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Abstract— Based on a Bayesian view on linear detection, we
demonstrate that in contrast to a common belief the symbol er-
ror rate (SER) performance of the linear minimum mean square
error (MMSE) detector is not necessarily superior to that of the
linear zero forcing (ZF) detector.

I. INTRODUCTION

CONSIDER the following matrix-vector communication
model, which represents a discrete-time, non-dispersive

multiple-input multiple-output (MIMO) system with M trans-
mit and N ≥M receive antennas1:

y = Hx + n, (1)

where y∈ ICN×1 denotes the received vector, H∈ ICN×M

the channel matrix, x∈ ICM×1 the transmitted vector, and
n ∈ ICN×1 an additive noise vector. The entries of x are as-
sumed to be independent and identically distributed (i.i.d.)
zero-mean random variables with variance σ2

x
that are drawn

from a finite symbol alphabet A. (Correspondingly, Rx :=
E{xxH}=σ2

x
IM , where IM denotes the (M×M )-identity ma-

trix.) The entries of H are assumed to be i.i.d. circularly sym-
metric complex Gaussian random variables with zero mean and
unit variance. The entries of n are assumed to be i.i.d. circu-
larly symmetric complex Gaussian random variables with zero
mean and variance σ2

n
. Throughout this letter, we assume that

the channel matrix H is known at the receiver. Moreover, we
assume that x, H, and n are statistically independent.

Two popular solutions for linear detection of the transmitted
vector x are the linear ZF detector and the linear MMSE detec-
tor [1]. The ZF detector performs an inversion of the channel
matrix H and a subsequent element-wise hard decision (HD)
with respect to the symbol alphabet A:

x̂ZF := HDA

{

H+ y
}

, (2)

where H+ :=(HHH)−1 HH denotes the left-hand pseudo-
inverse of H. Correspondingly, the ZF detector (if it exists) ex-
actly removes the spatial interference between the transmitted
data symbols. However, if HHH is ill-conditioned, the ZF de-
tector is known to cause a significant enhancement and (spatial)
coloring of the noise. The MMSE solution is generally consid-
ered to be superior to the ZF solution, because it provides an
optimum trade-off (in the MMSE sense) between interference
suppression and noise enhancement. The MMSE estimate of x
is given by

x̂MMSE := HDA

{

(

HHH + σ2
n
/σ2

x
· IM

)−1
HH y

}

. (3)

For high signal-to-noise ratios (SNRs), i.e., σ2
x
/σ2

n
→ ∞, the

MMSE solution and the ZF solution are equivalent.

1In principle, the ideas presented here apply also for other matrix-vector com-
munication systems, such as multi-user systems with a linear detector or disper-
sive systems with a linear equalizer.

In this letter, we demonstrate that the SER performance of
the linear MMSE detector is not necessarily superior to that of
the linear ZF detector. Motivated by a Bayesian view on lin-
ear detection, we give an example for which the ZF detector
outperforms the MMSE detector.

II. LINEAR BAYESIAN DETECTOR

If the a-priori probability distribution P(x) of the transmitted
vector x is of form

P(x) ∝ exp
(

−
xHx

σ2
x

)

, (4)

the corresponding a-posteriori probability distribution P(x|y)
of the transmitted vector x given the received vector y is char-
acterized by the following general expression [2]:

P(x|y) ∝ exp

(

−
1

σ2
n

(

x − RHH y

)H

R−1
(

x − RHH y

)

)

,

(5)
where R is an arbitrary invertible (M×M )-matrix. Given this
general expression, the so-called linear Bayesian detector [2] is
given by

x̂B := HDA

{

RHH y

}

. (6)

Ignoring for the moment that the entries of the transmitted vec-
tor x are drawn from a finite symbol alphabet, we consider the
following two special cases:
(i) The vector x is uniformly distributed on ICM (i.e., in (4) we

let σ2
x
→∞). In this case, P(x|y) can be written as [2]

P(x|y) ∝ exp

(

−
1

σ2
n

(

x −
(

HHH
)−1

HH y

)H

×

× HHH

(

x −
(

HHH
)−1

HH y

)

)

. (7)

Identifying (HHH)−1 =: R, we note that in this case the
linear Bayesian detector (6) is equivalent to the linear ZF
detector (2). This means that the ZF detector implicitly as-
sumes a uniform distribution of x on ICM [2]. (Specifically,
it does not exploit the finite-alphabet property of x.)

(ii) The vector x is Gaussian distributed on ICM (with
σ2

x
<∞). In this case, P(x|y) can be written as [2]

P(x|y) ∝ (8)

exp

(

−
1

σ2
n

(

x −
(

HHH + σ2
n
/σ2

x
· IM

)−1
HH y

)H

×

×
(

HHH + σ2
n
/σ2

x
· IM

)

×

×
(

x −
(

HHH + σ2
n
/σ2

x
· IM

)−1
HH y

)

)

.



Identifying (HHH+σ2
n
/σ2

x
· IM )−1 =: R, we note that in

this case the linear Bayesian detector (6) is equivalent to
the linear MMSE detector (3). This means that the MMSE
detector implicitly assumes a Gaussian distribution of x on
ICM (and does not exploit the finite-alphabet property of x,
similarly to the ZF detector) [2].

Given a practical symbol alphabet A, such as a phase shift key-
ing (PSK) or a quadrature amplitude modulation (QAM) con-
stellation, the SER performance of the linear MMSE detector
is generally superior to that of the linear ZF detector. Obvi-
ously, this means that for practical symbol alphabets the im-
plicit Gaussian assumption of the MMSE detector is a better fit
to the actual distribution of x than the uniform assumption made
by the ZF detector. In the following, we present a counter ex-
ample, for which the linear ZF detector (slightly) outperforms
the linear MMSE detector.

III. NUMERICAL EXAMPLE

We consider the case of M =2 transmit and N =2 receive an-
tennas. Moreover, we consider the cross-shaped (complex-
valued) signal constellation A depicted in Fig. 1. The data
symbols transmitted via the first and second antenna are inde-
pendently drawn from the signal constellation A, according to
a uniform distribution. (The variance σ2

x
of the data symbols

results as σ2
x
=33.)

The average SERs resulting for the linear ZF detector and the
linear MMSE detector are displayed in Fig. 2 as a function of
σ2

x
/σ2

n
in dB. These average SERs have been obtained by means

of Monte Carlo simulations over 106 independent realizations
of the channel matrix H. As can be seen, the ZF detector in-
deed outperforms the MMSE detector (although the difference
is small). For large values of σ2

x
/σ2

n
, both detectors exhibit the

same performance, as expected.

IV. CONCLUSIONS

For the example of a discrete-time, non-dispersive MIMO sys-
tem we have demonstrated that the performance of the linear
MMSE detector is not necessarily superior to that of the lin-
ear ZF detector. Specifically, motivated by a Bayesian view on
linear detection, we have given an example for which the ZF
detector outperforms the MMSE detector. The main aim was
to provide novel insights into these two fundamental types of
linear detector. From a practical point of view, the presented
example is of rather limited interest, because the observed per-
formance difference is rather small and the signal constellation
used is not very practicable.
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Fig. 1. Signal constellation A under consideration.
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Fig. 2. Average SERs resulting for the linear ZF detector and the linear MMSE
detector, as a function of σ2

x
/σ2

n
in dB.
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