.

[5] H. Yang, S. Wang, S. G. Ziavras, and J. Hu, “Vector
processing support for FPGA-oriented high
performance applications,” in Int. Symp. on VLSI,
March 2007, pp. 447–448.

[6] J. Cho, H. Chang, and W. Sung, “An FPGA based
SIMD processor with a vector memory unit,” in Int.
Symp. on Circuits and Systems, May 2006, pp.
525–528.

[7] Microblaze. [Online]. Available:
http://www.xilinx.com/

[8] D. Talla and L. John, “Cost-effective hardware
acceleration of multimedia applications,” in Int. Conf.
on Computer Design, September 2001, pp. 415–424.

[9] J. Gebis and D. Patterson, “Embracing and extending
20th-century instruction set architectures,” Computer,
vol. 40, no. 4, pp. 68–75, April 2007.

[10] C. Kozyrakis and D. Patterson, “Scalable, vector
processors for embedded systems,” IEEE Micro,
vol. 23, no. 6, pp. 36–45, Nov./Dec. 2003.

[11] Cascade, Critical Blue. [Online]. Available:
http://www.criticalblue.com

[12] D. Bennett, “An FPGA-oriented target language for
HLL compilation,” Reconfigurable Systems Summer
Institute, July 2006.

[13] P. Yiannacouras, J. G. Steffan, and J. Rose,
“Application-specific customization of soft processor
microarchitecture,” in ACM/SIGDA Int. Symp. on
FPGAs, February 2006, pp. 201–210.

[14] The embedded microprocessor benchmark consortium.
[Online]. Available: http://www.eembc.org/

[15] C. Kozyrakis and D. Patterson, “Vector vs.
superscalar and VLIW architectures for embedded
multimedia benchmarks,” in IEEE/ACM Int. Symp.
on Microarchitecture, November 2002, pp. 283–293.

[16] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown,
“A multithreaded soft processor for SoPC area
reduction,” in IEEE Symp. on Field-Programmable
Custom Computing Machines, April 2006, pp.
131–142.

[17] “Specification for the advanced encryption standard
(AES),” Federal Information Processing Standards
Publication 197, 2001.

[18] J. Daemen and V. Rijmen, The design of Rijndael:
AES — the Advanced Encryption Standard.
Springer-Verlag, 2002.

