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A Rigorous Analysis of the Statistical Properties of the Discrete-Time
Triply-Selective MIMO Rayleigh Fading Channel Model
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Abstract— We analyze the correlation properties of the
discrete-time triply-selective multiple-input multiple-output
(MIMO) Rayleigh fading channel model, while triply-selective
refers to selectivity in time, frequency, and space. A rigorous
analysis of these correlation properties is indispensable to assess
the performance of multiple-antenna techniques in realistic
environments. To the best of the authors’ knowledge, a similar
analysis has not yet been presented in the literature.

Index Terms— MIMO systems, Rayleigh channels, dispersive
channels, time-varying channels, modeling.

I. INTRODUCTION

THE USE of multiple antennas for wireless commu-
nication systems has gained much interest during the

last decade, since multiple-antenna techniques offer capacity
gains [1], diversity gains [2], and beamforming gains [3]
over conventional single-antenna systems. Channel model-
ing for multiple-antenna systems, often called multiple-input
multiple-output (MIMO) systems, is an important topic. On
the one hand, accurate channel models are required in order
to predict the theoretical limits of real-world MIMO systems.
On the other hand, they are indispensable for designing novel
transmitter- and receiver techniques and assess their efficiency
in realistic environments. In fact, channel modeling for MIMO
systems is still an active field of research [4].

In digital communications, transmitted signals carry
discrete-time data symbols drawn from a finite alphabet. At
the receiver, the received signals are filtered and sampled,
and the transmitted data symbols are recovered by means of
discrete-time signal processing. Correspondingly, it is useful
to define a discrete-time channel model [5], especially with
regard to computer simulations. The discrete-time channel
model comprises the continuous-time physical channel, analog
filters at transmitter and receiver, as well as the sampling
rate and sampling phase. A statistical discrete-time model
for single-input single-output Rayleigh fading channels with
selectivity in time (due to motion of transmitter or receiver)
and frequency (due to a non-negligible delay spread of the
physical channel) was proposed in [6]. In [7], this concept
was generalized to triply-selective MIMO fading channels
with selectivity in time, frequency, and space (due to spatial
diversity obtained by means of multiple antennas).
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In this letter, we present a rigorous analysis of the corre-
lation properties of the discrete-time triply-selective MIMO
Rayleigh fading channel model [7], which enables accurate
computer simulations. It is claimed in [7] that the correlations
between the coefficients of the discrete-time MIMO channel
model, in the following called channel coefficients, can be
written as the product of temporal correlation, intertap corre-
lation, and spatial correlation. We show that this is, in fact, not
true and may lead to significant modeling errors. Moreover,
we show that the Kronecker model for the spatial correlations
does, in general, not hold in the case of frequency-selective
fading.

The remainder of this letter is organized as follows: The
discrete-time MIMO Rayleigh fading channel model [7] un-
der consideration is briefly recapitulated in Section II. The
correlation properties of the channel model are analyzed in
Section III. Finally, in order to illustrate our findings, some
numerical examples are presented in Section IV.

II. DISCRETE-TIME MIMO RAYLEIGH FADING

CHANNEL MODEL

Throughout this letter, we make use of the complex base-
band notation. We assume a rich-scattering environment and
a wide-sense stationary (WSS) scenario with uncorrelated
scattering (US) [6]. Focus is on symbol-rate sampling, i.e.,
sampling is performed once per symbol duration T . The
physical channel is assumed to be slowly time-varying.

Consider a MIMO system with M transmit and N receive
antennas. The physical channel for the link from the μth trans-
mit antenna (1≤μ≤M ) to the νth receive antenna (1≤ν≤N )
is modeled by an impulse response

fν,μ(τ, t)
�
=

Nτ−1∑
n=0

fν,μ(τd,n, t) δ(τ − τd,n), (1)

where τ denotes the propagation delay with respect to the line-
of-sight path, t the absolute time, Nτ the number of resolvable
delays τd,n, and δ(τ−τd,n) a Dirac impulse at τ =τd,n. Due
to rich scattering, the gain factors fν,μ(τd,n, t) are assumed
to be (circularly symmetric) complex Gaussian random vari-
ables [6], fν,μ(τd,n, t) ∼ CN (f̄ν,μ,n, σ2

fν,μ,n), where we focus
on the case of Rayleigh fading here (f̄ν,μ,n =0 for all indices
μ, ν, and n). Moreover, for simplicity we use the same set
of discrete delays τd,n for all links. (Possibly, some of the
complex gain factors fν,μ(τd,n, t) are zero for specific links.)

In the following, we assume that (i) a linear modulation
scheme is used, while the same (analog) pulse-shaping filter
gTx(t) is employed for all transmit antennas, (ii) coherent
demodulation is performed at the receiver, while the same
(analog) receiver filter gRx(t) is employed for all receive
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antennas, (iii) the same sampling phase1 ε ∈ [0, T ) is used
for all receive antennas. The discrete-time channel model for
the νth receive antenna is given by

yν [k] =
M∑

μ=1

L∑
l=0

hν,μ[k, l] xμ[k − l] + nν [k], (2)

where k denotes the discrete time index, yν [k] the kth received
sample of the νth receive antenna, L the effective memory
length of the discrete-time channel model, xμ[k] the kth
transmitted data symbol of the μth transmit antenna, and nν [k]
the kth additive Gaussian noise sample at the νth receive
antenna. (Due to receive filtering, the noise samples nν [k]
may be colored, i.e., correlated in time.) The complex channel
coefficients hν,μ[k, l] (l=0, ..., L) are defined as

hν,μ[k, l]
�
=

Nτ−1∑
n=0

fν,μ(τd,n, kT ) g(lT +ε−τd,n) (3)

(fν,μ(τd,n, kT )=fν,μ(τd,n, kT+ε) due to slow time variance),
where

g(t)
�
=

∫ +∞

−∞
gTx(t′) gRx(t−t′) dt′ (4)

denotes the overall impulse response of transmit and receive
filtering2.

III. STATISTICAL PROPERTIES OF THE

CHANNEL COEFFICIENTS

According to (3) the channel coefficients hν,μ[k, l] result
from a weighted sum of statistically independent3 complex
Gaussian random variables and are thus also Gaussian dis-
tributed [6], [7], i.e., hν,μ[k, l] ∼ CN (0, σ2

hν,μ,l). Corre-
spondingly, the (joint) statistical properties of the channel
coefficients are fully captured by the variances σ2

hν,μ,l and
the complete set of correlations between any two channel
coefficients hν,μ[k, l] and hν′,μ′ [k′, l′].

Utilizing the assumption of uncorrelated scattering, the
variances σ2

hν,μ,l of the channel coefficients can be written
as

σ2
hν,μ,l =

Nτ−1∑
n=0

σ2
fν,μ,n |g(lT +ε−τd,n)|2, (5)

i.e., they depend solely on the variances of the complex gain
factors fν,μ(τd,n, t) and on the shape of g(t).

In the following, we assume that the temporal and the spatial
correlations of the complex gain factors fν,μ(τd,n, t) can be

1This assumption is not crucial, since different sampling phases may
be represented by shifting the impulse responses of the physical channel
accordingly.

2Theoretically the overall impulse response g(t) is of infinite length (due to
a limited bandwidth). However, practical impulse responses typically decay
significantly for large absolute values of t. Correspondingly, one can find
a certain window l ∈ [−L1, +L2] such that channel coefficients hν,μ[k, l]
with l<−L1 or l>+L2 have very small average powers and can thus be
neglected. For simplicity, we define the index l such that the window of
interest is l ∈ [0, L].

3Due to the assumption of uncorrelated scattering, two complex gain factors
fν,μ(τd,n, t) and fν,μ(τd,n′ , t) are statistically independent for n′ �=n.

modeled independently, which is a common assumption in the
literature. Correspondingly,

E{fν,μ(τd,n, t) f∗
ν′,μ′(τd,n, t′)}√

σ2
fν,μ,nσ2

fν′,μ′ ,n

�
= ρfν,μ,ν′,μ′ ,n · Rfν,μ,n(t′, t),

(6)
where

ρfν,μ,ν′,μ′ ,n
�
=

E{fν,μ(τd,n, t) f∗
ν′,μ′(τd,n, t)}√

σ2
fν,μ,nσ2

fν′,μ′ ,n

(7)

denotes the spatial correlation between the gain factors
fν,μ(τd,n, t) and fν′,μ′(τd,n, t) and

Rfν,μ,n(t′, t)
�
= E{fν,μ(τd,n, t) f∗

ν,μ(τd,n, t′)}/σ2
fν,μ,n (8)

denotes the temporal auto-correlation function of fν,μ(τd,n, t).
Based on (3) and (6), the correlation between two channel

coefficients hν,μ[k, l] and hν′,μ′ [k′, l′] results as

ρhν,μ,ν′,μ′,l,l′,k,k′
�
= (9)

1√
σ2

hν,μ,lσ
2
hν′,μ′ ,l′

Nτ−1∑
n=0

√
σ2

fν,μ,n σ2
fν′,μ′ ,n · Rfν,μ,n[k′, k]

× ρfν,μ,ν′,μ′ ,n · g(lT +ε−τd,n) g∗(l′T +ε−τd,n),

where Rfν,μ,n[k′, k]
�
= Rfν,μ,n(t′=k′T, t=kT ). Equation (9)

subsumes several special cases, for example quasi-static fading

with selectivity in frequency and space (i.e., Rfν,μ,n[k′, k]
�
= 1

for all k′) or spatially uncorrelated fading with selectivity

in time and frequency (i.e., ρfν,μ,ν′,μ′ ,n
�
= 0 for all μ′ �=μ or

ν′ �=ν). Specifically, for the temporal correlation between two
channel coefficients hν,μ[k, l] and hν,μ[k′, l] one obtains

ρhν,μ,l,k,k′
�
= (10)

1
σ2

hν,μ,l

Nτ−1∑
n=0

σ2
fν,μ,n Rfν,μ,n[k′, k] |g(lT +ε−τd,n)|2.

Similarly, the intertap correlation between two channel coef-
ficients hν,μ[k, l] and hν,μ[k, l′] results as

ρhν,μ,l,l′
�
=

1√
σ2

hν,μ,lσ
2
hν,μ,l′

(11)

×
Nτ−1∑
n=0

σ2
fν,μ,n · g(lT +ε−τd,n) g∗(l′T +ε−τd,n).

Finally, for the spatial correlation between two channel coef-
ficients hν,μ[k, l] and hν′,μ′ [k, l] one finds

ρhν,μ,ν′,μ′,l

�
=

1√
σ2

hν,μ,lσ
2
hν′,μ′ ,l

(12)

×
Nτ−1∑
n=0

√
σ2

fν,μ,n σ2
fν′,μ′ ,n · ρfν,μ,ν′,μ′ ,n |g(lT +ε−τd,n)|2.

Due to the assumption of (wide-sense) stationarity, the cor-
relations (9)-(12) do not depend on the time index k. (The
correlation ρhν,μ,l,k,k′ depends only on the difference k′−k.)
Although claimed in [7], the overall correlation (9) can not
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be written as the product of temporal correlation, intertap
correlation, and spatial correlation:

ρhν,μ,ν′,μ′,l,l′,k,k′ �= ρhν,μ,l,k,k′ · ρhν,μ,l,l′ · ρhν,μ,ν′,μ′,l
. (13)

As will be seen in Section IV, depending on the statistical
properties of the complex gain factors fν,μ(τd,n, t) and on the
shape of g(t), the result in [7] can lead to significant modeling
errors.

A. Kronecker Correlation Model

It is often assumed in the literature that the spatial corre-
lation ρfν,μ,ν′,μ′ ,n between two gain factors fν,μ(τd,n, t) and
fν′,μ′(τd,n, t) can be factorized according to

ρfν,μ,ν′,μ′ ,n
�
= ρfμ,μ′ ,n · ρfν,ν′ ,n (14)

(Kronecker correlation). This implies that the correlation be-
tween transmit antenna μ and μ′ does not depend on the con-
sidered receive antenna, and the correlation between receive
antenna ν and ν′ does not depend on the considered transmit
antenna. In this case, (12) becomes

ρhν,μ,ν′,μ′,l
�
=

1√
σ2

hν,μ,lσ
2
hν′,μ′ ,l

Nτ−1∑
n=0

√
σ2

fν,μ,n σ2
fν′,μ′ ,n

× ρfμ,μ′ ,n · ρfν,ν′ ,n |g(lT + ε − τd,n)|2. (15)

For the special cases ν′=ν and μ′=μ, one obtains

ρhμ,μ′,l

�
=

1√
σ2

hν,μ,lσ
2
hν,μ′ ,l

(16)

×
Nτ−1∑
n=0

√
σ2

fν,μ,n σ2
fν,μ′ ,n · ρfμ,μ′ ,n |g(lT +ε−τd,n)|2

and

ρhν,ν′,l
�
=

1√
σ2

hν,μ,lσ
2
hν′,μ,l

(17)

×
Nτ−1∑
n=0

√
σ2

fν,μ,n σ2
fν′,μ,n · ρfν,ν′ ,n |g(lT +ε−τd,n)|2,

respectively. Although claimed in [7], the Kronecker corre-
lation model (14) for the complex gain factors fν,μ(τd,n, t)
does in general not transfer to the channel coefficients, i.e., in
general we have

ρhν,μ,ν′,μ′,l
�= ρhμ,μ′,l · ρhν,ν′,l . (18)

Exceptions are given by the case of frequency-flat fading
(Nτ =1, L=0), and by a MIMO channel model, where the
variances σ2

fν,μ,n do not depend on the antenna indices μ and
ν and the spatial correlations ρfμ,μ′ ,n and ρfν,ν′ ,n are identical
for all indices n.

IV. NUMERICAL EXAMPLES

In the sequel we illustrate, in which cases the MIMO
channel model [7] employing the erroneous simplifications

ρhν,μ,ν′,μ′,l,l′,k,k′ = ρhν,μ,l,k,k′ · ρhν,μ,l,l′ · ρhν,μ,ν′,μ′,l
(19)
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(1x2)−system, true channel correlations
(1x2)−system, simplification (19)
(2x2)−system, true channel correlations
(2x2)−system, simplification (19)
(2x2)−system, simplification (20)
(2x2)−system, simplifications (19)+(20)

Fig. 1. PDF of the instantaneous SNR γov for M = 1, 2 transmit and
N = 2 receive antennas, Nτ =2 resolvable delays (τd,0 = 0, τd,1 = T/2),
exponentially decaying variances σ2

f,n (cτ =5), a roll-off factor r = 0, and
spatial correlations ρf,0 =0, ρf,1 =1 (σ2

x/σ2
n = 1).

and
ρhν,μ,ν′,μ′,l

= ρhμ,μ′,l · ρhν,ν′,l (20)

deviates significantly from a triply-selective MIMO
channel model employing the true channel correlations
ρhν,μ,ν′,μ′,l,l′,k,k′ and ρhν,μ,ν′,μ′,l according to (9) and (12).
In order to compare the two channel models, we first
consider the associated distributions of the instantaneous sum
signal-to-noise ratio (SNR)

γov
�
=

M∑
μ=1

N∑
ν=1

L∑
l=0

|hν,μ[k, l]|2σ2
x

σ2
n

(21)

resulting from maximum-ratio combining over all MN trans-

mission links. Here, σ2
x

�
= E{|xμ[k]|2} denotes the symbol

variance and σ2
n
�
=E{|nν [k]|2} the variance of the (complex)

noise samples nν [k]. Afterwards, we will briefly consider the
impact on the corresponding Matched Filter Bound (MFB) [8,
Ch. 14.5].4

For simplicity, we focus on the case of quasi-static fad-
ing, i.e, ρhν,μ,l,k,k′ = 1 for all cases (Rfν,μ,n[k′, k] ≡ 1).
Moreover, we focus on the case of M =1 or M =2 transmit
antennas and N =2 receive antennas. The variances σ2

fν,μ,n

(n=0, ..., Nτ − 1) of the complex gain factors fν,μ(τd,n, t)
are assumed to decay exponentially with the delay τd,n

(identically for all indices μ, ν), according to

σ2
fν,μ,n =exp

(
−τd,n

cτT

)
. (22)

The spatial correlations ρfν,μ,ν′,μ′ ,n are assumed to follow
the Kronecker correlation model (14), where we assume
for simplicity that ρfμ,μ′ ,n =ρfν,ν′ ,n

�
= ρf,n for all indices

n=0, ..., Nτ − 1 and μ �=μ′, ν �=ν′. For the impulse response

4The MFB (also called Rake Receiver Bound) constitutes an analytical
lower bound on the symbol error rate performance of maximum-likelihood se-
quence estimation (MLSE). It is known to accurately predict the performance
of MLSE in the presence of frequency-selective fading, e.g. [9].
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(2x2)−system, true channel correlations, r=0.0
(2x2)−system, true channel correlations, r=0.2
(2x2)−system, true channel correlations, r=0.5
(2x2)−system, simplifications (19)+(20), r=0.0
(2x2)−system, simplifications (19)+(20), r=0.2
(2x2)−system, simplifications (19)+(20), r=0.5

Fig. 2. PDF of the instantaneous SNR γov for M =2 transmit and N =2
receive antennas, Nτ =2 resolvable delays (τd,0 = 0, τd,1 =T/2), a decay
factor cτ = 5, spatial correlations ρf,0 = 0, ρf,1 = 1, and different roll-off
factors r (σ2

x/σ2
n = 1).
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(2x2)−system, true channel correlations, ρ
f
=[0.0 1.0]

(2x2)−system, true channel correlations, ρ
f
=[0.2 0.8]

(2x2)−system, true channel correlations, ρ
f
=[0.4 0.6]

(2x2)−system, simplifications (19)+(20), ρ
f
=[0.0 1.0]

(2x2)−system, simplifications (19)+(20), ρ
f
=[0.2 0.8]

(2x2)−system, simplifications (19)+(20), ρ
f
=[0.4 0.6]

Fig. 3. PDF of the instantaneous SNR γov for M =2 transmit and N =2
receive antennas, Nτ =2 resolvable delays (τd,0 =0, τd,1 =T/2), a decay
factor cτ =5, a roll-off factor r=0, and different spatial correlations ρf =
[ρf,0, ρf,1] (σ2

x/σ2
n = 1).

g(t), a cosine roll-off impulse with roll-off factor r is assumed,
while the sampling phase is adjusted with respect to delay τd,0,

i.e., g(lT+ε−τd,0)
�
=δ[l]. Throughout this section, we assume

that the physical channel is characterized by Nτ =2 complex
gain factors fν,μ(τd,n, t) with delays τd,0 =0 and τd,1 =T/2.

Fig. 1 displays the probability density function (PDF) of
the instantaneous SNR γov resulting for M =1 and M =2
transmit antennas, a decay parameter of cτ = 5, a roll-off
factor of r=0, and spatial correlations ρf,0 =0 and ρf,1 =1.
The PDFs resulting for the true channel correlations according
to (9) and (12) are marked by solid lines. As can be seen,
when employing the simplifications (19) and/or (20), salient
deviations from the true PDFs are observed. However, as
illustrated by Fig. 2 and Fig. 3, the resulting deviations become
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(1x2)−system, true channel correlations
(1x2)−system, simplification (19)
(2x2)−system, true channel correlations
(2x2)−system, simplification (19)

Fig. 4. MFB as a function of 1/σ2
n in dB, resulting for M =1, 2 transmit

and N =2 receive antennas, binary antipodal transmission, Nτ =2 resolvable
delays (τd,0 =0, τd,1 =T/2), a decay factor cτ =5, a roll-off factor r=0,
and spatial correlations ρf,0 =0 and ρf,1 =1.
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(1x2)−system, simplification (19)
(2x2)−system, true channel correlations
(2x2)−system, simplification (19)

Fig. 5. MFB as a function of 1/σ2
n in dB, resulting for M =1, 2 transmit

and N =2 receive antennas, binary antipodal transmission, Nτ =2 resolvable
delays (τd,0 =0, τd,1 =T/2), a decay factor cτ =5, a roll-off factor r=0,
and spatial correlations ρf,0 =0.1 and ρf,1 =0.9.

less significant if

• the roll-off factor r is increased (Fig. 2) or
• the spatial correlations ρf,0 and ρf,1 become more bal-

anced (Fig. 3).

Further numerical results not displayed here indicate that the
resulting deviations also become less significant if

• the decay factor cτ is reduced or
• the number Nτ of resolvable delays τd,n is increased.

In Fig. 4 and Fig. 5, the impact of the simplification (19)
on the corresponding MFB is studied, for M =1, 2 transmit
antennas, binary antipodal transmission (xμ[k] ∈ {±1}), a
decay parameter of cτ = 5, a roll-off factor of r = 0, and
two different sets of spatial correlations ρf,0 and ρf,1. As
can be seen, for ρf,0 = 0 and ρf,1 = 1 the deviation from
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the true MFB is quite significant, both for M =1 and M =2
(Fig. 4). However, as soon as the the correlations ρf,0 and ρf,1

are slightly more balanced (e.g., ρf,0 = 0.1 and ρf,1 = 0.9,
cf. Fig. 5), the resulting deviations are far less significant.

V. CONCLUSIONS

In this letter, a rigorous analysis of the correlation properties
of the discrete-time triply-selective MIMO Rayleigh fading
channel model has been presented, which enables accurate
computer simulations for assessing the efficiency of multiple-
antenna techniques in realistic environments. By means of
numerical examples, the differences between our rigorous
channel model and a known simplified channel model has been
illustrated.
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