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Abstract—In this paper, we propose two novel pre–equalization
schemes for multiple–input single–output (MISO) direct–
sequence ultra–wideband (DS–UWB) systems with pre–Rake
combining and symbol–by–symbol detection. The first scheme
employs one pre–equalization filter (PEF) per transmit antenna,
whereas in the second scheme, the simplified PEF (S–PEF)
scheme, all transmit antennas share the same PEF. For both
schemes the optimum finite impulse response (FIR) and infinite
impulse response (IIR) PEFs are calculated based on the mini-
mum mean squared error (MMSE) criterion. Our approach is
sufficiently general to include also reduced–complexity versions
of pre–Rake combining that employ a limited number of Rake
fingers. We show that under certain conditions the S–PEF
scheme achieves the same performance as the more complex
PEF scheme. We also demonstrate that a single–input multiple–
output (SIMO) DS–UWB system with post–Rake combining and
MMSE post–equalization is the dual system to the considered
MISO DS–UWB system with pre–Rake combining and MMSE
pre–equalization. This uplink–downlink duality can be exploited
for efficient calculation of the PEFs and for complexity reduction.
Our simulation results show that the proposed PEF schemes
achieve significant performance gains over pre–Rake combining
without equalization, even if only short PEFs are employed.

Index Terms—Ultra–wideband systems, spread–spectrum com-
munications, multipath channels, equalization, Rake combining,
pre–filtering, multiple–input single–output systems.

I. INTRODUCTION

IN RECENT years, ultra–wideband (UWB) signaling has
emerged as a promising solution to high–rate short–range

wireless personal area networks. Due to their extremely large
bandwidths, UWB systems can resolve even dense multipath
components such that Rake combining can be used at the
receiver to significantly reduce the negative effects of fading
in the received signal [1], [2]. However, for many UWB appli-
cations the receiver is a portable device with severely limited
signal processing capabilities, making the implementation of
Rake combiners with a sufficiently large number of fingers
very challenging.
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A promising approach to overcome this problem is to
move computational complexity from the receiver to the more
powerful transmitter (e.g. an access point). For this purpose
the concept of pre–Rake combining (also referred to as time–
reversal signaling) was borrowed from other areas such as
time–division duplex code–division multiple access (TDD–
CDMA) systems [3] and underwater acoustic communication
[4], and was modified for UWB applications, cf. e.g. [5]–
[13]. Pre–Rake combining exploits the reciprocity of the UWB
radio channel, which was recently experimentally confirmed
in [11]. Ideally, with pre–Rake combining channel estimation,
diversity combining, and equalization are avoided at the re-
ceiver, and a simple symbol–by–symbol detector can be used
[6], [12]. In addition, it has been recently shown that pre–Rake
combining also performs well in the presence of multiple users
[9], and the extension to multiple–input single–output (MISO)
scenarios was proposed in [9], [11].

Despite all of these desirable properties, pre–Rake com-
bining has a serious drawback. In particular, for the long
channel impulse responses (CIRs), which are typical for UWB
applications, it may entail a relatively high error floor if
simple symbol–by–symbol detection is applied at the receiver
[5], [7]. To remedy this problem receiver–side equalization
[5], [14] and post–Rake combining [10] have been proposed.
However, these techniques increase receiver complexity and
thus, compromise to some extend the advantages of pre–
Rake combining. Therefore, transmitter–side approaches for
performance improvement seem to be more suitable for pre–
Rake UWB systems. One option in this regard is to decrease
the data rate (i.e., increase the chip or/and symbol duration),
which effectively decreases the residual intersymbol interfer-
ence (ISI) at the receiver [12]. However, if high data rates are
desired, some form of pre–equalization has to be applied at the
transmitter. In [15] the pre–Rake filter is replaced by a pre–
filter which minimizes the residual ISI at the receiver based on
the minimum mean squared error (MMSE) criterion. Since this
MMSE pre–filter is implemented at the chip level, depending
on the underlying channel, relatively long filters may be
necessary to achieve a good performance. This entails a high
complexity, since the computation of the filter coefficients
requires the inversion of a matrix with a size equal to the
filter length.

In this paper, we propose a novel pre–equalization filter
(PEF) scheme for MISO direct–sequence (DS) UWB systems
which consists of a bank of pre–Rake filters and a bank of
PEFs. Unlike [15], we retain the pre–Rake filters, as they
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efficiently shorten the overall CIRs, and implement the PEFs
at the symbol level. As a result, the PEF lengths required
to achieve a certain performance are much smaller for the
proposed scheme than for the scheme in [15].1 Although pre–
equalization problems have been extensively studied in the
literature, e.g. [16], [17], existing results cannot be easily
adopted for the problem at hand due to the presence of the
pre–Rake, the imposed simple receiver processing, and the
spreading applied in DS–UWB. Consequently, in this paper
we derive the optimum finite impulse response (FIR) and
infinite impulse response (IIR) MMSE PEFs and analyze
the performance of the resulting system. Furthermore, we
show that a single–input multiple–output (SIMO) system with
post–Rake combining followed by MMSE equalization is
the dual system for the proposed MISO system with pre–
Rake combining and pre–equalization. This uplink–downlink
duality [18] can be conveniently exploited for efficient adap-
tive computation of the PEFs. Furthermore, we also study
a simplified PEF (S–PEF) scheme for the MISO system,
where the bank of PEFs is replaced by a single PEF. We
demonstrate that, under certain conditions, the S–PEF scheme
can achieve the same performance as the more complex PEF
scheme. Our simulation results confirm that the proposed PEF
schemes achieve significant performance gains over pre–Rake
structures without equalization and that the performance of
IIR PEFs can be closely approached by relatively short FIR
PEFs.

Organization: In Section II, we present the considered
system and channel model. The proposed PEF scheme is
optimized and analyzed in Section III. The uplink–downlink
duality and the S–PEF scheme are investigated in Sections
IV and V, respectively. In Section VI, simulation results are
provided, and Section VII concludes this paper.

Notation: E{·}, [·]T , (·)∗, [·]H , and diag{·} denote statisti-
cal expectation, transposition, complex conjugation, Hermitian
transposition, and a (block) diagonal matrix, respectively. IX ,
0X , en, �{·}, and ∗ stand for the X ×X identity matrix, the
X–dimensional all–zeros column vector, the unit vector whose
elements are all zero except for the nth element which is equal
to 1, the real part of a complex number, and linear convolu-
tion, respectively. Furthermore, Q(x) � 1√

2π

∫∞
x e−t2/2 dt,

δ(·), and X(ejω) � F{x[k]} =
∑∞

k=−∞ x[k]e−jωk denote
the Gaussian Q–function, the Dirac delta function, and the
discrete–time Fourier transform of x[k], respectively. Finally,
depending on the context, x[k] represents either a sequence or
the kth element of a sequence.

II. SYSTEM AND CHANNEL MODEL

We consider a MISO DS–UWB system with M perfectly
synchronized transmit antennas, symbol duration Ts, and chip
duration Tc = Ts/N , where N is the spreading factor. A
block diagram of the discrete–time model of this system is

1In both schemes the complexity of the pre–filter computation typically
scales with the cube of the filter length, whereas the computation of the
additional pre–Rake filter required for the proposed transmitter structure
scales only linearly with the number of Rake fingers. Therefore, it appears
to be fair to say that the proposed transmitter structure requires a smaller
overall computational complexity, especially with regard to the long CIRs
encountered in typical UWB applications.

.........a[n]

f 1[n] c[k]

N

r[n]
c[N − 1 − k]

α

â[n − n0] N

vM [n]

v1[n]

y[k]

zc[k]s1[k]

sM [k]
hM [k]gM [k]c[k]f M [n]

h1[k]g1[k]N

Fig. 1. Block diagram of MISO DS–UWB system (downlink) with M trans-
mit antennas, pre–Rake combining, and pre–equalization. The multiplication
of r[n] with α (dashed box) does not have to be implemented at the receiver,
cf. discussion in Sections II-C and III.

shown in Fig. 1. For simplicity, we focus on the single-user
case throughout this paper. We note that our results could
be extended to multiple receive antennas in a straightforward
fashion. However, for the sake of clarity and since a simple re-
ceiver structure is desired, we assume that only a single receive
antenna is available. To emphasize the different capabilities of
the transmitter and the receiver we will also refer to the system
in Fig. 1 as the downlink. Furthermore, for convenience, all
signals and systems are represented by their complex baseband
equivalents. In the following, the transmitter structure of the
proposed PEF scheme, the adopted channel model, and the
receiver structure are discussed.

A. Transmitter Structure

At antenna m, 1 ≤ m ≤ M , the transmitted independent
and identically distributed (i.i.d.) data symbols a[n] ∈ {±1}
are filtered with PEF fm[n] of length Lf , and the filter output
signal

vm[n] � fm[n] ∗ a[n] =
Lf−1∑
l=0

fm[l]a[n − l] (1)

is up–sampled by a factor of N . The up–sampled signal
is then filtered with (real–valued) spreading sequence c[k],
0 ≤ k < N , and with pre–Rake filter gm[k] of length Lg.
For convenience the spreading sequence is normalized to∑N−1

k=0 |c[k]|2 = 1. The resulting transmit symbol sm[k] is
given by

sm[k] =
∞∑

i=−∞
vm[i]g̃m[k − iN ], (2)

where g̃m[k] � c[k] ∗ gm[k] =
∑N−1

i=0 c[i]gm[k − i] includes
the combined effects of the pre–Rake filter and spreading. We
note that the considered transmitter structure is very general
as we do not impose any restrictions on c[k] and gm[k]. If a
spreading sequence is not applied, e.g. [5], [9], [11], [15], we
have c[0] = 1 and c[k] = 0, 1 ≤ k < N . In general, gm[k],
1 ≤ m ≤ M , will depend in some way on the CIR hm[k],
which has length Lh. For example, an all–pre–Rake (A–pre–
Rake or time–reversal filter)

gm[k] � h∗
m[Lh − k − 1], 0 ≤ k < Lg, Lg = Lh,

a partial–pre–Rake (P–pre–Rake)

gm[k] � h∗
m[Lg − k − 1], 0 ≤ k < Lg, Lg < Lh,
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or a selective pre–Rake (S–pre–Rake) gm[k] � h∗
m[Lg−k−1]

for the S largest coefficients of hm[k], gm[k] � 0 otherwise,
and Lg ≤ Lh may be adopted.

Since for typical UWB CIR lengths it is not realistic to
assume that the CIR coefficients can be fed back from the
receiver to the transmitter [13], as any UWB transmitter
structure requiring channel state information, the proposed
PEF scheme hinges on the reciprocity of the UWB channel.
Fortunately, this reciprocity has been experimentally con-
firmed [11]. Hence, hm[k] can be estimated at the transmitter,
relieving the receiver from any channel estimation tasks.

B. Channel Model

The equivalent baseband discrete–time CIRs

hm[k] � gT (t) ∗ hm(t) ∗ gR(t)|kTc ,

1 ≤ m ≤ M , contain the combined effects of the transmit
filter gT (t), the continuous–time CIR hm(t), and the receive
filter gR(t).2 Furthermore, for the wireless channel we adopt
the recently proposed extension of the IEEE 802.15.3a channel
model [19], [20] to multiple antennas [21]. Consequently, the
passband version h′

m(t) of the baseband CIR hm(t) consists
of Lc clusters of Lr rays and is modeled as

h′
m(t) = Xm

Lc∑
l=1

Lr∑
k=1

αk,l,mδ(t − Tl,m − τk,l,m), (3)

where Tl,m is the delay of the lth cluster, τk,l,m is the delay of
the kth ray of the lth cluster, αk,l,m is the random multipath
gain coefficient, and Xm models the lognormal shadowing.3

Measurements reported in [21] have confirmed that while
Tl,m, τk,l,m, and αk,l,m are independent across antennas, the
lognormal terms Xm are mutually correlated. In [19], [20] four
parameter sets for the various channel model parameters in
Eq. (3) are specified. The resulting four channel models (CMs)
are known as CM1, CM2, CM3, and CM4. They represent
different usage scenarios and entail different amounts of ISI.

C. Receiver Structure

The received signal y[k] is filtered with the time–reversed
spreading sequence c[N − 1 − k], 0 ≤ k < N , and sampled
at times k = Nn + k0, where 0 ≤ k0 < N denotes the
sampling phase. The resulting receiver output signal r[n] can
be expressed as

r[n] =
M∑

m=1

∞∑
l=−∞

qm[Nl + k0]vm[n − l] + zs[n], (4)

with overall CIR

qm[k] � g̃m[k] ∗ h̃m[k] =
Lg+N−2∑

i=0

g̃m[i]h̃m[k − i],

2Note that the continuous–time overall CIR gT (t) ∗ hm(t) ∗ gR(t) has
infinite length. However, the discrete–time version hm[k] can be truncated
to a finite length Lh with negligible energy loss if Lh is chosen sufficiently
large, cf. Section VI.

3We assume that the signals transmitted over different antennas are time
synchronous as is customary in the literature, cf. e.g. [5]–[15]. The delays
Tl,m and τk,l,m in Eq. (3) only specify the exact location of individual CIR
taps due to reflections from scatterers within the environment.

h̃m[k] � hm[k]∗ c[N −1−k] =
N−1∑
i=0

c[i]hm[k + i− (N −1)],

and symbol–level noise

zs[n] =
N−1∑
i=0

c[i]zc[N(n − 1) + k0 + i + 1],

where zc[k] denotes the chip–level additive white Gaussian
noise (AWGN) with variance σ2

c � E{|zc[k]|2}. Consequently,
zs[n] is also AWGN with variance σ2

s � E{|zs[n]|2} =
σ2

c

∑N−1
i=0 |c[i]|2 = σ2

c . Ideally, the sampling phase k0 should
be optimized to maximize the energy of qm[Nl+k0]. However,
the number of operations required for finding the optimum
k0 may be prohibitive, especially for large N . Therefore, in
practice, it may be preferable to consider suboptimum choices
for k0 which yield a good performance and can be easily
found. For an A–pre–Rake combiner qm[k] will assume its
maximum for k = Lg + N − 2. In order to capture this
maximum in qm[Nl + k0], we require

k0 = ks
0 � Lg + N − 2 − N�(Lg + N − 2)/N�.

Through extensive simulations we found that ks
0 yields a

close–to–optimum performance not only for A–pre–Rake
combining but also for S- and P–pre–Rake combining as long
as the number of fingers is sufficiently large.4

Since the goal of the proposed UWB system design is to
minimize receiver complexity in the downlink, no additional
filtering is applied at the receiver and symbol decisions are
made according to5

â[n − n0] = sign {�{r[n]}}, (5)

where â[n− n0] is the estimate for a[n− n0], n0 denotes the
decision delay, and sign {x} = 1 if x ≥ 0 and sign {x} = −1
otherwise. As typical for equalization problems, the decision
delay n0 has to be optimized for performance maximization
if causal pre–filters are desired [22].6

III. PEF OPTIMIZATION AND PERFORMANCE ANALYSIS

In this paper, we adopt the MMSE criterion for optimization
of the PEFs fm[n]. In particular, our design goal is to minimize
the error variance

σ2
e � E{|a[n − n0] − αr[n]|2}, (6)

while limiting the power P of the transmitted signal over one
symbol interval, i.e.,

P �
N(n+1)−1∑

k=Nn

M∑
m=1

E{|sm[k]|2} = 1, ∀n. (7)

4To be specific, for all simulation results presented in the paper, the
performance resulting for k0 = ks

0 was virtually indistinguishable from that
resulting for the optimum choice of k0, while the number of Rake fingers
considered was as low as S = 8. We have therefore adopted k0 = ks

0 for all
our simulation results in Section VI.

5Note that the multiplication with α in Fig. 1 does not have to be
implemented at the receiver, see discussion in Section III.

6Typically, the decision delay n0 is chosen such that the number of pre–
cursor taps within the resulting overall CIR is (roughly) equal to the number
of post–cursor taps. The required complexity for optimizing the decision delay
n0 is common to all FIR pre–equalization schemes considered in this paper.
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Here, α in Eq. (6) is an auxiliary variable that simplifies the
optimization of the PEFs fm[n] but does not affect the symbol
decisions according to Eq. (5).

In the following subsections, we will derive the optimum
FIR and IIR PEFs based on Eqs. (6) and (7) and analyze their
performance.

A. FIR Pre–Equalization Filters

For FIR PEF optimization it is convenient to first rewrite
Eq. (4) as

r[n] =
M∑

m=1

(Qmfm)Ha[n] + zs[n] = (Qf)Ha[n] + zs[n],

(8)
where a[n] � [a[n] . . . a[n − Lt + 1]]T , f � [fT

1 . . . fT
M ]T ,

fm � [fm[0] . . . fm[Lf − 1]]H , Q � [Q1 . . . QM ], and Qm

denotes an Lt × Lf column–circulant matrix with vector

[qm[k0] qm[N + k0] . . . qm[N(Lq − 1) + k0] 0T
Lf−1]

H

as first column. Here,

Lt � Lq + Lf − 1

and
Lq = 
(Lg + Lh + 2N − 3)/N�

are the lengths of the impulse response of the overall sys-
tem (including the PEFs) and the sampled overall CIRs
qm[Nn + k0], 1 ≤ m ≤ M , respectively.7 Applying Eq. (8)
in Eq. (6) yields

σ2
e = 1 + |α|2σ2

c − αfHq − α∗qHf + |α|2fHQHQf , (9)

where q � QHen0 . Furthermore, we show in Appendix A
that the average transmit power P can be expressed as

P = fHΦf (10)

with MLf × MLf block diagonal matrix

Φ � diag{Φ1, . . . , ΦM}.

Here, Φm is a symmetric Toeplitz matrix with vector

[ϕm[0] ϕm[−N ] . . . ϕm[−N(Lf − 1)]]

in its first row, where ϕm[k] � g̃m[k] ∗ g̃∗m[−k]. Combining
Eqs. (9) and (10) we obtain the Lagrange problem

L(f , α) = 1 + |α|2σ2
c − αfHq − α∗qHf (11)

+ |α|2fHQHQf + λ(fHΦf − 1),

where λ denotes the Lagrange multiplier. Differentiating
L(f , α) with respect to f∗ and α∗ and setting the resulting
gradients to zero leads to the optimum solution

fopt =
1

α∗
opt

(
QHQ + σ2

cΦ
)−1

q, (12)

7Note that qm[k] has length Lg + Lh + 2N − 3 as it is the result of the
convolution of gm[k] (length: Lg ), hm[k], (length: Lh), c[k] (length: N ),
and c[N − 1− k] (length: N ). The length of qm[Nn + k0] is then obtained
as Lq = �(Lg + Lh + 2N − 3)/N� by taking the effect of the sampling
into account.

αopt =

√
qH
(
QHQ + σ2

cΦ
)−1

Φ
(
QHQ + σ2

cΦ
)−1

q.

(13)
We note that the error variance does not change if we multiply
the right hand side of Eq. (13) with ejφ, where φ is an arbitrary
phase. However, from a practical point of view real–valued
positive values for αopt are desirable, since in that case αopt

does not have to be accounted for in the symbol decision rule
at the receiver, cf. Eq. (5). Using Eqs. (12) and (13) in Eq. (9)
leads to the minimum error variance8

σ2
e,min = 1 − qH

(
QHQ + σ2

cΦ
)−1

q. (14)

For calculation of fopt an MLf × MLf matrix has to be
inverted, which is computationally expensive for large filter
lengths Lf . Therefore, from a complexity point of view short
FIR filters are desirable. On the other hand, the performance of
the proposed pre–equalization scheme improves with increas-
ing Lf . Therefore, we are interested in finding the minimum
value of Lf which achieves close–to–optimum performance.
In this context, the optimum IIR solution is useful as it allows
us to establish the ultimate performance limit of the proposed
PEF scheme.

B. IIR Pre–Equalization Filters

As customary for IIR filter optimization, we drop the
causality constraint, set n0 = 0, and use a frequency–domain
approach for filter optimization [23]. The frequency–domain
approach simplifies our derivations as it avoids having to deal
with infinite–length impulse responses. We denote the vector
of IIR PEF frequency responses by

F (ejω) � [F1(ejω) . . . FM (ejω)]H ,

where Fm(ejω) � F{fm[n]}. Similarly, the vector of the
Fourier transforms of the sampled overall CIRs qm[Nn + k0]
is defined as

Q(ejω) � [Q1(ejω) . . . QM (ejω)]T ,

where Qm(ejω) � F{qm[Nn + k0]}. Note that Qm(ejω) is
related to the Fourier transform Q̃m(ejω) � F{qm[k + k0]}
of the (time–shifted) overall CIR itself via [24, Ch. 7]

Qm(ejω) =
1
N

N−1∑
k=0

Q̃m(ej(ω−2πk)/N ). (15)

We show in Appendix B that with these definitions the error
variance in Eq. (9) can be rewritten as

σ2
e = 1 + |α|2σ2

c − (16)

1
2π

π∫
−π

[
αF H(ejω)Q(ejω) + α∗QH(ejω)F (ejω)

− |α|2F H(ejω)Q(ejω)QH(ejω)F (ejω)
]

dω.

8Note that the error variance σ2
e,min and thus the performance of the PEF

scheme depends on a number of system parameters, such as the CIR length
Lh, the pre-Rake filter length Lg , and the PEF length Lf . However, as
customary for equalization problems, it is not possible to state an explicit
analytical relation between σ2

e,min and, say, the CIR length Lh. In fact, the
performance of the PEF scheme is rather dominated by the positions of the
poles of the (sampled) overall CIRs qm[Nn + k0].
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Similarly, using the definitions

Φ(ejω) � diag{Φ1(ejω), Φ2(ejω), . . . , ΦM (ejω)}

and Φm(ejω) � F{ϕm[Nn]} it is shown in Appendix A that
the average transmit power in Eq. (10) can be expressed as

P =
1
2π

π∫
−π

F H(ejω)Φ(ejω)F (ejω) dω. (17)

We note that the Fourier transform Φm(ejω) of the sam-
pled sequence ϕm[Nn] is related to the Fourier transform
Φ̃m(ejω) � F{ϕm[k]} of the sequence itself by [24, Ch. 7]

Φm(ejω) =
1
N

N−1∑
k=0

Φ̃m(ej(ω−2πk)/N ).

Based on Eqs. (16) and (17) we can now formulate a Lagrange
problem similar to Eq. (11) in the FIR case. Solving this
Lagrange problem leads to the frequency response of the
optimum IIR PEFs

F opt(ejω) =
1

α∗
opt

M(ejω)Q(ejω) (18)

αopt =

√√√√√ 1
2π

π∫
−π

QH(ejω)MH(ejω)Φ(ejω)M (ejω)Q(ejω) dω,

(19)
with

M(ejω) � (Q(ejω)QH(ejω) + σ2
cΦ(ejω))−1.

Using the matrix inversion lemma [25], we obtain

M(ejω) =
1
σ2

c

Φ−1(ejω)

×
[
IM − Q(ejω)QH(ejω)Φ−1(ejω)

σ2
c + QH(ejω)Φ−1(ejω)Q(ejω)

]
.

With this result Eqs. (18) and (19) can be simplified to

F opt
m (ejω) =

1
α∗

opt

Qm(ejω)
Φm(ejω)(σ2

c + X(ejω))
(20)

αopt =

√√√√√ 1
2π

π∫
−π

X(ejω)
(σ2

c + X(ejω))2
dω, (21)

where

X(ejω) = QH(ejω)Φ−1(ejω)Q(ejω) =
M∑

m=1

|Qm(ejω)|2
Φm(ejω)

,

and F opt
m (ejω), 1 ≤ m ≤ M , denotes the mth component of

F opt(ejω). The corresponding minimum error variance can be
obtained from Eq. (16) as

σ2
e,min =

1
2π

π∫
−π

σ2
c

σ2
c + X(ejω)

dω. (22)

C. Performance Analysis

In this subsection, we provide an analytical approximation
for the bit–error rate (BER) of the proposed pre–equalization
scheme. For this purpose, we assume that the residual ISI is
approximately Gaussian distributed, which is typically a good
assumption for MMSE problems [26]. We first assume that
FIR PEFs are used and note that the receiver output signal
can be expressed as

r[n] = fHqa[n − n0] + fHQHan0 [n] + zs[n],

where an0 [n] is identical to a[n] except that its n0th compo-
nent is zero. Based on this representation, it can be observed
that the effective signal-to-noise ratio (SNR) of the decision
variable r[n] is given by

SNR =
|fHq|2

fHQHQf − |fHq|2 + σ2
c

(23)

=
qH(QHQ + σ2

cΦ)−1q

1 − qH(QHQ + σ2
cΦ)−1q

=
1

σ2
e,min

− 1,

where we have used Eqs. (12)–(14). Assuming now that the
residual interference term fHQHan0 [n] + zs[n] is approxi-
mately Gaussian distributed, we obtain for the BER of the
proposed FIR pre–equalization scheme the approximation

Pe ≈ Q

⎛
⎝
√√√√2

(
1

σ2
e,min

− 1

)⎞
⎠ . (24)

The same expression is also valid for IIR PEFs if the corre-
sponding error variance σ2

e,min given in Eq. (22) is used.

D. Optimality of A–Pre–Rake Combining for IIR PEFs

It is well known that the performance of pre–Rake (and
post–Rake) combiners does not necessarily improve if the
number of Rake fingers is increased, cf. e.g. [27]. The reason
for this behavior is that while more energy can be collected
by increasing the number of fingers, the amount of residual
ISI may also increase. A similar effect can be observed if the
pre–Rake filter is enhanced with short FIR PEFs. However,
we will show in the following that A–pre–Rake combining is
indeed optimum if the employed PEFs are sufficiently long.9

For this purpose we use Eq. (15) and the corresponding
definition of Φm(ejω) to rewrite X(ejω) as

X(ejω) = (25)

1
N

M∑
m=1

|
∑N−1

k=0 G̃m(ej(ω−2πk)/N )H̃ ′
m(ej(ω−2πk)/N )|2∑N−1

k=0 |G̃m(ej(ω−2πk)/N )|2
,

where

H̃ ′
m(ej(ω−2πk)/N ) � ej(ω−2πk)k0/N H̃m(ej(ω−2πk)/N ),

G̃m(ejω) � F{g̃m[k]}, and H̃m(ejω) � F{h̃m[k]}. More-
over, we have used that

Q̃m(ejω) = ejωk0G̃m(ejω)H̃m(ejω)

9As will be seen in Section VI, depending on the channel model under
consideration filter lengths of Lf = 40 to Lf = 90 already offer a
performance that is virtually indistinguishable from that in the IIR case
(cf. Fig. 4).
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and
Φ̃m(ejω) = |G̃m(ejω)|2.

Using the Cauchy–Schwarz inequality [25] it can be shown
that X(ejω) is maximized if

G̃m(ejω) = e−jωk0H̃∗
m(ejω)

corresponding to an A–pre–Rake (or time–reversal) filter for
each branch m, 1 ≤ m ≤ M . Therefore, the A–pre–Rake
filter minimizes the error variance σ2

e,min and is optimum if
IIR PEFs are employed. The corresponding minimum error
variance is given by

σ2
e,min = (26)

1
2π

π∫
−π

σ2
c

σ2
c + 1

N

∑M
m=1

∑N−1
k=0 |H̃m(ej(ω−2πk)/N )|2

dω.

Increasing the spreading factor N improves performance by
decreasing the effective spectral fluctuation for a given m, i.e.,
1
N

∑N−1
k=0 |H̃m(ej(ω−2πk)/N )|2 becomes smoother which has

a positive effect on σ2
e,min in Eq. (26). Increasing the number

of antennas has a similar effect, but also provides an additional
combining gain. The impact of N on the performance will be
investigated in more detail in Section III-F.

E. Performance Bound

A meaningful performance bound for any (pre–)equalizer
and any (pre–)Rake scheme is the so–called matched–filter
(MF) bound. For the MF bound we assume that the optimum
A–pre–Rake filter is used at the transmitter and ignore any ISI
caused at the receiver. The resulting SNR is

SNRMF =
1
σ2

c

M∑
m=1

∞∑
k=−∞

|h̃m[k]|2

=
1

2πσ2
c

M∑
m=1

π∫
−π

|H̃m(ejω)|2 dω, (27)

where we have applied Parseval’s theorem [24]. The corre-
sponding BER lower bound is

PMF = Q
(√

2SNRMF

)
, (28)

i.e., no implementable (pre–)equalizer and (pre–)Rake scheme
will achieve a better performance.

F. Performance for N → ∞
It is interesting to investigate the performance of the pro-

posed PEF scheme for the case of long spreading sequences,
i.e., N → ∞. For N → ∞ the summations over 0 ≤ k < N
in Eq. (25) can be replaced by integrals and X(ejω) = X
becomes independent of ω. In particular, we obtain

X =
M∑

m=1

∣∣∣∣∣ 1
2π

π∫
−π

G̃m(ejω)ejωk0H̃m(ejω) dω

∣∣∣∣∣
2

1
2π

π∫
−π

|G̃m(ejω)|2 dω

, (29)

... ...... ...

yM [n]

y1[n]

zc,M [k]

r[n] â[n − n0]
a[n]

g̃M [k]

g̃1[k]

h̃M [k]

h̃1[k]

zc,1[k]

N

N

N

fM [n]

f1[n]

Fig. 2. Block diagram of SIMO DS–UWB system (uplink) with M receive
antennas, post–Rake combining, and post–equalization.

and with Eqs. (22) and (23) the resulting effective SNR
is SNR = X/σ2

c . For the special case of an A–pre–Rake
combiner X simplifies to

X =
1
2π

M∑
m=1

∫ π

−π

|H̃m(ejω)|2 dω,

i.e., the effective SNR becomes

SNR =
1

2πσ2
c

M∑
m=1

π∫
−π

|H̃m(ejω)|2 dω = SNRMF. (30)

Consequently, the proposed transmitter structure approaches
the MF bound performance limit for sufficiently long spread-
ing sequences.10 This result is intuitively pleasing since N →
∞ means that the overall CIR q[Nn] is ISI–free, and linear
processing at the transmitter is optimum.

IV. UPLINK–DOWNLINK DUALITY

In this section, we study a SIMO DS–UWB system
with M receive antennas, post–Rake combining, and post–
equalization, cf. Fig. 2. We will also refer to the SIMO
system in Fig. 2 as the uplink to distinguish it from the MISO
downlink configuration shown in Fig. 1. For h̃m[k] and g̃m[k]
in Fig. 2 the definitions provided in Section II are still valid,
i.e., h̃m[k] contains the combined effects of spreading with
c[N − 1 − k] and the CIR of antenna m, whereas g̃m[k]
contains the combined effects of de–spreading with c[k] and
post–Rake combining. Each receive antenna employs a filter
fm[n], 1 ≤ m ≤ M , to remove residual ISI before a decision
is made. The noise processes zc,m[k], 1 ≤ m ≤ M , are
mutually independent AWGN processes with variance σ2

c .

A. Filter Optimization

In the following, we assume FIR filters fm[n], 1 ≤ m ≤ M ,
and optimize them based on the MMSE criterion. We note
that for Q, q, Φ, and f the same definitions as for the MISO
downlink problem considered in Section III-A are valid. The
receiver output signal r[n] in Fig. 2 can be expressed as

r[n] = (Qf)Ha[n] + fHz[n], (31)

where
z[n] � [zT

1 [n] . . . zT
M [n]]T ,

zm[n] � [zm[n] zm[n − 1] . . . zm[n − Lf + 1]]T ,

10As will be seen in Section VI, depending on the channel model under
consideration spreading sequences of length N = 25 to N = 60 already
offer a performance that is virtually indistinguishable from the MF bound
performance limit (cf. Fig. 5).
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and

zm[n] =
∞∑

l=−∞
zc,m[l]g̃m[Nn − l]. (32)

Based on Eq. (32) the autocorrelation function of zm[n] can
be calculated as

ϕm
zz [n] = E{zm[l + n]z∗m[l]} = σ2

cϕm[Nn]

with ϕm[k] as defined in Section III-A. Exploiting this result
we can express the error variance to be minimized as

σ2
e � E{|a[n − n0] − r[n]|2} (33)

= 1 − fHq − qHf + fHQHQf + σ2
cfHΦf .

Minimizing σ2
e leads to the optimum vector

fuplink
opt = (QHQ + σ2

cΦ)−1q. (34)

This means the optimum SIMO uplink post–equalization fil-
ters in Eq. (34) are up to an irrelevant scaling factor identical to
the optimum MISO downlink PEFs. Furthermore, it can easily
be verified that the minimum error variances are identical
in both cases. In other words, there is a duality between
SIMO MMSE post–equalization after post–Rake combining
and MISO MMSE pre–equalization before pre–Rake com-
bining. We note that this duality also holds if IIR MMSE
equalization filters are employed, of course.

B. Practical Implications

The uplink–downlink duality of the considered MMSE
problem is not only of theoretical interest but also has im-
portant practical implications. In particular, while adaptive
algorithms cannot be used to calculate the optimum downlink
filter fopt since the receiver output signal r[n] is not available
at the transmitter, the uplink filter fuplink

opt can be efficiently
calculated using an adaptive algorithm such as the least–mean
square (LMS) or recursive least squares (RLS) algorithm [28].
For example, with the LMS algorithm the uplink filters are
updated according to

fuplink[n + 1] = fuplink[n] + μ0e
∗[n]y[n], (35)

where μ0 and
e[n] � a[n − n0] − r[n]

denote the adaptation step size and the error signal, respec-
tively. Furthermore,

y[n] � [yT
1 [n] . . . yT

M [n]]T ,

ym[n] � [ym[n] ym[n − 1] . . . ym[n − Lf + 1]]T ,

and ym[n] denotes the input signal for the equalization filter
at antenna m, 1 ≤ m ≤ M , cf. Fig. 2. We note that for
calculation of the error signal, a[n−n0] can either be a training
symbol or a previously decided symbol. Once the LMS has
converged and fuplink

opt is known, the normalization factor α
required in the downlink can be obtained from

αopt =
√

(fuplink
opt )HΦfuplink

opt ,

...f [n]

sM [k]

s1[k]

a[n] c[k]N

g1[k]

gM [k]

Fig. 3. Block diagram of MISO DS–UWB system (downlink) with M
transmit antennas, pre–Rake combining, and simplified pre–equalization.

and the optimum downlink PEF is11

fopt = fuplink
opt /αopt.

It should be noted that Φ only depends on the pre–Rake filter
coefficients. Therefore, the proposed recursive calculation of
the optimum MISO downlink PEF fopt only requires knowl-
edge of the pre–Rake filter coefficients. For the P- and S–
pre–Rake estimation of the entire CIR hm[k], 0 ≤ k ≤ Lh,
1 ≤ m ≤ M , which is necessary for the closed–form solution
in Eq. (12), can thus be avoided.

V. SIMPLIFIED PEF STRUCTURE

In this section, we consider the simplified PEF (S–PEF)
structure for the MISO downlink shown in Fig. 3. The main
difference to the PEF structure shown in Fig. 1 is that only
one PEF

f � [f [0] . . . f [Lf − 1]]T

is employed jointly for all M > 1 transmit antennas, which
reduces transmitter complexity.

A. Filter Optimization

As far as filter optimization is concerned, the S–PEF
structure shown in Fig. 3 leads to an equivalent single–input
single–output (SISO) channel with effective overall CIR

qeff [Nn + k0] =
M∑

m=1

qm[Nn + k0]

and transmit power

P = fHΦefff ,

where

Φeff =
M∑

m=1

Φm.

Consequently, based on the results in Section III-A the opti-
mum FIR PEF is given by

fopt =
1

α∗
opt

V qeff (36)

αopt =
√

qH
effV ΦeffV qeff , (37)

where
V �

(
QH

effQeff + σ2
cΦeff

)−1

,

qeff � QH
effen0 ,

11Note that the normalization with αopt is necessary to meet the transmit
power constraint, cf. Eq. (7).
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and

Qeff �
M∑

m=1

Qm.

The corresponding minimum error variance is obtained by
replacing q, Q, and Φ in Eq. (14) by qeff , Qeff , and Φeff ,
respectively. Similarly, in the IIR case we obtain

Fopt(ejω) =
1

α∗
opt

Qeff(ejω)
Φeff(ejω)(σ2

c + Xeff(ejω))
(38)

αopt =

√√√√√ 1
2π

π∫
−π

Xeff(ejω)
(σ2

c + Xeff(ejω))2
dω, (39)

where

Xeff(ejω) =
|Qeff(ejω)|2
Φeff(ejω)

,

Qeff(ejω) �
M∑

m=1

Qm(ejω),

and

Φeff(ejω) �
M∑

m=1

Φm(ejω),

cf. Section III-B. The corresponding error variance is given
by

σ2
e,min =

1
2π

π∫
−π

σ2
c

σ2
c + Xeff(ejω)

dω. (40)

The approximate BER of the S–PEF scheme can be obtained
by applying σ2

e,min from Eq. (40) (or the corresponding
expression for the FIR case) in Eq. (24). Furthermore, we note
that an uplink–downlink duality can also be established for
the simplified MISO downlink structure and a corresponding
simplified SIMO uplink configuration with just one post–
equalization filter. Using similar steps as in Section IV-B for
the original transmitter structure, this duality can be exploited
for adaptive calculation of the optimum PEF.

B. Comparison

It is of interest to compare the performances of the transmit-
ter structures in Figs. 1 and 3 for IIR PEFs. For this purpose,
we first note that based on the complex version of Hölder’s
inequality [29] we can establish the following inequality(

M∑
m=1

|
√

Φm(ejω)|2
)1/2

⎛
⎝ M∑

m=1

∣∣∣∣∣ Qm(ejω)√
Φm(ejω)

∣∣∣∣∣
2
⎞
⎠

1/2

≥

∣∣∣∣∣
M∑

m=1

Qm(ejω)

∣∣∣∣∣ . (41)

Squaring both sides of Eq. (41) and dividing them subse-
quently by

∑M
m=1 Φm(ejω) leads to

Xeff(ejω) =

∣∣∣∑M
m=1 Qm(ejω)

∣∣∣2∑M
m=1 Φm(ejω)

≤ (42)

M∑
m=1

|Qm(ejω)|2
Φm(ejω)

= X(ejω),

where X(ejω) is defined in Eq. (25). Since X(ejω) and
Xeff(ejω) appear in the denominator of the respective error
variances, cf. Eqs. (22), (40), Eq. (42) shows that the S–PEF
scheme cannot outperform the PEF scheme. This result is not
surprising since the S–PEF structure in Fig. 3 may be viewed
as a special case of the PEF structure in Fig. 1 with

f1[n] = f2[n] = · · · = fM [n], 0 ≤ n < Lf .

For the special case of an A–pre–Rake filter Eq. (42) simplifies
to

Xeff(ejω) =
1
N

M∑
m=1

N−1∑
k=0

|H̃m(ej(ω−2πk)/N )|2 = X(ejω).

(43)
It follows from Eq. (43) that the minimum error variances
for the S–PEF and the PEF scheme are equal in this case,
cf. Eqs. (22), (40), i.e., both schemes will achieve the same
performance. Therefore, the S–PEF and the PEF schemes
are equivalent for IIR PEFs and A–pre–Rake combining,
which implies that the S–PEF scheme should perform close
to optimum as long as sufficiently long FIR PEFs and a good
approximation of the A–pre–Rake filter (i.e., a P- or S–pre–
Rake filter with a sufficient number of fingers) are employed.12

Thus, in this case, the more complex structure in Fig. 1 can be
avoided. On the other hand, if a suboptimum pre–Rake filter
with very few fingers and/or short FIR PEFs are used, the
PEF structure in Fig. 1 is preferable and will lead to a better
performance than the S–PEF structure in Fig. 3.

VI. SIMULATION AND NUMERICAL RESULTS

In this section, we present computer simulation and numeri-
cal results for the proposed PEF schemes for MISO DS–UWB
systems. Thereby, we consider the practically most relevant
cases of M = 1 and M = 2 transmit antennas and adopt
the channel model discussed in Section II-B. In particular,
we focus on CM1 and CM4 since they have the smallest
and the largest average delay spread of the four channel
models, respectively. For convenience and practical relevance,
we adopted for our simulations the parameters from the IEEE
802.15.3a standardization efforts. In particular, we assume a
chip duration of Tc = 0.76 ns and both transmit filter gT (t)
and receive filter gR(t) are square–root raised–cosine filters
with roll–off factor 0.3 [30]. For M = 2 transmit antennas
we assumed that the lognormal terms Xm, m ∈ {1, 2}, are
correlated with correlation coefficient ρ = 0.86 [21]. All ef-
fective SNR and BER results shown in the following were
averaged over 100 channel realizations. For our simulations,
we generated oversampled versions of h′

m(t), hm(t), gT (t),
and gR(t) with a sampling interval of Tc/8, respectively. The
oversampled overall CIR was then down–sampled and the
resulting overall discrete–time CIR was truncated to a length
Lh such that ∑Lh−1

k=0 E{|hm[k]|2}∑∞
k=−∞ E{|hm[k]|2} > 0.999.

12As will be seen in Section VI for the example of channel model CM4,
when employing PEFs of length Lf = 100 in conjunction with an A–pre–
Rake filter, the performances of the PEF and the S–PEF schemes are virtually
the same. However, an S–pre–Rake filter with S = 32 fingers already leads
to a small performance gap (cf. Fig. 6). The same effect can be observed if
PEFs of smaller lengths are employed.
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Fig. 4. Effective SNR vs. Lf for PEF, S–PEF, and MMSE–Rake [15]
schemes for CM1 and CM4 UWB channel models. All results are averaged
over 100 channel realizations. A–pre–Rake, M = 2, N = 6, and Eb/N0 =
15 dB.

This led to Lh = 140 and Lh = 420 for CM1 and CM4, re-
spectively. Throughout this section we adopt for the sampling
phase k0 = ks

0, cf. Section II-C, and for FIR PEFs the decision
delay n0 was optimized.

A. Effective SNR Results

First, we show numerical results for the effective SNR at
the receiver (SNR = 1/σ2

e,min − 1). Here, σ2
e,min is obtained

from the analytical expressions in Eqs. (14), (22), and (40).
Fig. 4 shows the effective SNR of the PEF and S–PEF

schemes with A–pre–Rake combining vs. FIR PEF length Lf

for CM1 and CM4, where M = 2, N = 6, and Eb/N0 �
1/σ2

c = 15 dB. Here, Eb and N0 denote the average energy
per bit and the single–sided power spectral density of the un-
derlying passband AWGN process, respectively. Fig. 4 shows
that as Lf increases the FIR PEF filters quickly approach the
performance of the IIR PEF filters (solid lines). Since the av-
erage delay spread for CM1 (and thus the resulting CIR length
Lh) is considerably smaller than for CM4, this convergence
is much faster for CM1 than that for CM4. We also note that
while the PEF scheme achieves a higher SNR than the S–PEF
scheme for short FIR PEFs, both schemes achieve the same
performance for long FIR and IIR filters, cf. Section V-B. For
comparison, we have also included in Fig. 4 the results for
the MMSE–Rake scheme proposed in [15]. As Lf increases
the MMSE–Rake scheme achieves the same performance as
the proposed PEF and S–PEF schemes. However, since the
filters in the MMSE–Rake scheme operate at the chip level, the
convergence to the optimum IIR performance is much slower
than for the PEF and S–PEF schemes. For example, if an SNR
of 14 dB is desired for CM4, the PEF and the MMSE–Rake
schemes require filter lengths of 18 and 325, respectively. The
computation of the long filters required for the MMSE–Rake
scheme may be very difficult in practice even if a recursive
(e.g. steepest descent) or adaptive (e.g. LMS) algorithm is used
to avoid direct matrix inversion.
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Fig. 5. Effective SNR vs. N for PEF and S–PEF schemes for CM1 and CM4
UWB channel models. All results are averaged over 100 channel realizations.
A–pre–Rake, M = 2, Lf = 5, and Eb/N0 = 15 dB.

In Fig. 5, we investigate the dependence of the effective
SNR of the PEF and S–PEF schemes on the spreading factor
N for CM1 and CM4. M = 2, Lf = 5, Eb/N0 = 15 dB,
and A–pre–Rake combining are assumed. As N increases
the effective amount of ISI after pre–Rake combining rapidly
decreases, and both the PEF and S–PEF schemes approach
the SNR of the pure AWGN channel given by SNR = M/σ2

c

(solid line), cf. Section III-F. Again the convergence to the
optimum value is slower for CM4 than for CM1 because of
its larger delay spread, and the PEF scheme outperforms the
S–PEF scheme for small values of N .

The effective SNR of the PEF and S–PEF schemes as a
function of Lf is shown in Fig. 6 for A–pre–Rake combining
and S–pre–Rake combining with different numbers of fingers
S. CM4, M = 2, N = 6, and Eb/N0 = 15 dB are employed.
As predicted in Section V-B, with S–pre–Rake combining
the PEF scheme outperforms the S–PEF scheme even for
IIR PEFs and the performance gap between both schemes
increases as the number of fingers decreases. For example,
the asymptotic SNR differences between the PEF and S–PEF
schemes for S = 32, 16, and 8 are 0.25 dB, 0.62 dB, and 1.2
dB, respectively.

B. BER Results

Next, we show simulation and numerical results for the BER
performance of the PEF and S–PEF schemes. CM4 is assumed
for all results shown in this section.

Fig. 7 shows simulated BER results for the PEF and
S–PEF schemes with FIR PEFs of lengths Lf = 5, 10,
and 20 and numerical results for the same schemes with
IIR PEFs obtained from Eq. (24). M = 2, N = 6, and A–
pre–Rake combining are assumed. For comparison we also
show simulation results for the A–pre–Rake (or time–reversal)
scheme without pre–equalization as well as the MF bound
calculated based on Eq. (28). As can be observed from Fig. 7,
both the PEF and S–PEF schemes significantly lower the high
BER floor of the pure A–pre–Rake scheme. The performance
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Fig. 6. Effective SNR vs. Lf for PEF and S–PEF schemes for CM4 UWB
channel model. All results are averaged over 100 channel realizations. S–pre–
Rake, M = 2, N = 6, and Eb/N0 = 15 dB.

gap between the PEF scheme and the S–PEF scheme decreases
as Lf increases and disappears for Lf → ∞, as expected
from the discussion in Section V-B. We note that even for IIR
PEFs there remains a 1–dB gap to the MF bound. However, to
further narrow this gap some form of non–linear processing
at the transmitter would be required, which would (further)
increase complexity.

In Fig. 8, we compare the performances of the PEF scheme
for M = 1 and M = 2 transmit antennas assuming S–pre–
Rake combining (S = 16) and N = 6. The BER curves for the
FIR PEFs and the S–pre–Rake scheme without equalization
were simulated, whereas the BER curves for the IIR PEFs
and the MF bound were obtained by evaluating Eqs. (24)
and (28), respectively. Fig. 8 shows that a second transmit
antenna yields substantial performance improvements even if
the corresponding lognormal shadowing terms are correlated.
This performance gain is about 2.6 dB for IIR PEFs (at a
BER of 10−6), and even larger gains are obtained for short
FIR PEFs. These gains are due to the fact that increasing
M has a similar effect as increasing the spreading factor N ,
cf. Section III-D. Remarkably, even if we fix the total number
of FIR filter taps MLf , the SISO scheme with Lf = 10
and Lf = 20 performs substantially worse than the MISO
scheme with Lf = 5 and Lf = 10, respectively. The relatively
large gap between the MF bounds and the corresponding PEF
scheme with IIR filters is due to the suboptimum S–pre–Rake
combining.

In Fig. 9, we compare the performance of the PEF and
S–PEF schemes for different spreading factors N assuming
S–pre–Rake combining (S = 16) and M = 2. For FIR PEFs
with Lf = 10 both simulation (markers) and analytical (lines)
results obtained from Eq. (24) are shown. For IIR PEFs only
analytical results for N = 12 are shown. For the FIR PEFs
the analytical and simulation results are in good agreement.
Furthermore, since the amount of ISI after pre–Rake com-
bining decreases as N increases, the performance of both
the PEF and S–PEF schemes improves and the gap between
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Fig. 7. BER vs. Eb/N0 for PEF, S–PEF, and A–pre–Rake schemes for
CM4. All results are averaged over 100 channel realizations. A–pre–Rake,
M = 2, and N = 6. MF bound is also shown.
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Fig. 8. BER vs. Eb/N0 for PEF and S–pre–Rake schemes for CM4. All
results are averaged over 100 channel realizations. S–pre–Rake with S = 16
fingers and N = 6. MF bounds are also shown.

both schemes decreases with increasing N . Of course, this
performance improvement comes at the price of a decreased
data rate. We note that since S–pre–Rake combining is used
the PEF scheme outperforms the S–PEF scheme even for IIR
PEFs, cf. Section V-B. Furthermore, if the number of fingers
S was reduced, the gap between both schemes would further
increase, cf. Fig. 6.

VII. CONCLUSIONS

In this paper, we have proposed two different PEF schemes
for MISO DS–UWB systems with pre–Rake combining. The
first PEF scheme employs one PEF per transmit antenna,
whereas the second scheme, the simplified PEF scheme,
requires only one PEF. In contrast to previously proposed pre–
filtering schemes for DS–UWB, both proposed PEF schemes
efficiently exploit the channel shortening properties of the
pre–Rake filter and operate at the symbol level. Therefore,
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relatively short PEFs achieve close–to–optimum performance
even for long UWB CIRs. For sufficiently long PEFs and
A–pre–Rake combining both proposed PEF schemes achieve
the same performance. However, the S–PEF scheme suffers
from a certain performance degradation for suboptimum pre–
Rake combining and/or short PEFs. Furthermore, we have
also shown that a SIMO DS–UWB system with post–Rake
combining and MMSE post–equalization is the dual system
for a MISO DS–UWB system with pre–Rake combining and
MMSE pre–equalization. This uplink–downlink duality can be
exploited for complexity reduction. Simulation results have
confirmed the analytical findings and the excellent perfor-
mance of the proposed PEF schemes.

We note that while in this paper only DS–UWB systems
have been considered, the proposed PEF schemes are also
applicable to other areas (e.g. TDD–CDMA systems and un-
derwater acoustic communication) where pre–Rake combining
is used.

APPENDIX A: AVERAGE TRANSMIT POWER

In this appendix, we evaluate Eq. (7) for FIR and IIR PEFs,
respectively.

FIR Case: Based on Eq. (2) we obtain

E{|sm[k]|2} =
∞∑

i=−∞

∞∑
j=−∞

ϕm
ff [i− j]g̃m[k− iN ]g̃∗m[k− jN ],

(44)
where

ϕm
ff [k] � fm[k] ∗ f∗

m[−k].

Eq. (44) shows that sm[k] is a cyclo–stationary process with
period N . The signal power

Pm �
N(n+1)−1∑

k=Nn

E{|sm[k]|2}

per symbol interval at antenna m can be obtained as

Pm =
∞∑

i=−∞

∞∑
j=−∞

N(n+1)−1∑
k=Nn

ϕm
ff [i − j]g̃m[k − iN ]g̃∗m[k − jN ]

=
∞∑

l=−∞
ϕm

ff [l]
∞∑

j=−∞

N(n+1)−1∑
k=Nn

g̃m[k − jN − lN ]g̃∗m[k − jN ]

=
∞∑

l=−∞
ϕm

ff [l]ϕm[−Nl], (45)

where

ϕm[k] � g̃m[k] ∗ g̃∗m[−k]

is defined in Section III-A. Now, Pm can be rewritten in vector
form as

Pm = fH
mΦmfm,

where Φm is also defined in Section III-A. The total average
transmit power per symbol interval is then

P =
M∑

m=1

Pm,

which results in Eq. (10).
IIR Case: Based on Eq. (45) we may rewrite the signal

power for antenna m as

Pm =
1
2π

∞∑
l=−∞

π∫
−π

Φm
ff (ejω)ϕm[−Nl]ejωl dω

=
1
2π

π∫
−π

|Fm(ejω)|2Φm(ejω) dω, (46)

where we have used the definition of the (inverse) Fourier
transform and the identity

Φm
ff (ejω) � F{ϕm

ff [k]} = |Fm(ejω)|2.

Eq. (17) is now easily obtained by adding the powers Pm,
1 ≤ m ≤ M , of all M antennas.

APPENDIX B: ERROR VARIANCE FOR IIR PEFS

For IIR PEFs without causality constraint the definitions of
fm, qm, and Qm have to be slightly modified compared to
the FIR case with causality constraint. For example, now

fm � [. . . fm[−1] fm[0] fm[1] . . .]T

and

qm � [. . . qm[−N + k0] qm[k0] qm[N + k0] . . .]T
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are valid. Taking these changes into account, fHq can be
expressed as

fHq =
M∑

m=1

∞∑
n=−∞

fm[n]qm[−Nn + k0]

=
1
2π

M∑
m=1

∞∑
n=−∞

π∫
−π

Fm(ejω)qm[−Nn + k0]ejωn dω

=
1
2π

π∫
−π

M∑
m=1

Fm(ejω)Qm(ejω) dω

=
1
2π

π∫
−π

F H(ejω)Q(ejω) dω, (47)

where we have used the definition of the (inverse) discrete–
time Fourier transform. Taking the non–causality and IIR
property into account in the definition of Qm, fHQHQf
can be rewritten as

fHQHQf =
M∑

m=1

||Qmfm||2

=
M∑

m=1

∞∑
n=−∞

|xm[n]|2

=
1
2π

π∫
−π

M∑
m=1

|Xm(ejω)|2 dω (48)

=
1
2π

π∫
−π

F H(ejω)Q(ejω)QH(ejω)F (ejω) dω,

where we have employed the definitions

xm[n] � fm[n] ∗ qm[Nn + k0],

Xm(ejω) � F{xm[n]} = Fm(ejω)Qm(ejω),

and Parseval’s theorem [24]. Applying Eqs. (47) and (48) in
Eq. (9), Eq. (16) directly follows.
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