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Abstract

The error performance of distributed space-time codes used for mobile broadcasting systems

consisting of multiple base stations is analysed. The base stations are assumed to operate in

a simulcast mode, i.e., they simultaneously transmit the same message using the same carrier

frequency. Mobile users within the intersection of the coverage areas thus enjoy a small proba-

bility of shadowing and a high probability of at least one line-of-sight link. In effect, the base

stations establish a virtual multiple-antenna system. The use of a distributed space-time code

offers an additional spatial diversity gain. Considering a single user with a fixed (random) po-

sition, the impact of shadowing and line-of-sight components on the error performance of the

system is analysed and compared with a conventional multiple-antenna system with co-located

transmit antennas. Specifically, our analysis shows that already a single line-of-sight link sig-

nificantly improves the overall system performance. In the case of shadowing, huge diversity

gains are obtained in the distributed system. In a system with co-located transmitters, how-

ever, the performance improvements compared to a single-antenna system are rather small, when

shadowing is taken into account. Altogether, it can be concluded that systems with distributed

transmitters are typically superior to conventional multiple-antenna systems (due to macroscopic

diversity), and that distributed space-time codes are superior to conventional simulcasting (due

to microscopic diversity).
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1 Introduction

MOBILE radio systems are known to suffer from fading effects. However, system

performance can be improved significantly by exploiting some sort of diversity. By

means of multiple antennas, microscopic (small-scale) spatial diversity can be exploited,

provided that the individual links from the transmit antenna(s) to the receive antenna(s)

fade independently. This yields significant gains compared to systems with just a single

antenna at either end of the wireless link. Multiple antennas at the transmitter side allow

for a two-dimensional coding in time and space (i.e., across the individual antennas),

which is commonly known as space-time coding, e.g. [1]-[4]. In addition, multiple receive

antennas can be used so as to further improve system performance. If multiple antennas

are only available at the receiver side, spatial diversity can be utilised by means of

appropriate linear combining techniques [5].

Spatial diversity can also be exploited in cooperative wireless networks, e.g. [6]-[12].

In such networks, multiple (single-antenna) nodes share their antennas, for example by

using a distributed space-time coding scheme. By this means, a virtual multiple-antenna

system is established. The concept of cooperative wireless networks has recently gained

considerable attention, because cooperating nodes build the basis of any ad-hoc network

and promise benefits also for other types of networks, such as cellular networks [11].

Examples for cooperative wireless networks include simulcast networks [6] and relay-

assisted networks [7]-[12].

*** Fig. 1 about here ***

In this paper, simulcast networks are considered that consist of multiple base stations,

see Fig. 1. Simulcast networks are normally employed for broadcasting or for paging

applications. Conventionally, simulcasting means that the base stations simultaneously

transmit the same signal on the same carrier frequency. Mobile users within the inter-

section of the coverage areas are thus provided with a comparably small probability of

shadowing1 and a high probability of at least one line-of-sight link (macroscopic spatial

diversity). However, conventional simulcasting does not yield any microscopic spatial

diversity gain [6]. In this paper, we assume that the base stations use a distributed

1Shadowing is caused by large-scale objects situated between the base station(s) and the mobile receiver.
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space-time coding scheme in order to provide an additional microscopic diversity gain.

The outline of the paper is as follows: The system model under consideration is in-

troduced in Section 2. In Section 3, the error performance of a distributed space-time

coding scheme is determined analytically for a single receiver with fixed random posi-

tion. The resulting error performance is compared to a conventional multiple-antenna

system with co-located transmitters, and the influence of shadowing and line-of-sight

components is studied. It is shown that systems with distributed transmitters are typi-

cally superior to conventional multiple-antenna systems, and that distributed space-time

codes are superior to conventional simulcasting. To the best of the authors’ knowledge,

such a comparative study for distributed space-time codes with regard to shadowing

and line-of-sight components has not yet been presented in the literature. The most

important results of the paper are summarised in Section 4.

2 System Model and Basic Assumptions

Consider a simulcast network according to Fig. 1 consisting of n base stations (BS1 to

BSn) which transmit signals s1(t), ..., sn(t) to a mobile receiver (MS) with fixed random

position. For simplicity, we assume that the base stations and the mobile receiver are

equipped with just a single antenna. In order to provide a microscopic spatial diversity

gain, the base stations employ a distributed space-time block coding (STBC) scheme.

Throughout this paper, the complex baseband notation is used. Assuming a quasi-

static frequency-flat2 fading channel model, we model the transmission link from the

ith base station to the mobile receiver by a single complex-valued channel coefficient

hi
4

= αi e
jϕi , which is constant over the duration of an entire data block. After each data

block, the channel coefficients change randomly, while hi and hi′ (i 6= i′) are statistically

independent. For the time being, we assume that the differences between the propagation

delays of the signals s1(t), ..., sn(t) are small compared to the symbol duration.3 The

discrete-time channel model is therefore given by

y[k] =
n∑

i=1

hi xi[k] + n[k], (1)

2The results presented in this paper are also relevant for frequency-selective channel models. For example, they

can directly be applied to space-time block coded orthogonal-frequency-division-multiplexing (OFDM) systems.

3The case of large relative propagation delays is discussed in Section 3.3.
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where k denotes the discrete time index, y[k] the kth received sample, xi[k] ∈ IC the kth

transmitted symbol of base station BSi, and n[k] a sample of a complex additive white

Gaussian noise (AWGN) process with zero mean and variance σ2
n/2 per real dimension,

i.e., n[k] ∼ CN (0, σ2
n). The transmitted symbols xi[k] represent space-time encoded in-

formation symbols a[k], which are assumed to be (randomly) drawn from an M -ary

symbol alphabet, e.g., an M -ary phase-shift-keying (PSK) constellation. Throughout

this paper it is assumed that the noise samples, the data symbols, and the channel

coefficients are statistically independent.

In a simulcast network used for broadcasting applications, many users are simulta-

neously served with the same message. Correspondingly, it is not useful to optimise the

transmission strategy with respect to a specific user. Similarly, in a paging application

a single user with unknown position is served. In this case, an optimisation of the trans-

mission strategy is not feasible. In both scenarios, it is therefore reasonable to employ

an equal power allocation strategy at the transmitter side, i.e., the individual base sta-

tions use the same average transmit power PTx,i
4

= E{|xi[k]|2} (E{.} denotes statistical

expectation). For the purpose of analysis, we assume that the overall transmit power

P
4

=
∑

i PTx,i is fixed, irrespective of the number of transmit antennas used. This allows

for a fair comparison with a single-antenna system.

The instantaneous and the average received signal-to-noise ratio (SNR) for the ith

transmission link (per channel use) is given by

γi
4

=
P

n

α2
i

σ2
n

, γ̄i
4

= E{γi} =
P

n

Ωi

σ2
n

, (2)

respectively, where Ωi
4

=E{α2
i } denotes the average power of the ith channel coefficient.

For a fair comparison between a system with distributed transmitters and a system with

co-located transmitters, the overall average received SNR must be fixed. Correspond-

ingly, we apply the normalisation
∑

i Ωi
!
= n throughout this paper. (In the case of

co-located transmitters, it is reasonable to assume that the parameters Ωi are equal for

all i, whereas in a distributed system they may be different from one link to another,

due to different link lengths.) With this normalisation, the overall average received SNR

results as

γ̄ov
4

=

n∑

i=1

γ̄i =
P

σ2
n

. (3)
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In the following, let γ̄ov
4

=Es/N0, where Es denotes the (overall) average received symbol

energy per channel use and N0 the single-sided noise power density.

2.1 Distributed Space-Time Code

Within the scope of this paper, the base stations are assumed to employ a distributed

orthogonal space-time block code (OSTBC) [2],[3]. OSTBCs yield full spatial diversity

with regard to the number of transmit and receive antennas available. In the flat-fading

case, OSTBCs enable maximum-likelihood decoding at the receiver by means of simple

linear processing. A drawback of these schemes is, however, that a temporal rate Rt =1

(‘full rate’) is only accomplished for certain numbers of transmit antennas. Given a two-

dimensional signal constellation (e.g., an M -PSK constellation), full-rate transmission

is, in fact, only accomplished by Alamouti’s OSTBC [2] for n = 2 transmitters [13].

In the case of n = 3 and n = 4 transmitters, for example, the maximum possible rate

is Rt =3/4 [3],[4].

2.2 Fading Models

In order to model the effects of microscopic fading, random fading amplitudes αi are

considered that are either characterised by a Rayleigh distribution (i.e. hi∼CN (0, Ωi))

or by a Rician distribution. The Rician distribution is used to model the effect of a

line-of-sight (LOS) signal component. In this case, the channel coefficients hi can be

written as hi
4

=hLOS,i + h̃i, where hLOS,i∈ IC represents the non-fading LOS component4

and h̃i ∼ CN (0, Ω̃i) the scattered components (Ωi
4

= |hLOS,i|2 +Ω̃i). The Rice factor

Ki ∈ [0,∞[ is defined as the ratio between LOS signal power and average power of the

scattered components, i.e., Ki = |hLOS,i|2/Ω̃i. The cases Ki =0 and Ki→∞ correspond

to pure Rayleigh fading and a non-fading AWGN link, respectively. The probability

density function (PDF) pΓi
(γi) of the instantaneous SNR γi for the case of Rayleigh

fading is given by

pΓi
(γi) =

1

γ̄i
exp

(

−γi

γ̄i

)

. (4)

The corresponding PDF for the case of Rician fading can be found in [14].

4According to the quasi-static fading assumption, the phase of the LOS component is assumed to change randomly

from one data block to the next.
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To account for macroscopic fading in terms of shadowing effects, the average SNRs γ̄i

themselves are regarded as random variables characterised by a log-normal distribution.

This means that the average SNR in dB, γ̄dB,i
4

=10 log10 γ̄i dB, is assumed to be Gaussian

distributed. In the sequel, let µdB,i and σ2
dB,i denote the mean and the variance of

γ̄dB,i in dB, respectively, i.e., γ̄dB,i ∼ N (µdB,i, σ
2
dB,i). To combine Rayleigh fading with

log-normal shadowing, the PDF (4) is conditioned on γ̄i and then averaged over the

log-normal PDF of γ̄i [14].

In Fig. 2, some example PDFs pΓi
(γi) are shown for Rician fading as well as for

composite Rayleigh fading/ log-normal shadowing (γ̄i = 1 in all cases). The PDF for

σdB,i = 1 dB represents very light shadowing, i.e., pΓi
(γi) is virtually the same as for

pure Rayleigh fading ( pΓi
(γi)≈ exp(−γi) ). As can be seen in Fig. 2, when shadowing

is more severe (e.g. σdB,i = 10 dB), the probability of small instantaneous SNR values

increases significantly.

*** Fig. 2 about here ***

3 Error Performance of Distributed OSTBCs Under

Shadowing and Line-of-Sight Components

Consider again the system model according to (1). The employed OSTBC (in conjunc-

tion with an appropriate linear detector at the receiver side) transforms the system with

n transmit antennas and one receive antenna5 (in the sequel denoted as (n×1)-system)

into an equivalent single-antenna system of form [15]

z[k] =

(
n∑

i=1

|hi|2
)1/2

a[k] + w[k], (5)

where z[k] denotes the kth received sample at the output of the linear detector, a[k]

the kth information symbol before the OSTBC, and w[k] a sample of a complex AWGN

process with zero mean and variance σ2
n/2l per real dimension, i.e., w[k] ∼ CN (0, σ2

n/l).6

Altogether, the (n×1)-OSTBC system (with linear detector) is equivalent to a (1×n)-

5It is straightforward to generalise this concept to OSTBC systems with multiple receive antennas.

6The parameter l depends on the OSTBC under consideration [15]. For example, for Alamouti’s OSTBC [2] as well

as for the OSTBCs proposed in [3],[4] for three and four transmit antennas, l=1 results. For the half-rate OSTBCs

proposed in [3], we have l=2.
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system with maximum-ratio combining (MRC) at the receiver side and an average trans-

mit power of P/nRt (given equivalent fading statistics and a noise variance of σ2
n per

receive antenna). Taking the temporal rate of the OSTBC into account, the overall

average received SNR per information symbol a[k] is given by

γ̄′

ov =
n∑

i=1

γ̄′

i
4

=
γ̄ov

Rt
. (6)

The average received SNR per information bit is in the sequel denoted as

Eb

N0

4

=
γ̄′

ov

log2(M)
=

γ̄ov

Rt log2(M)
, (7)

where Eb denotes the average received energy per information bit.

Using the analytical framework presented in [14], the average symbol error probability

of the OSTBC-system with linear detector can be determined analytically by evaluating a

finite-range integral. (The instantaneous SNRs γ′

i of the individual transmission links are

statistically independent.) For example, in the case of an M -PSK signal constellation,

the average symbol error probability, P̄s, can be written as

P̄s =
1

π

∫ (M−1)π
M

0
f(φ) dφ . (8)

(For quadrature-amplitude-modulation (QAM) and amplitude-shift-keying (ASK) con-

stellations similar expressions can be found in [14]. For simplicity, we focus on M -PSK

constellations here.) This general equation holds for arbitrary fading statistics of the

individual transmission links. The function f(φ) is directly related to the PDFs of the

instantaneous SNRs γ′

i:

f(φ)
4

=
n∏

i=1

∫
∞

0
pΓ′

i
(γ′

i) exp

(

− gγ′

i

sin2(φ)

)

dγ′

i

︸ ︷︷ ︸

4
= fi(φ)

, (9)

where g
4

= sin2(π/M). Note that fi(φ) ≥ 0 for all φ. In many cases, closed-form ex-

pressions are known for the functions fi(φ) [14]. For example, for Rician fading we

have

fi(φ) =
ξi(φ)

ξi(φ) + gγ̄′

i

exp

(

− Kigγ̄′

i

ξi(φ) + gγ̄′

i

)

, (10)

where ξi(φ)
4

= (1+Ki) sin2(φ). (In the case of binary transmission (M =2) and pure

Rayleigh fading, there are even closed-form expressions for P̄s [16, Ch. 14].)
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In the sequel, numerical performance results are presented for distributed OSTBCs.

Specifically, the influence of line-of-sight components and shadowing on the symbol error

performance is analysed and compared to OSTBC systems with co-located transmitters.

3.1 Influence of Line-of-Sight Components

Consider a system with n distributed transmitters and a single receiver where all trans-

mission links are characterised by Rayleigh fading (Rice-factor Ki =0 for all indices i).

In the following, it will be seen that the average symbol error probability is already sig-

nificantly improved, if only a single link i′ contains a line-of-sight component (Ki′ >0).

This becomes evident when examining the corresponding function fi′(φ), cf. (9)-(10).

For Ki′ >0, the PDF pΓ′

i′
(γ′

i′) is less concentrated at small values of γ′

i′ than for Ki′ =0.

This can be seen in Fig. 2 for the example Ki′ =10 (light colour), while the case Ki′ =0

is in essence represented by the PDF for Rayleigh fading with σdB,i =1 (dashed-dotted

line, dark colour). To obtain the function fi′(φ), the PDF pΓ′

i′
(γ′

i′) is (for each value of

φ) multiplied with the term exp(−gγ′

i′/ sin2(φ)) and integrated over γ′

i′ , cf. (9). Since

for any value of φ the exponential term decreases with growing γ′

i′ , the area under the

function pΓ′

i′
(γ′

i′) exp(−gγ′

i′/ sin2(φ)) tends to be smaller when Ki′ is greater than zero.

Correspondingly, the functions fi′(φ) and f(φ) are smaller, i.e., the average symbol error

probability P̄s according to (8) is reduced.

*** Fig. 3 and Fig. 4 about here ***

This fact is illustrated in Fig. 3, where the function f(φ) is displayed for the example

of n = 4 transmitters, given different PSK constellations with cardinalities M = 2, 4, 8

(solid, dashed, and dashed-dotted curves, respectively). For simplicity, it has been

assumed that the average power Ωi is the same for all transmission links. (The case

of unequal average powers Ωi is considered in Section 3.3.) Two different cases are

depicted: (i) Rice factors Ki = 0 for all indices i (pure Rayleigh fading, dark curves);

(ii) Rice factors Ki′ = 10 and Ki = 0 for all indices i 6= i′ (light colour). As can be

seen, for all considered PSK constellations the area under the function f(φ) is reduced

significantly, when a single line-of-sight component with Ki′ = 10 is present (since the

graphs for Ki′ =10 are always significantly below the corresponding graphs for pure

Rayleigh fading).
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For the case of binary transmission, corresponding bit error rate (BER) results are

presented in Fig. 4 (also for the case that more than one link is characterised by a

Rice-factor of Ki =10). The exact analytical results for the average bit error probability

according to (8) and (9) are plotted versus Eb/N0 in dB. For the OSTBC a temporal

rate of Rt =3/4 was assumed, i.e., 10 log10(Eb/N0) dB=10 log10(Es/N0) dB + 1.25 dB.

In a system with co-located transmitters, one can assume that either all links si-

multaneously contain a line-of-sight component (dashed line, light colour) or none of

them (dashed line, dark colour). The line-of-sight probability is therefore (more or less)

the same as in a (1×1)-system, i.e., the use of multiple antennas does not yield any

advantage in this respect. In a system with distributed transmitters, however, there is

a comparably high probability that at least one link contains a line-of-sight component.

As can be seen, already a single link with a Rice factor of Ki =10 (dashed-dotted line,

dark colour) yields a gain of about 1.8 dB compared to the case of pure Rayleigh fading

(at a BER of 10−4).

3.2 Influence of Shadowing

In the sequel, we consider Rayleigh fading7 in conjunction with log-normal shadowing,

i.e., the average SNRs γ̄′

dB,i in dB are assumed to be Gaussian distributed with mean

µ′

dB,i =10 log10 γ̄′

i dB and variance σ2′

dB,i. Unfortunately, a closed-form expression for the

corresponding function fi(φ) is not known in this case [17], i.e., an analytical evaluation

of the average symbol error probability P̄s is difficult. Correspondingly, we resort to

numerical performance results obtained by Monte-Carlo simulations.

With regard to shadowing, the use of multiple co-located transmit antennas is again

not advantageous. Large-scale objects between transmitter and receiver will most likely

obstruct either all links simultaneously or none of them. Therefore, the probability of

shadowing is not significantly reduced compared to a (1×1)-system. In other words, the

average SNRs γ̄′

dB,i will be strongly correlated. In a system with distributed transmitters,

however, the average SNRs γ̄′

dB,i can be assumed statistically independent [18], which

yields huge (macroscopic) diversity gains.

This is illustrated in Fig. 5 for the example of n=4 transmitters, binary transmission,

7The results presented in the following apply, in principle, also for Nakagami-m fading [14] with fading parameter

m 6=1 (the case m=1 represents Rayleigh fading).
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and identical average channel powers Ωi and variances σ2′

dB,i for all links. In the case of

co-located transmitters, it was assumed for simplicity that the average SNRs γ̄′

dB,i are

fully correlated, i.e.

E{(γ̄′

dB,i − µ′

dB,i)(γ̄
′

dB,i′ − µ′

dB,i′)}/σ2′

dB,i = 1 (11)

for all indices i and i′. In the case of very light shadowing (σ′

dB,i =1 dB), the BER perfor-

mance with distributed transmitters is virtually the same as with co-located transmitters

(as expected). In both cases, significant (microscopic) diversity gains are obtained com-

pared to the (1×1)-system. (Since the shadowing effect is negligible, the composite fading

is virtually independent for the individual links, both for co-located and for distributed

transmitters.) Considering a more practical scenario (σ′

dB,i =10 dB), one first observes

that the performance of the (1×1)-system degrades significantly. The use of n = 4 co-

located transmit antennas yields only moderate performance improvements, i.e., a large

portion of the microscopic diversity gain obtained for σ′

dB,i = 1 dB is lost. As opposed

to this, in the case of distributed transmitters one again obtains huge diversity gains

compared to the (1×1)-system. These gains are not only due to macroscopic diversity,

but also to microscopic diversity accomplished by the distributed OSTBC. This becomes

evident, when comparing the BER performance to that of conventional simulcasting8

(dotted curve). As can be seen, conventional simulcasting performs about 1.5 dB worse

than the distributed OSTBC (at a BER of 10−3).

*** Fig. 5 about here ***

Another interesting observation is that for low SNR values the BER performance

of a distributed OSTBC system with significant shadowing (σ′

dB,i = 10 dB) is even

better than for very light shadowing (σ′

dB,i =1 dB), which is a rather unexpected result.

There is a cross-over point of the respective BER curves at 3.5 dB. (In the case n=1,

there is also a cross-over point at approximately -2.5 dB.) An intuitive explanation for

this is as follows: In the low SNR regime channel conditions are already bad, and a

further reduction of the SNR due to shadowing does not have much impact on the

BER performance. However, a large variance σ2′

dBi
of the average SNR γ̄′

dB,i leads to

8To be specific, an improved version of simulcasting is already considered here, where the phases of the individual

transmitted signals are adjusted such that constructive superposition is obtained at the receiver.
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some very good channel realisations, which is obviously beneficial for the average BER

performance. This cross-over behaviour can also be observed when considering the

corresponding functions fi(φ), cf. (9): In the case of moderate to high SNR values

(e.g. γ̄′

i = 1), the PDFs pΓ′

i
(γ′

i) are less concentrated at small values of γ′

i, when the

variance σ2′

dBi
is small (cf. Fig. 2). Correspondingly, the function f(φ) – and thus the

average bit error probability P̄b – is smaller than for large variances σ2′

dBi
. In the case

of low SNR values, however, the PDF pΓ′

i
(γ′

i) is already concentrated at very small

values γ′

i. Given a large variance σ2′

dBi
, the PDF pΓ′

i
(γ′

i) exhibits a tail that tends to

higher values of γ′

i (not depicted in Fig. 2). Due to this, the function f(φ) and thus the

average bit error probability P̄b becomes smaller with growing variance σ2′

dBi
.

3.3 Impact of Unequal Link Lengths

For the numerical results presented above, we have assumed that the average channel

power Ωi is the same for all transmission links. In a system with distributed transmitters,

however, the individual link lengths di will in general be different. Since the received

power scales with 1/d p
i , where 2 ≤ p ≤ 4 in practical scenarios [19, Ch. 1.2], already

small differences in the link lengths cause significant differences in the received powers.

This effect is in the sequel modelled by unequal average channel powers Ωi.

As an example, we revisit the BER results presented in Fig. 5 and consider the

case of unequal average channel powers Ωi ={3.08, 0.62, 0.15, 0.15}. The corresponding

BERs are displayed in Fig. 6. As can be seen, the BER performance of the distributed

system is significantly degraded due to the unequal average channel powers (cf. Fig. 5).

In the case of light shadowing (σ′

dB,i = 1 dB), where the achieved diversity gains are

mainly due to microscopic spatial diversity, the OSTBC system with co-located transmit

antennas thus clearly outperforms the distributed OSTBC system. However, in the

case of significant shadowing (σ′

dB,i = 10 dB) the situation is reversed: Due to huge

macroscopic diversity gains, the distributed OSTBC system still yields a much better

BER performance than the system with co-located transmit antennas. Moreover, the

advantage of the distributed OSTBC over conventional simulcasting is maintained.

*** Fig. 6 about here ***

If the individual transmitters are spaced very far apart, large differences can occur
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between the individual link lengths di. In this case, the assumption that the differences

between the corresponding propagation delays are small compared to the symbol dura-

tion might not be valid anymore. Therefore, if no timing-advance techniques are applied

at the transmitter side, intersymbol interference (ISI) effects can occur at the receiver.

Since OSTBCs were designed for channels without ISI, this can cause significant per-

formance degradations which compromise the achieved diversity gains. One option to

solve this problem is to employ an appropriate equaliser algorithm at the receiver, so

as to mitigate the impact of ISI. For example, a trellis-based equalisation/ detection

algorithm for Alamouti’s OSTBC was presented in [20]. Alternatively, the OSTBC may

be replaced by space-time coding techniques that are suitable for ISI channels, such as

the time-reversal STBC scheme in [21]. In both cases, the main results of Section 3.1

and 3.2 will still be valid.

4 Conclusions

In this paper, we have analysed the error performance of distributed space-time codes

in a mobile broadcasting system with multiple base stations. Due to the distributed

nature of the system, mobile users within the intersection of the individual coverage

areas are provided with a comparably high line-of-sight probability. Our analysis has

shown that already a single link with line of sight significantly improves the overall

error performance of the system. With regard to shadowing, it has been shown that

huge macroscopic and microscopic diversity gains can be obtained in a space-time coded

system with distributed transmitters. In a system with co-located transmitters, however,

the performance improvements compared to a single-antenna system are rather small,

when shadowing is taken into account. To conclude, mobile broadcasting systems with

distributed transmitters are typically superior to conventional multiple-antenna systems,

due to macroscopic diversity. Moreover, distributed space-time codes are superior to

conventional simulcasting, even in the case of severe shadowing and unequal signal-to-

noise ratios on the individual transmission links.
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Figure Captions

Fig. 1. Simulcast network consisting of multiple base stations.

Fig. 2. Some example PDFs for the instantaneous SNR γi. Light colour: Rician fading

with Rice-factor Ki =10 (γ̄i =1). The remaining PDFs are for composite Rayleigh fad-

ing / log-normal shadowing (µdB,i =0 dB, i.e. γ̄i =1). Dashed-dotted line: σdB,i =1 dB

(very light shadowing), dashed line: σdB,i =
√

10 dB, solid line: σdB,i =10 dB.

Fig. 3. Function f(φ) for the example n = 4 with (i) Rice-factors Ki = 0 for all i

and (ii) Rice-factors Ki′ = 10 and Ki = 0 for i 6= i′ (γ̄′

ov = 10 and γ̄′

i = γ̄′

ov/4 for all i).

Solid lines: 2-PSK modulation; dashed lines: 4-PSK modulation; dashed-dotted lines:

8-PSK modulation. The respective areas under the curves represent the average symbol

error probability P̄s.

Fig. 4. Analytical results for the BER performance of a distributed OSTBC sys-

tem with n = 4 transmitters and a single receiver (binary transmission, γ̄′

i = γ̄′

ov/4 for

all i): One or more links have a line-of-sight component with a Rice factor of Ki =10,

while the remaining links are characterised by Rayleigh fading (Ki =0).

Fig. 5. Comparison of the BER performance of a co-located and a distributed OSTBC

system with n=4 transmitters and a single receiver (binary transmission, equal average

SNRs γ̄′

i): Composite Rayleigh fading / log-normal shadowing with σdB,i = 1 dB (very

light shadowing) and σdB,i = 10 dB, respectively. The dotted curve is for conventional

simulcasting with co-phased received signals (σdB,i =10 dB).

Fig. 6. Comparison of the BER performance of a co-located and a distributed OSTBC

system with n = 4 transmitters and a single receiver (binary transmission, unequal av-

erage SNRs γ̄′

i): Composite Rayleigh fading / log-normal shadowing (σdB,i =1 dB and

σdB,i =10 dB), average channel powers Ωi ={3.08, 0.62, 0.15, 0.15} considered. The dot-

ted curve is for conventional simulcasting with co-phased received signals (σdB,i =10 dB).
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