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Abstract— The generalized K—fading model, characterized by
two parameters, k and m, is a very versatile model and was re-
cently shown to accurately capture the effects of compositehad-
owing and multipath fading in wireless communication systens.
Furthermore, it can be used to model cascade multipath fadig,
which is relevant in, e.g., mobile—to—mobile communicatio sce-
narios. In this paper, we derive closed—form expressions fahe
bit error probability of two non—coherent transmission schemes
over L diversity branches being subject to generalized<—fading.
Specifically, focus is on binary differential phase—shift kying
(DPSK) and binary non—coherent frequency-shift keying (F&)
modulation with (post—detection) equal—gain combining athe re-
ceiver. We also discuss the extension of our results té/—ary
modulation schemes. Considering both independent and coer
lated fading across theL branches, we derive expressions for the
asymptotic diversity order, which reveal an interesting irterplay
between the two fading parameters: and m. Moreover, we show
that the diversity order of the considered non—coherent trasmis-
sion schemes is the same as in the case of a coherent transioiss
scheme. Finally, numerical performance results are presdad, and
our analytical results are corroborated by means of Monte—@rlo
simulations.

Index Terms— Fading channels,K—fading, shadowing, cascade
fading, non—coherent transmission, diversity reception,perfor-
mance analysis.

|. INTRODUCTION

T

fects [1, Ch. 2]. While major obstacles between transmitter
receiver cause macroscopic fading effects, i.e., fluatnatin

multipath fading (small values ofi) to mild multipath fading
(large values ofn). The generalized—fading model can also

be employed to model cascade multipath fading, which ogcurs
e.g., in keyhole or in mobile—to—mobile communication saen

ios [3], [4]. For the special case=m=1, for example, the
generalizedK—fading model reduces to the double Rayleigh—
fading model. By varying the fading parameters accordingly
more or less severe cascade multipath fading can be modeled.
Finally, it is worth noting that the generalizéd—fading model
(also referred to as Gamma—Gamma fading model) occurs also
in free—space optical (FSO) communications, where it is usu
ally employed in order to model atmospheric turbulence ¢ond
tions [5]-[8].

A favorable property of the generalizéd-fading model is
that it allows for a closed—form expression for the probabil
ity density function (PDF) of the instantaneous receivedRSN
which is in contrast to, e.g., competing composite shadow-
ing/multipath fading models that are based on the lognormal
PDF [2]. As a result, several analytical performance result
for generalizedK—fading and ‘ordinary’K—fading channels
(m=1) have been reported in the literature [9]-[18]. More-
over, analytical performance results for the special casew-
ble Rayleigh fading were presented in [4], [19], [20].

_ Most of the papers mentioned above have focussed on co-

HE performance of wireless communication systems ji3rent transmission schemes, which rely on the availgtifit
largely governed by shadowing and multipath fading efccyrate channel knowledge at the receiver side. In cantras

to this, non—coherent transmission schemes eliminatedabd n
for channel estimation at the receiver and are thus atmeaftr

the averagaeceived signal-to—noise ratio (SNR), scatterers mgh—mobility and low—SNR scenarios as well as for low—cost

the vicinity of transmitter and receiver entail microsaofad-
ing effects, i.e., fluctuations in thestantaneouseceived SNR.

receiver implementations. In this paper, we derive clofat-
expressions for the bit error probability (BEP) of two non—

Recently, the generalizeld—fading model, which is character-.gnherent transmission schemes ovegeneralizeds —fading

ized by two parameterg;>0 andm >0, was shown to accu-

branches with (post—detection) equal—-gain combining (E&C

rately capture the effects of composite shadowing and mulfe receiver. Specifically, focus is on binary differenfibbse—

path fading [2]. In particular, it comprises a large variefy

shift keying (DPSK) modulation with conventional differen

channel conditions, ranging from severe shadowing (snall vij5| getection at the receiver (i.e., based on two subseqeen

ues ofk) to mild shadowing (large values 6j and from severe
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ceived symbols) and orthogonal binary frequency—shiftrikgy
(FSK) modulation with non—coherent detection at the reamreiv
[21, Ch. 9.4]. We also discuss the extension of our results to
M-ary modulation schemes. Concerning the generaliged
fading model we consider two scenarios. First, we focus on
the case of independent fading across thbranches, which
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rich—scattering radio environment (see [4] for examplb®) as-
sumption of uncorrelated diversity branches — created, leyg



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 2

multiple receive antennas with sufficiently large antenpecs of the instantaneous SNR conditioned on the average SNR
ings — appears to be reasonable. Afterwards, we turn to thgiven by [22]

case of composite shadowing and multipath fading. Here, we

consider the scenario where the shadowing part is fullyecorr pys(717) = _
lated, whereas the multipath fading is independent andiiden 77 L(m)y™
cally distributed (i.i.d.) across thebranches. Since shadowinqNherer
represents a large—scale fading effect that is caused lujrigys itself is a random variable with PDF given by

and other large—scale structures in the environment, ityqan o B

cally be expected to affect all diversity branches simwtarsly, oy e -

while in a rich—scattering environment the multipath farart py(7) = T(k)5* &P ( _) o k>0,920. ()

can again be considered independent across links. For éxamp A o

if the diversity branches are created by multiple receieran Where 7=E{7}/k and E{-} denotes statistical expecta-
nas that are attached to the same wireless receiver urin he tion-" There is a one—to—one mapping between the Gamma-
expected that all diversity branches experience the saere aghadowing parametérand the meapqp and the standard de-
age SNR (full correlation), while the multipath fading isd., Viationoqg in dB occurring in the lognormal shadowing model
provided that the antenna spacings are sufficiently Iarga-(u[12]3

mm,ymfl

exp (—m), m>0, v>0, (1)
Y

() denotes the Gamma function. The average SNR

ally a couple of wavelengths). 10 B
For both the i.i.d. scenario and the scenario with fully cor- paB = o (ln(ﬁ) + ‘I’(k)) dB, 3)
. . . nl0
related shadowing part, we present a high—SNR analysis and 10
provide expressions for the resulting asymptotic divegreit oag = ——/V'(k) dB, (4)

ders, which reveal an interesting interplay between thefade Inl0

ing parameterg andm. It is worth noting that the existing \yhere U(z) 2 %111(1“(1:)) (%F(z))/r(x) denotes the

(z) £ ZU(z) the Trigamma func-

papers on non—coherent transmission schemes over (gen%@amma function and’
ized) K —fading or double Rayleigh-fading links [4]-{11], [13}on * For example, for values of — 0.5, 1, 3 one obtains

are all restricted to a single bryancﬁ{:l). In particular, for oo 4ard deviations g ~ 9.65 dB (severe shadowing),
L>1 FO th? beﬁt of the au;h(r)]rs knowledgedqo clqsed—df;;mfeééB ~5.56 dB (moderate shadowing), aadp ~2.73 dB (light
pressions for the BEP and the asymptotic diversity ordeh® tshadowing), respectively.

considgred non—coherent transmiss_ion sc_hemes in gerestall Combining (1) and (2), the PDF of the instantaneous SNR
K—fading have yet been presented in the literature. AIscnethc?esmts as [2]
are no similar analyses for the competing composite logabrm
shadowing/multipath fading model. s -1

The remainder of this paper is organized as follows. In Sec- py(7) = W 77 Ka(ny/7), (5)
tion Il, the generalized(—fading model is briefly recapitulated
and certain moment—generating functions (MGFs) are dérivevheren=2./m/3, a=k—m, 3=k+m—1, andK, (z) de-
which are employed in the subsequent performance analysigtes the modified Bessel function of the second kind and or-
In Section lll, the closed—form BEP expressions for binager v. A widely—used measure to assess the severity of fad-
DPSK/non—coherent FSK modulation overgeneralizedk— ing processes is the so—called amount of fading (AF) defised a
fading branches are presented. In Section IV, asymptotic paF £ w In the case of generalizdd—fading, one
formance results are reported. In particular, the diversit gptains [12{]7 )
der of the non—coherent transmission schemes is determined 1 1 1

and compared with that of a coherent transmission scheme. In AF = p + ey + T > 0. (6)

Section V, we discuss the extension of our resultsifeary The valueAF =1 corresponds to Rayleigh fading, while values
DPSK/non—coherent FSK modulation. Finally, numericat pegreater than one correspond to more severe fading and values
formance results are presented in Section VI, and conelgsi@maller than one to less severe fading. Note thakfar — oo,
are offered in Section VII. the generalizedk fading model tends to a non—fading additive
white Gaussian noise (AWGN) channel modelAds— 0.

As mentioned earlier, the above PDF (5) for generaliked

Il. THE GENERALIZED K—FADING MODEL . . .
rg;\dmg can also be used in order to model cascade multipath

We start with a brief review of the PDF of the instantaneous
ceived SNR for generalizeld—fading. Subsequently, we derive ! we note that the principal form of the PDFs (1) and (2) is it This
certain MGFs for the case of cascade multipath fading and ¢a@ be seen when replacing paraméter (2) by a normalized parametgt =

: : : : k7. Consequently, the parametdrandm are, in principle, interchangeable.
case of composite shadowmg/multlpath fadlng. Since the definition of the constituent PDF (2) — with parané&tinstead of

7' — seems more consistent with the literature (see, e.g.), [#2]employ this

A. PDF of the Instantaneous Received SNR definition throughout this paper, rather than choosing antidal form similar
. . L . . . to (1) for both constituent PDFs (as, for example, done if)[15 the context

In order to derive the generalizéd-distribution, consider first of the composite shadowing/multipath fading model, patene (related to
the case of composite shadowing and multipath fading. t1§9)) is thus referred to as Gamma-shadowing parameterghout this paper,

. . b .. and parametem (related to (1)) is referred to as Nakagami—fading paramete
case, the generalizeli—fading model describes a Compos't‘f%loreover, parametey is referred to as ‘normalized average SNR’ throughout

Gamma-shadowing/Nakagamifading process [2]. The PDF this paper (sinc§ =E{7}/k=5"/k).
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fading, where the instantaneous SNResults from a product derived based on (5) by employingg.643, no. 3] from [23].
v&~172 of two statistically independent random variablgs Using relation §13.1.33] from [24, Ch. 13]

and~, with PDFs of form (1) and (2), respectively. In this case,

both k andm are related to Nakagami—fading processes. For Wuw(z)=e "2 212 U(1/2 +v—p, 1+2v;2)  (9)
example, for the special cage=m =1 one obtains the double

Rayleigh—fading model [3], [4], where between the Whittaker functidiv,, ., (z) and the confluent hy-

pergeometric function of the second kintd (a, b; z), one ob-

) 5 tains the following closed—form expression:
p0) =2 o (2,/7) ™
K 7 —my \" —my
M,,(z) = (—> U <kl, 1+ ay; —) . (20)
(5 £ E{~}). By varying the parametets andm accordingly, ! z 0,6 z 6,0

mc:)r:rtci)cr:lfasrs fz?\f[ﬁgesgaesc?;d:amu“;pﬁz fai'?%ﬁ:gg;irsg%' note that for numerical evaluation the representation
%= m

" . . [813.1.3] f 24,Ch. 13 Iso [25

cascade multipath fading model composed ofaRaerlghgadlﬁ 1from I (see also [25])

process and a Nakagami-fading process. I'(1-b)

In the following, we consider transmission ovkrgeneral- Ula,byz) = T(a—bt1) 1Fi(a, b5 z) (11)
ized K—fading branches and derive expressions for the MGF of r(b-1)
the instantaneous sum SNR + 2! T(a) 1Fi(a—b+1,2—-b;x)
L
v 2 Z ", (8) of U(a, b; z) in terms of the Kummer confluent hypergeometric
= function F (a, b; ), which holds for all non—integer values of

b, is sometimes preferable. It leads to the following expogss
wherey; denotes the instantaneous SNR associated withtihefor M., (z):3

branch {€{1, ..., L}). These expressions will later be utilized

in Section IV to determine the diversity order of a coherent —m ' T(—aqy) —my
transmission scheme with maximum—ratio combining (MRC) M~ (%) = <x61 9) ) 1 (klv L+ o 5 9>
atthe receiver, and in Section V to extend our performanak an me

ysis for binary DPSK/non—coherent FSK modulation with EGC + ( e ) (00) 17y (ml, 1— ay; __ml)

at the receiver (Section Ill) to the case of quaternary DP&K a 6,0 Lk z 6,0
M-ary non—coherent FSK modulation. We note that the de- (12)

rived MGF expressions could also be useful for other perf

or- . .
mance analyses (e.g., outage analysis) and are thus ofager@r‘ non-integer foralle {1, ..., L}). Due to the assumption of

independent fading, the MGF of the instantaneous sum $NR

interest. . Dl e i
We start with the case of independent but not necessar"ﬁ‘ﬁ/CorOIIng t0 (B)M, (x) =E{e”™}, is given by
identically distributed (i.n.d.) fading across branchejch L ki
is relevant for the case of cascade multipath fading. Subse- M., (z) = H <__ml) U (kz, 1+ a __ml> . @13
quently, we address the case of composite shadowing and mul- =1 \ 7T o0 00

tipath fading. Throughout this paper, we assume quasie-stat N ] .
channel conditions, i.e., the instantaneous SNRs of aihéad In the case of i.i.d. fading, the above expression reduces to
branches remain constant over an entire block of data syanbol

kL L
and change randomly from one block to the next. M, (z)= <%> {U (k, 1+a; %)] (14)
X X
B. MGF of Sum SNR for the Case of I.N.D. Fading (ki=..=kr 2k, mi=..=mp2m, 0, =..=0.,21).

Let 5, £ E{v,}/k denote the normalized average SNR associ-

ated with thdth branch {€ {1, ..., L}). Sincey, willin general C. MGF of Sum SNR for Correlated Composite Shadowing
differ from one branch to the next, we define a reference level and Multipath Fading

. A . =
0 for al b_ranches, according ®-= Meqs,.., 3 {7} Thus, In the case of composite shadowing and multipath fad-
for each index € {1, ..., L} the normalized average SNR o " \ve assume that the shadowing part is fully correlated,

i 3 A I - . . . - .
can bg’l’l\’gtfenegsﬂ_"_ b5l ietw'th c;)rllitanttéldz tlh' 'Il')hehrefer fwhereas the multipath fading is i.i.d. across thebranches
ence evey will be later usetul to study the behavior Ol . _p 2% ) = =m; 2m). Correspondingly, all
the closed—form BEP expressions derived in Section Il fghh (ka e r ) P ek
SNR values (i.e§ — ), see Section IV. 2U (a, b; ) is also known as Kummer's function of the second kind or Tri-

In the following, the individual branches are assumed to &S confluent hypergeometric function. :
Recently, for the special case =1 an alternative expression for the MGF

characterized by independent generalizéefading, Where. for (10)/(12) was presented in [8], which is based on the twaaspater exponen-
the ith branch the parameters of the PDF (5) are given gl integral functionEi(a, z). Similarly, for the special case.=1 an expres-

A = Ny A _ sion based on the incomplete Gamma funcfitfa, ) was presented in [10].
m=2 / ml/%' o =ki—my, and f kl—’—mAl 1. The MGF Finally, for the general case an alternative expressiontferMGF (10)/(12),
of the instantaneous branch SNR M.,, (x) 2 E{e*7" }, can be which is based on the Whittaker functidfiy , (), was presented in [13].
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branches are characterized by the same average gNwich but not in (14). Finally, we note that similar to Section 1J-B
itself is a random variable with PDF given by (2). Moreovethe MGF (19) can again be expressed in terms of the Kummer
we havey; =...=%;=6. The joint PDF of the instantaneousconfluent hypergeometric functiqr (a, b; z):

branch SNRsy, (I € {1,...,L}), conditioned on the average B

SNR#, is given by Mo (2) = T(Akm)

L « ﬂmLLF mL.1— A, -1
Prvoeeire 7 (V1572 19) = [ [ Pty (0l), (15) z0 NO R ’ MY
=1
_ _ _ _ —m\* 1 T1-Apm)
due to the assumption of independent multipath fading acros “\ e T(mL) T(1+ A ' ) (20)
the L branches. Correspondingly, the conditional MGF of the Fm
instantaneous sum SNR, x 1B (/{’ 14+ Apon; %)}
,my T )
Mvcw(ﬂf)é/ M s (1Y) do, whereA, ,,, must be non—integér.In order to arrive at (20),
0 we have used the relatiof13.6.9] from [24, Ch. 13] (see also
is given by [26]) b +1)
M., 5 (2) =M, 5 (). (16) by OFDa .
717 ll;[l ellsl L. (x) T(atl) 1F1(—a,b+1;2) (21)

Based on (1) and$B.381, no. 4] from [23], the conditional for non—integer values @t
MGF of the instantaneous branch SNR
Ill. PERFORMANCEANALYSIS FOR THEBINARY CASE

M., 5 (2) é/ e poy 1y (l7) d, In this section, we will derive closed—form BEP expressifams
0 binary DPSK/non—coherent FSK modulation oveigeneral-
ized K—fading branches with EGC at the receiver. As earlier,
. we start with the case of i.n.d. fading across branches. esubs
M, j5(z) = < i > . Re{a} <0, (17) Auently, we turn to the case of composite shadowing and multi
m—xy path fading with fully correlated shadowing part.

can be calculated as

which is the well-known MGF for Nakagami+fading [21,
Ch. 2.2]. Based on (2), (16) and (17), the (unconditional)iv
of 4, can be written as

GA. BEP for the Case of I.N.D. Fading

Considering binary DPSK/non—coherent FSK modulation over
L branches with (post—detection) EGC at the receiver, the in-
M, (z) = 1 /oo k=1 e~ /% 45 (18) stantaneous EGC output SNR is given 'Imézl]‘:l v [21,

T L(k)oF J, (1 _ lﬁ)mL ' Ch. 9.4], wherey; denotes the instantaneous SNR associated
m with the i(th branch. For a fixed value of;, the BEP of bi-
Assuming thatn is a finite non—integer valdeand employing hary DPSK/non—coherent FSK modulation overbranches
[§3.383, no. 5] from [23], we find the following closed—forniith EGC at the receiver is given by [27, Ch. 14.4]

expression for the MGF of: 1 Lz:_l z
Po(n) = o= 7" ) algn), (22)
My, (z) = (k)=mr - (mL)1—k 2201 =0
mlL L—1-1
—-m P(mL)T(1—=mL) A, [—m A 1 20 -1
X[(w) T(1—Fk) Lome™ \ 79 R Z;) ( K )

k
_ (ﬂ) (k) IA-k) LAk (ﬂ) . (19) whereg£1 for binary DPSK andg<1/2 for binary non—
z I'(1—mL) " z coherent FSK modulation. In order to derive a closed—form
<00, Re{z}<0, expression for the average BER(6) £ E., { B, (1)}, we first
note that the joint PDF of the instantaneous branch SNRs
where (z), 2T (z+v)/T'(x) denotes the Pochhammer sym( € {1,..., L}) is given by
bol and L% (x) the generalized Laguerre function. More-
over, we have used the identif{x)I'(1 —xz) =/ sin(mx) for
the Gamma function and introduced the short—-hand notation
Ag.m=k—mL. Note that (14) and (19) are quite different,
even though they are based on identical paraméters andg. due to the assumption of independent fading acrossithe
This is due to the fading correlations taken into account®)( branches. Second, we define the index vector

L
pw,...,n(’ha---aVL) :Hp’YL(/W)a (23)
=1

4As will be seen in Section VI, error probabilities for valuesc N, where K< ["ila ey KL] € Né
N denotes the set of all integers greater than zero, can tiyploa evaluated
with a high accuracy by replacing with a slightly different valuen+4-e ¢ N, 5 A corresponding expression to (20) for the special ease 1 can be found

wheree > 0 is a small perturbation value. in [10].
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and the index set B. BEP for Correlated Composite Shadowing and Multipath
Fading
In the case of composite shadowing and multipath fading,

whereN, denotes the set of all integers greater than or equaM§ again assume that the shadowing part is fully correlated,
zero. Finally, we note that the tergh can be expressed as [24Whereas the multipath fading is i.i.d. across thebranches.

2 {ReN] | kit +rL =1},

Ch.24.1.2] In order to arrive at a closed—form expression for the awerag
l BEP P, (), we first average (22) over the instantaneous branch
1 1 1 KL SNRsy;, while conditioning ory. In the final step, the resulting
%= 2 R%;l ( >’Yl L (24) conditional BEP, denoted d3,(7), is then averaged over

Similar to (25), the conditional BEP;,(7) can be written as
where(!) £11/(x1!---k.!). Based on the above findings, the

average BER, (9) can be written as _—
? b( ) P,(7) = 22L - chg % ( ) (31)
P,(0) = 22L 1 chg Z ( ) (25) RER
reK 0o . )
oo | x (H/ e ™ ’y>\>\p’)’>\|’)’(’y>\|7)d7)\>a
—1v0
(H/ eI 3 P (”YA)d’YA> . A=L
A=1"0

Plugging in (5) for the PDFp.,, (v»), A€{1,..., L}, and em-

ploying [§6.643, no. 3] from [23] in conjunction with (9), we
obtain for the average BEP the following closed—form expre
sion:

where we have used thatthe joint PRE . -, 5(71, -, YL|7),
conditioned on the average SNRcan be written as the product
of the conditional PDFg.,, 5 (v:|7) of the instantaneous branch
NRs~v; (1 €{1,...,L}), cf. (15). Plugging in (1) for the con-
itional PDFsp.,,|~(v1/7) and employing §3.381, no. 4] from
[23], we find the following expression fd®, (7):

noe S0 @ g (e S () e

L ks rek;
< (e )
I€>\ ’y
goxo I'(m+
i N
x Ul kx+rx, 1+ay;
( AT N >) (m1=...=m,£m). Based on the PDF (2) of the average SNR
5, the average BEP;, (/) 2E~{P, ()} can be written as
For the speC|aI case of i.i.d. fading, whére= .. k = 7 g b(O) ZE{ B}
mi=..=mr2m, a2 k—m,andd; = 5 1, (26) B 1
simplifies to Py(0) = 22T () L chg % (n)
KElyy
kL L—1
_ 1 m L ~k+l—1  ,—7/6
B0) = = (_> ch Z ( ) (27) % [y (erHA)/ Y e .
2271 \g o =0  reK; m! o (Zy+1)mLH K

(33)

L m
x (E(k)”*(m)“* U<k+m, 1o g@)) " Employing [3.383, no. 5] from [23] and assuming that:)is
a finite non—integer value and (k)£ m L, we find the following
Finally, for the special casé = 1, (22) reduces td%,(1:) = closed—form expression for the average BERA):
Py(71)=3e 9", and P, (0) can be evaluated as

L—1
— 1 1 s
_ k R (0) = al (34)
B,(0) = LYy k14— ). (28) 22L=1 T'(k) sin(mAp,m) Z
2 \gb 0 )
l
For comparison, in the case of i.i.d. Rayleigh fading theage [ . <H )]
BEP B, (0) is given by [27, Ch. 14.4] = bl

. - AN y [< >’“ PU=¢ini) - (g)
p 9 L 1 l — 9 F 1 —¥m,l 9
b(0) = 22L—1(L—1)! (1+g0)~ Zo: +) <1+99) ) g ( Vk.1) g
(29) B " sin(mom.1) [k (T
and we have . sin(my,) YRi\g6 ) |
Po(0) = 5 (30) , :
2(1+90) where we have introduced the short-hand notatigns® k +!

for the special casé =1. and,, SEmL+I; thus, Ay, », = i1 — pm,. Note again that
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h
L

(27) and (34) are quite different, due to the fading coriefet l L
taken into accountin (34). This will also become obviousia t X a (R> (€1)ny |- (38)
numerical results presented in Section VI. ! wEKy A=1

Il
=]

From (38) we find
d=¢&L =min{k,m}- L. (39)

IV. ASYMPTOTIC ANALYSIS AND DIVERSITY ORDER
The closed—form BEP expressions (26) and (34) are relgtivel

easy to evaluate (using, e.g., mathematical programs sCh\@te that due to the restrictions on (38), (39) holds only for
Maple© or Mathematic&), but involve some non-standardyon_integer values of. Interestingly, the smaller of the two

functions. Correspondingly, the primary behavior of theute fading parameters; andm, limits the asymptotic diversity or-

ing BEP curves is not obvious. In this sectior_l, we will thergggr. For example, in the case of cascade Rayleigh/Nakagami—
fore study the behavior of (26) and (34) for high SNR valuggqing with =1 andm > 1, the asymptotic diversity order is

(0 — 00). In particular, we derive expressions for the resultingh,vays given byl= L, just as in the case of pure Rayleigh fad-

(asymptotic) diversity ordér ing, where [27, Ch. 14.4]
FERT L _
d £ lim d(6), (35) Bu0) = ( ﬁ ) (2LL 1)_ (40)
dlog(9) Next, consider the case = 0, i.e., k = m. Forz—0 and

b =1, the confluent hypergeometric functiéf(a, b; =) can be

In particular, we show that the diversity order of binary B®S fapproximated according t§13.5.9] from [24, Ch. 13] as

non—-coherent FSK modulation is, in fact, the same as thhgin

case of a coherent transmission scheme.

Ula,b;z) = — (ln(:v) + V(a) + 27’), (41)

L
I'(a)
A. The Case of Independent Fading
For the ease of exposition, we focus on the case Where¥(z) again denotes the Digamma function, ayicthe

i.i.d. fading here, i.e51 =...=5. =0, mi=...—mr 2m, and Euler—-Mascheroni constant. Fér oo anda =0, we thus find
ki=..=kr2k. An extension to the case of i.n.d. fading is, k

however, straightforward. In the following, we derive amyir <ﬂ> U (k+m, 1+a; ﬂ) (42)
mate expressions for the average BEP (27), by employingeorr  \9 0 g0

sponding approximations of the confluent hypergeometricfu ) 1 m ’“1 m

tionU(a, b; x). T T(ktry) (E) n (E)

Consider first the case where the two fading paramétansl

m are different, i.e.oo=k—m#0. For simplicity, we assume Ok o m\*
thata is a non—integer value. Far— 0 and non—integer values +{ Wlktna) +2y 9_9
of b, the confluent hypergeometric functiéh(a, b; x) can be f
approximated using[L3.5.2] from [24, Ch. 13] (see also [28]): . 1 (ﬁ) (ﬁ)
T(1-b r(b—1 L(k+rr) \g0 g0)’
Ula,b;z) = ( ) ( ) 270, (36)
I'(1-b+a) I'(a) i.e., the average BEP (27) can be approximated as
where= denotes asymptotic equality. F6r— oo and non— ) I
integer values ofv, we thus find = . 1 m m
PO = —|-|— ) In[— 43
H0) 221 [ <99) n<g9)] “

<g%>kU (k+m,1+oz;g%> (37) . L—lq > (,i) (ﬁ (k) ey (M), )
=0  kek;

Correspondingly, we find

where¢; £ min{k, m} and&; £ max{k, m}. Thus, the aver-
age BEP (27) can be approximated as

A=1

i.e., the asymptotic diversity order is given by
d=FkL=mL. (45)

5o L S8 (T(a)\"
B(0) = 92L—1 <g_6’> < I'(&) > This result is in accordance with [4], where the diversitgier
of various coherent modulation schemes was determinetddor t
_6The (asymptotic) diversity order is the negative slope efBEP curve for special case of a single branch- 1) being subject to double
high SNR values on a log-log scale. It has been shown to befal useasure Rayleigh fading/%:m: 1)' Moreover, note that (45) is also in

for characterizing the principal behavior of digital trarission schemes over 5
various fading channels [27, Ch. 14.4]. accordance with (39).
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Finally, we compare the above results for binary DPSK/norGorrespondingly, the asymptotic diversity order in theecas
coherent FSK modulation with the asymptotic diversity erdeorrelated composite shadowing and multipath fading is ob-
obtained in the case of a coherent transmission scheme. t&ised as
an example, we consider binary PSK over.i.d. generalized d = (; = min{k,mL}. (52)
K—fading links with MRC at the receiver. The correspondi
average BEP can be determined via the following finite—ra
integral [29]:

Mhis result reveals an interesting interplay between nsaopic
ngl(?/ersity due to shadowing effects and microscopic divgrsi
due to multipath fading: the asymptotic diversity order lis a
B 1 /2 1 ways limited by either the shadowing effeét< mL) or the
P,(0) = —/ M,, (—27) do, (46) multipath fading (L < k), depending on which one of the two
T Jo sin”(¢) fading effects is more severe.

where the MGR\L,, (z) of the instantaneous MRC output SNR In orderto arrgve at (50), we have ut|I|;ed that tbr> oc only
I . . _ . one of the twalL? (z)—terms in (34) dominates, namely the one
Y =, 7 is given by (14). As earlier, we assume for sim-

. . g which is associated with the terfﬁ%)ﬁ. Correspondingly, if
plicity that o is a non—integer value. Based on (36) and M~ mL the convergence of the agymptotic solution (50) to the

p!oymg [§3.621, no. 1] from [23], th? average BEP (46) foExact expression (34) can be expected to be rather slove sinc
high SNR valueg — oo can be approximated as the dominant term will only emerge for very large values of
B 1 /T(la)) L/ g\ L 6. However, ifk andm L are sufficiently different, the conver-
Py(0) = — < > (_) B(§1L+1/2,§1L+1/2), gence of (50) is typically quite fast, as will be seen from the
2r \ T'(&2) 0 (47) numerical performance results presented in Section VI.

. . In order to compare the asymptotic diversity order (52) for
whereB(x,y) denqtes the Beta func'uqn. Corr§§pond|ngly,t inary DPSK/non—coherent FSK modulation with that in the
diversity order of binary PSK modulation ovéri.i.d. general-

. - . S case of binary PSK modulation, we first note that (46) is valid
ized K—fading links with MRC at the receiver is given by for arbitrary fading correlations (if an expression for Mi&F

d= &L =min{k,m}-L (48) M., (z) of the instantaneous MRC output SNRis available).
! ’ In the case of correlated composite shadowing and multipath
(a non—integer), just as in the case of the considered nd@ding, the MGFM,,, () is given by (19). Based on (49) and

coherent transmission schemes, cf. (39). employing §3.621, no. 1] from [23], the average BEP (46) for
0 — oo can be approximated as

B. Correlated Composite Shadowing and Multipath Fading P0) = sign(Ax,m) (k)—mr - (mL)1_

Next, we derive an approximate expression for the average BE b B 2

(34) for high SNR valueg — o, by employing a correspond- L(¢) A=Ak ml)—¢, [(4m c1

ing approximation of the generalized Laguerre functidiizr). r(1—G) 0 (33)

Forx— 0, the generalized Laguerre functidsj(x) can be ap-
proximated as [30, Ch. 13.2] (see also [31])

(b+1) where(, £ max{k, mL}. Correspondingly, the diversity order
“ (49) of binary PSK modulation ovef correlated composite shad-
y p

X B(C1+1/2,¢+1/2),

Ly (x) =

(a+1) owing/multipath fading links with MRC at the receiver is giv
For 6 — oo, the average BEP (34) can thus be approximated By
d = (; = min{k,mL}, (54)
. L—-1
Py(0) = 1 sign(Ag,m) ™ m ‘ Z o= just as in the case of the non—coherent schemes, cf. (52).
b 22L=1 T(k)  sin(mAgm) \g0 — re
L V. EXTENSIONS TOM—-ARY MODULATION SCHEMES
<1 (D) (TTom UlBrmDat o osed-t ions (13) and (19) for the MGF of th
H Kx To—dn) . e closed—form expres_smns( ) an _( ) or_t e of the
KEK; A=1 ’ instantaneous sum SNR in the case of i.n.d. fading and corre-

(50) lated composite shadowing/multipath fading, respectjvedn
be utilized to extend our performance analysis in Sectibtoll
where(; = min{k,mL}, sign(z) denotes the sign functionthe case of non—binary transmission schemes. As an example,
(i.e., sign(z) =+1 for all >0 andsign(z)=—1 otherwise), we will focus on the average BEP of quaternary DPSK modu-

and ) ) lation with Gray mapping, the average BEPMfary orthogo-
=, A { sin(mpm,1)/ sin(mr)  for k<mL (51) hal FSK modulation, and the average symbol error probgbilit
1 for k>mlL (SEP) of coherent/—ary PSK modulation.

7Itis worth noting that a further evaluation of (46) based b#)(- or (19) for . .
that matter — seems difficult. A. Error Probability for the Case of I.N.D. Fading

8 As earlier, we assume that£ m L, since otherwise (34) is not valid. How- . .
ever, it turns out that (50) yields nearly identical restittsk = mL + ¢ and In the case of i.n.d. fadmg' the average BEP of quaternary

k=mL — ¢, if € is chosen sufficiently small. DPSK modulation with Gray mapping ovér branches with
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(post—detection) EGC at the receiver is given by [21, CH. 9.4 1

5 - 1 T f(Lap§¢)
) = o /_w1+2psin(¢>+p2 (53)

—— DBPSK with EGC (k=1, m=1)
- - - DBPSK with EGC (Rayleigh fading)

107"

X ﬁMw (—2 - \/isin(qj)) do,
=1

10”

where N
@
fLpo) 2 3od ) cos((-Dotn/2) o
=1
—as(p) - cos (l(qﬁ—l—w/?))} , (56) 10"
2L—1
/A
o= 57
= (D) 7) ‘
0 5 10 15 20 25 30
ai (P) L pflJrl o lerl’ (58) Overall average SNR in dB
a2(p) = p_l+2 - pl, (59) Fig. 1. Average BEPP,(0) versus (normalized) overall average SNIR
in dB for the case of i.i.d. double Rayleigh fading=€ 1, m=1). Solid lines
N 2 \/5 represent analytical results for binary DPSK (DBPSK) matiah with EGC
p=—F, (60) at the receiver evaluated based on (27)/(28) using the vdlue1.01 and
2+ \/5 m=0.99. Dashed lines represent corresponding analytical refulthe case

: - f i.i.d. Rayleigh fading evaluated based on (29)/(30). r€gponding simula-

andM”ﬂ (x) _IS given by (10) Thu_s, the average BEP (55) fo(?on results for Rayleigh fading and double Rayleigh fadihg=1, m =1) are

the case of i.n.d. generalizéd-fading can be evaluated numerindicated by markerso’.

ically via a single finite—range integral over known funato

Similarly, the average BEP fav/—ary orthogonal FSK ovek . 0 i .

branches with non—coherent detection and EGC at the recewgereM% () IS given by (.19)1' _S|m|larly, (61) again holds
. . . or arbitrary fading correlations, i.e., we have

can be evaluated numerically based on the single finite-erang

integral expression (9.130) in [21, Ch. 9.4], which agair de  _ 1 M-1)m/M sin? (/M)
pends on the product of the MGB$.,(z), | € {1, ..., L}. Fi- Fi(0) = ;/ M, <_W
nally, the average SEP for cohereht—ary PSK modulation 0

overL branches with MRC at the receiver can be calculated Vi@sed on (19), the average SEP (64) for correlated composite
the finite—range integra[29] shadowing and multipath fading can thus be evaluated numeri

cally via a single finite—range integral over known functon
_ 1 pM-Dm/ L sin?(w /M)
Pi(0) = / M, <—7
0

) dg.  (64)

— de. (61
T ey sin?(¢) ) ¢- (6D
For the special casé=1, there is also a finite—range integraln the following, numerical performance results are présin

expression for the average SEP lf-ary DPSK modulation whlch illustrate ourfmdlngs.m Sequons lI-V. In partieu) we
[21, Ch. 8.2.5]: will present Monte—Carlo simulation results, so as to dooro

rate our analytical performance results.

V1. NUMERICAL PERFORMANCERESULTS

By(0) = (62)

(M—1)7/M a2
l/ |- sin” (/M) do. In the following, we investigate the BEP performance of bjna
TJo 144/1—sin®(7 /M) cos(¢) DPSK modulation ovet. independent generalizei—fading
branches with EGC at the receiver (cf. Section IlI-A and Sec-
WHon IV-A). As an example, we focus on the case of i.i.d. cas-
cade Rayleigh/Nakagami-fading withk =1 andm > 1.
B. Error Probability for Correlated Composite Shadowing Fig. 1 shows_ the average BER () for_bmary D.PSK ver-
and Multipath Fading sus the normgllzed overall average re<_:e|ved SNRn dB for
the case of i.i.d. double Rayleigh fading=€1, m=1). The
solid lines represent analytical results tbe{1,...,4} eval-
uated based on (27) and (28) using the valkes 1.01 and
P B 1 ™ f(L,p;9) m = 0.99.1' Corresponding simulation results (fbe=1 and
WO = g | (63)

2L o 2
™2 —r 1+2p bln(¢)+p 10Note that (63) is not valid for arbitrary fading correlation
. 1The confluent hypergeometric functidri(a, b; z) occurring in (27) and
x My, (_2 o \/ism(gé)) do, (28) was evaluated based on (11). While (27) and (28) themssdiold for any
value ofk andm, the alternative representation (11)@fa, b; ) can only be
9Similar expressions can also be stated érary amplitude—shift-keying employed for non—integer values @f= k—m. Hence, we have used values for
(ASK) modulation andV/—ary quadrature—amplitude modulation (QAM) [29].k andm that slightly deviate from integer values.

A. The Case of Independent Fading

Next, we consider the case of correlated composite shado
and multipath fading.

As shown in the Appendix, (55) is also valid for the case di/ful
correlated shadowing/i.i.d. multipath fading. Thus, weéa
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—— DBPSK with EGC (k=1, m=1)
—»— DBPSK with EGC (k=1, m=3)
—+— DBPSK with EGC (k=1, m=5)
- - - BPSK with MRC (k=1, m=3)

: :
—— DBPSK with EGC (k=1, m=1)
- - - BPSK with MRC (k=1, m=1)
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Il Il ”
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Overall average SNR in dB Overall average SNR in dB
Fig. 2. Average BERP, (0) versus (normalized) overall average SMR in  Fig. 3. Average BEPP, () versus (normalized) overall average SNR

dB for the case of i.i.d. double Rayleigh fading £ 1, m = 1). Solid lines L@ in dB for different cases of cascade fadirig=£1 andm € {1, 3, 5}).
represent analytical results for DBPSK modulation with E&QGhe receiver Solid lines represent analytical results for DBPSK modatatwith EGC at
evaluated based on (27)/(28) using the valkes1.01 andm = 0.99. Dashed the receiver evaluated based on (27)/(28) using the value$.01 andm €
lines represent corresponding analytical results for attebinary PSK mod- {0.99, 2.99, 4.99}, respectively. Dashed lines represent corresponding ana-
ulation (BPSK) with MRC at the receiver evaluated based @), (@6) using lytical results for coherent BPSK modulation with MRC at tleeeiver evalu-
numerical integration. Corresponding simulation resfdtsk =1 andm =1 ated based on (14), (46) using numerical integration. Gpmeding simulation
are indicated by markers” (both for DPSK and PSK modulation). results fork = 1 andm € {1, 3, 5} are indicated by marker®” (both for
DPSK and PSK modulation). The dotted lines represent asytmfBEP curves
for the casen = 3, L = 3 evaluated based on (38) for DPSK modulation and
. . . based on (47) for PSK modulation.
m=1), obtained by Monte—Carlo simulations over a large num-

ber of independent channel realizations, are indicateddnkm

ers 0'. As a reference, we have al_so inCIu_ded CorreSpondiBgrformance difference between binary DPSK and binary PSK
performance results for i.i.d. Rayleigh—fading¢ {1, ...,4}).  moqylation at high SNR values is abous dB (for all values of

As can be seen, the relative performance gains obtained Fwhich is slightly larger than the well—knovérdB difference
L>1 diversity branches are quite similar for double Rayleigila the case of conventional Rayleigh fading.

fading and conventional Rayleigh fading. However, in compa Finally, Fig. 3 compares the average BER(6) of bi-
ison the BEP performance for double Rayleigh fading is si%- ' '

nificantly worse than that for Rayleigh fading (for all vaduef ;':lry DfPSE with EdGC at Itheh/recilver fg_; \(flrlous exam-
L).12 For example, in the case éf=4 diversity branches, the Ples of 11.d. cascade Rayleigh/Nakagami-fading G=1,

prfonnance iference between double Reyeh adng i 1.7 2 <1140, Forne eanvle v hove e,
conventional Rayleigh fading at a BEPif* is abouts.3 dB.

Vice versa, in order to achieve a BEP of less tBarl0~* at a with MRC at thg receiver. Moreover, for the example=3,
: : . .~ L =3 we have included the asymptotic BEP curves as a ref-
(normalized) overall SNR af0 dB, one requires =4 diversity . .
. : . . erence (dotted lines), which were evaluated based on (3B) an
branches in the case of double Rayleigh fading, whereain

case of conventional Rayleigh fadidg=2 diversity branches /) for binary DPSK and binary PSK r_nodulaﬂon, respecy.vel_
L . . As can be seen, the performance of binary DPSK improves sig-
are sufficient. Finally, we note that the analytical resaltsl

the simulation results are in good agreement, which cowobndflcamly’ if the fading pgrameten IS increased fronm:ll 0
rates our analysis in Section I11-A. m=3. As opposed to this, increasimg further tom =5 yields

In Fig. 2, the average BEP, (6) for binary DPSK modula- comparatively small additional performance gains, which i

. . o dicates that the BEP perf [ hat limited by th
tion with EGC at the receiver is compared to that of coher caes that the perrormance 1S somewnat imited by the

egpnall value of the fading parameter For the casd =1, this

binary PSK modulation with MRC at the receiver. As an exany., . .is5 pe seen from (6). The AF expression is clearly dom-

ple, we consider again the case of i.i.d. double Rayleignéad inated by the smaller of the two parametérand m, which

(k=1, m=1). The analytical curves for binary PSK mOduTs 'Ln accordance with our findings concerning the resulting d

lation were obtained based on (14) and (46) using numeri% sity order (Section IV-A). In the considered examples th

integration. As can be seen, the general behavior of theesur F expression is dominated by parametefdue to the term
for growing values ofL is quite similar in the case of blnaryl/k)_ Correspondingly, an increaseaffrom m —3 to m =5,

DP.SK and binary PSK modylathn. I.n particular, the_ aSyMPhich reduces the AF from.667 to 1.4, yields only small per-
totic slopes of the curves are identical in both cases, akqiesl formance improvements in this example

by our asymptotic analysis in Section IV-A. Interestin _ . . i .
y our-asymptot ysis | I inghye Another interesting observation from Fig. 3 is that the perf

2For the special casb = 1 and coherent PSK modulation, this observatiormar_]Ce diﬁe.rence between F’i”?ry DPSK and pi”ary PSK mod-
was already made in [4]. ulation at high SNR values is slightly reduced if the fadirgg p
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Fig. 4. Average BEPP, () versus (normalized) overall average SMR  Fig. 5.  Average BEPP, (6) versus (normalized) overall average SNIR)

in dB for the casés = 3 andm = 1 (mild shadowing). Solid lines representin dB for the casés = 3 andm = 1 (mild shadowing). Solid lines represent
analytical results for DBPSK modulation with EGC at the reeeevaluated analytical results for DBPSK modulation with EGC at the reee evaluated
based on (34) using the valukgs=3.01 andm =0.99. Dashed lines represent based on (34) using the valuks=3.01 andm =0.99. Dashed lines represent
corresponding analytical results for coherent BPSK mduulawith MRC at  corresponding asymptotic results evaluated based on (50).

the receiver evaluated based on (19), (46) using numeritagriation. Corre-

sponding simulation results fér=3 andm =1 are indicated by marker®*

(both for DPSK and PSK modulation). (similar to the case of i.i.d. cascade Rayleigh/Nakagainfad-

ing). The asymptotic advantage of binary PSK over binary
rameter is increased. For example, in the case- 3 the per- DPSK modulation is about 3 dB, similar to the case of pure
formance difference is abodt3 dB, as opposed t8.8 dB in Rayleigh fading.
the case of double Rayleigh fading, cf. Fig. 2. Finally, waiag  In Fig. 5, we compare the exact analytical BEPs for DPSK
note that the analytical results (evaluated based on (2¥j28) mModulation according to (34) with the asymptotic BEPs ageor
using the valueg = 1.01 andm € {0.99, 2.99, 4.99}) and the ing to (50)** As earlier, the valuek=3.01 andm =0.99 were
simulation results fok =1 andm € {1, 3, 5} are in good agree- €mployed for evaluating the expressions (34) and (50) nbea
ment for all considered cases. Moreover, the asymptotic BE®en that convergence is comparatively fast for the chse3
curves accurately represent the behavior at high SNR valu’d L = 4. In particular, the BEP curves exhibit the predicted

which corroborates our asymptotic analysis in Section LV-A diversity orders od = 2m = 2 andd = k = 3, respectively.
However, as discussed in Section IV-B, in the case 3 con-

vergence is very slow, sinde~ mL. In this example, (hor-
malized) SNR values on the orderdf0 dB are required, until
Next, we consider the BEP performance of binary DPSK mothe exact analytical BEP (34) approaches the asymptotic BEP
ulation overL diversity branches that are subject to correlatgg0) and assumes the predicted asymptotic diversity orfler o
composite shadowing and multipath fading (cf. SectiorBlll-{=3m~k~3. Note that since the maximum diversity order is
and IV-B). Fig. 4 presents numerical results for the averagecomplished fof. = 3, the relative performance advantage of
BEP P, (0) as a function of the normalized overall average rgs > 3 branches is comparatively small in this example.

ceived SNRL ¢ in dB for the casé =3 andm =1 (mild shad-  Finally, in Fig. 6 numerical performance results for theecas
owing) andL € {1, ...,4}. Solid lines represent analytical re: =1 andm =3 (moderate shadowing) aride {1,4} are pre-
sults evaluated based on (34), using the valies3.01 and sented. Again it can be seen that the analytical resultg(sol
m=0.99. Dashed lines represent analytical results for coheines for binary DPSK and dashed lines for binary PSK mod-
ent binary PSK modulation with MRC at the receiver (for thalation) and the simulation results (markees) ‘are in good
cased. € {1,3,4}), evaluated based on (19) and (46) using thegreement. The analytical results for binary DPSK and lginar
same valueg =3.01 andm=0.99. Corresponding simulation PSK modulation were again evaluated based on (34) and (19),
results fork=3 andm =1, obtained by Monte—Carlo simula-(46), respectively, using the valugs=1.01 andm = 2.99. In-
tions over a large number of independent channel realizstioterestingly, in contrast to the case of mild shadowing, is th
are indicated by markers* (both for DPSK and PSK modula- exampleL > 1 branches offer no diversity benefit at all. As
tion). As can be seen, the analytical results and the siiualatcan be seen, in the case of binary DPSK modulation the BEP
results are in good agreement, which corroborates our sisalyurve for L = 4 is even slightly worse than the BEP curve for
in Section IlI-B. Note that significant diversity gains aseam-

plished in the casé& > 1, both in the case of DPSK and PSK 13Fc_)r binary PSK modulation with MRC at the receiver we haveaitetd
similar results (not depicted) by evaluating asymptBEPSs according to

mOdUIa_t'on' As can be seen, the general behavior of the .ng%,and comparing them with the corresponding analyti¢&aP8according to
curves is the same for coherent and non—coherent transmisgig) and (46).

B. Correlated Composite Shadowing and Multipath Fading
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Fig. 6. Average BERP, (0) versus (normalized) overall average SNR in  Fig. 7. Average BEPP, (9) versus (normalized) overall average SNR per
dB for the casé: = 1 andm = 3 (moderate shadowing). Solid lines represenbit L ¢/2 in dB for the case of cascade fading with= 1 andm = 3. Solid
analytical results for DBPSK modulation with EGC at the reeeevaluated lines represent analytical results for quaternary DPSK RBR) modulation
based on (34) using the valukgs=1.01 andm = 2.99. Dashed lines represent with EGC at the receiver evaluated based on (14) and (55) ubia values
corresponding analytical results for coherent BPSK mdatwlavith MRC at £ =1.01 andm =2.99. Dashed lines represent corresponding analytical results
the receiver evaluated based on (19), (46) using numentagration. Corre- for coherent quaternary PSK (QPSK) modulation with MRC &t taceiver
sponding simulation results fér=1 andm = 3 are indicated by marker®* evaluated based on (14) and (46) using numerical integrat@orresponding
(both for DPSK and PSK modulation). The dotted lines repreasymptotic simulation results fok = 1 andm = 3 are indicated by marker®* (both for

BEP curves for the cask = 4 evaluated based on (50) for DPSK modulatiorDPSK and PSK modulation).

and based on (53) for PSK modulation.

sponding AF expression [12]:

L =1 (since due to the SNR normalization the average branch AF — 1 1 1 6

SNR scales with /L). The BEP curves fol. =2 andL =3 % + mL + kmlL’ (65)

(not depicted) lie in between the curves foe=1 and L = 4. ) i
As predicted by the asymptotic BEP (50), included here fer t§'S Can be seen, in the case of moderate or severe shadowing
casel = 4 (dotted line), the BEP curves of binary DPSK fofk < 1), the AF expression is clearly dominated by parame-
L > 1 branches are all characterized by the same asymptd@E#: Which explains why increasing the number of diversity
diversity order ofi = k= 1. Also note that the convergence ofranches’, does not offer any notable performance improve-
the asymptotic BEP (50) to the exact BEP (34) is comparativél€nts in the above examples. For exampley i 0.5, in-

fast in this example. Moreover, we note that while in the ca§&8@sing the number of diversity branches frér 1 to L =4

of binary PSK modulation the asymptotic diversity ordertie t '€duces the AF fron8 to 2.25, which is still a significant
same as for binary DPSK modulation, the order of the curves/@U€ compared, e.g., to Rayleigh fadingt{=1). This find-
swapped here, i.el, = 4 offers a slight performance advantagd9 implies that one would require macroscopic diversitg (e
over L = 1 (the BEP curves foi, = 2 and L = 3 were again through spatially separated antennas) in addition to mgpic
found in between the curves fdr = 1 and L = 4). Finally diversity, in order to overcome the effects of shadowingisTh
we note that in the case of severe shadowing (not depictesl), ESU€ has been addressed in [17], based on a patrtially corre-

BEP curves were found to exhibit a very similar behavior tat th!ated generalized—fading model. Note that the limiting case
in Fig. 6. For example, fok = 0.5 andm = 3 we found that of uncorrelated shadowing is already covered by our resalts

the curves forl, = 1 to L = 4 are similarly close as in Fig. 6 i.n.d. generalized{—fading, although we have related this case

(both for binary DPSK and for binary PSK modulation) aniP & cascade—fading scenario throughout this paper.
that the relative performance of binary DPSK and for binary
PSK modulation is comparable. Moreover, we again found th@t Performance ofi/—ary Modulation Schemes
increasing the number of diversity branches leads to spight
formance improvements in the case of binary PSK and to sli
performance degradations in the case of binary PSK mod 2
tion. The main difference compared to the casel is that for L iid. cascade Rayleigh/Nakagami-fading branches with
k=0.5the BEP curves exhibitareducgd diversity orde(?x_,ﬁf k= 1andm — 3. Fig. 7 displays the corresponding aver-
forall L € {1, ..., 4} (a§ expected), which leads to S'gn'f'c"mfl;lge BEPsP, (0) versus the normalized overall average received
performance degradations for all curves. SNR per bitL 6/2 in dB for Le{1,...,4} diversity branches.
The above behavior in the presence of moderate or sevéhe analytical results for quaternary DPSK modulation with
shadowing can again be illustrated by considering the eorieGC at the receiver (solid lines) were evaluated based on (14

Finally, we present some numerical performance resultdfer
modulation. As an example, we focus on the case of qua-
ary DPSK and coherent quaternary PSK modulation over
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and (55) via numerical integration using the valdes: 1.01

andm = 2.99. The analytical results for coherent quaternary
PSK modulation with MRC at the receiver (dashed lines) werg
evaluated based on (14) and (46), exploiting the fact that th
average BEP of quaternary PSK with Gray mapping is identical
to that of binary PSK modulation. As can be seen, the baslél
behavior of the BEP curves is very similar to the case of lyinar

DPSK/PSK modulatiod? In particular, the asymptotic slope of

the BEP curves as well as the performance difference betwebh
quaternary DPSK and quaternary PSK modulation is the same
as in the case of binary transmission (cf. Fig. 3). Again, aten 10

that the analytical results and the simulation resultsragood
agreement, which corroborates our analysis in Section V.

VIlI. CONCLUSIONS

considered the case of independent fading across linkshvigi

relevant for cascade multipath fading scenarios, and the i [16]
correlated composite shadowing and multipath fading. More
over, we have conducted an asymptotic performance analysi

for high SNR values and have studied the resulting diveosity

ders for various cases. We have also discussed the extefsiqus)

our results ta\/—ary modulation schemes.

Our results have shown that there is an interesting intgrpla
between the two fading parametérandrm. In the case of inde- [19]

pendent fading, the smaller of the two fading parameteri¢dim

the asymptotic diversity order. Similarly, in the case ofree [20]
lated composite shadowing and multipath fading, the asymp-
totic diversity order is always limited by either the shadogv
effect or the multipath fading, depending on which one of t
two fading effects is more severe. Moreover, for both sdesar(22]
we have shown that the diversity order of the considered non—

[11]

[12]
The generalized{—fading model, which is characterized by
two fading parameterg; >0 andm >0, is versatile enough to [13]
cover both scenarios with cascade multipath fading andsseen
ios with composite shadowing and multipath fading. In this
paper, we have derived closed—form expressions for the BER4]
binary DPSK modulation and binary non—coherent FSK modu-
lation overL generalized{—fading links. In particular, we have[15]
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APPENDIX

In the following, we prove the validity of (63) for the case of
fully correlated shadowing/i.i.d. multipath fading, bytemding
the derivation of (55) presented in [21, Ch. 9.4] accordingl
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Given a fixed value of the instantaneous EGC output SNR
the BEP of quaternary DPSK modulation with Gray mappir
over L branches with EGC at the receiver can be written as

1 f(L, p; ®)
w22L [ 142psin(@)+p?

e

/

X ll;[lexp <—% (1+2psin(¢>)+p2)) do,

Py(n) (66)

wheref (L, p; ¢) andp are given by (56) and (60), respectivel

andb £ \/2++/2 [21, Ch. 9.4]. The average BER,(6) can
thus be written as

oo OO_ OOL
R(0) = / / Pbm/o [T
x py(7)dydyr---yL,  (67)

where we have used thatthe joint PRE ., 15(71, -, 7LI7),
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