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Abstract— Wireless communication systems with multiple an-
tennas, so-called multiple-input multiple-output (MIMO) systems,
offer huge advantages over conventional single-antenna systems –
both with regard to capacity and error performance. Typically,
quite restrictive assumptions are made in the literature concern-
ing the antenna spacings at transmitter and receiver: On the one
hand, one normally assumes that the individual antenna elements
are co-located, i.e., they are part of some antenna array. On the
other hand, it is often assumed that antenna spacings are suffi-
ciently large so as to justify the assumption of uncorrelated anten-
nas. From numerous publications it is known that spatially corre-
lated links lead to a loss in capacity and error performance. We
show that this is also the case when the transmit and/or the receive
antennas are spatially distributed on a larger scale. (Possible ap-
plications include simulcast networks, reach-back links for wire-
less sensors, as well as relay-assisted wireless networks.) Specifi-
cally, we show that any spatially correlated system that obeys the
so-called Kronecker-correlation model can be transformed into an
equivalent (with regard to the capacity distribution) spatially dis-
tributed system, and vice versa. Correspondingly, both types of
MIMO system can be treated in a single unified framework. We
also prove (asymptotic) equivalence with regard to the pairwise
error probability of space-time codes. Moreover, we consider a
simple performance measure originally proposed for spatially cor-
related systems and find the equivalent measure for distributed
systems. Finally, we discuss appropriate transmit power alloca-
tion schemes that are based on second-order channel statistics.

Index Terms— Wireless communications, MIMO systems, spa-
tial correlation, distributed antennas, virtual antenna arrays.

I. INTRODUCTION

W
IRELESS communication systems with multiple anten-

nas, so-called multiple-input multiple-output (MIMO)

systems, have gained much attention during the last decade,

because they offer huge advantages over conventional single-

antenna systems. On the one hand, it was shown in [1]-[3] that

the capacity of a MIMO system with M transmit (Tx) antennas

and N receive (Rx) antennas grows linearly with min{M,N}.

Correspondingly, multiple antennas provide a promising means

to increase the spectral efficiency of a system. On the other

hand, it was shown in [4]-[6] that multiple antennas can also be

utilized in order to provide a spatial diversity gain and thus to

improve the error performance of a system.
The results in [1]-[6] are based on quite restrictive assump-

tions with regard to the antenna spacings at transmitter and re-

ceiver: On the one hand, it is assumed that the individual an-

tenna elements are co-located, i.e., they are part of some an-

tenna array (cf. Fig. 1 (a)). On the other hand, the antenna spac-

ings are assumed to be sufficiently large so as to justify the as-

sumption of independent fading on the individual transmission

links. In [7]-[9], it was shown that spatial fading correlation,

caused by insufficient antenna spacings (cf. Fig. 1 (b)), can lead

to significant degradations in capacity and error performance.1

1Note that the notion of insufficient antenna spacings is relative, because spa-
tial correlation effects are not only governed by the geometry of the antenna
arrays, but also by the richness of scattering from the physical environment, the
angular power distribution of the transmitted/ received signal, and the employed
carrier frequency.

In this paper, we show that this is also the case when the in-

dividual transmit and/or receive antennas are distributed on a

larger scale (cf. Fig. 1 (c)).

In such distributed MIMO systems, multiple distributed

transmitting or receiving nodes cooperate in terms of a joint

transmission/ reception strategy and thus establish a virtual an-

tenna array. By this means, the cooperating nodes – possibly

equipped with just a single antenna – can enjoy some of the

benefits offered by conventional MIMO systems. Examples

of distributed MIMO systems include (i) simulcast networks

for broadcasting or paging applications [10], where distributed

transmitting nodes (e.g., multiple base stations) perform a joint

transmission scheme; (ii) reach-back links for wireless sensors,

where measured data of wireless sensors are collected by multi-

ple distributed receiving nodes (and are then processed in a joint

fashion); (iii) relay-assisted wireless networks [11],[12] where

multiple wireless relays forward messages of a certain source

node to a certain destination node (in a cooperative fashion).

At the first glance, MIMO systems with co-located anten-

nas and MIMO systems with distributed antennas have little in

common. However, we show that these two types of system can,

in fact, be treated in a single unified framework: For the case

of flat Rayleigh fading, we prove that any MIMO system with

co-located antennas, which follows the so-called Kronecker-

correlation model [7], can be transformed into an equivalent

(with regard to the capacity distribution) MIMO system with

distributed antennas, and vice versa. Moreover, with regard to

space-time coding we show that (asymptotically) both MIMO

systems lead to identical pairwise error probabilities (PEPs). Fi-

nally, we discuss the use of transmit power allocation schemes

that are based on statistical channel knowledge. Optimal trans-

mit power allocation strategies for spatially correlated MIMO

systems were, for example, proposed in [13]-[15]. Due to the

above equivalence, these schemes can be reused for distributed

MIMO systems, without any loss of optimality.

The equivalence proofs presented here are based on two uni-

tary matrix transforms: The first transform is related to the

well-known Karhunen-Loève transform (KLT) [16, Ch. 8.5],

which is often used in the literature in order to analyze cor-

related systems. The second transform was earlier established

in [17]. These transforms were already used in [17], in order

to prove that any spatially correlated MIMO system employing

an orthogonal space-time block code (OSTBC) can be trans-

formed into an equivalent (with regard to the average symbol

error probability) distributed OSTBC system, and vice versa.

The present paper therefore constitutes an extension of [17] to

arbitrary (coded) MIMO systems.

A. Paper Organization

The paper is organized as follows: In Section II, the system

and correlation model used throughout this paper is introduced.

In Section III, the capacity distribution of co-located and dis-

tributed MIMO systems is considered. The pairwise error prob-
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Fig. 1. MIMO systems with different antenna spacings. (a) Conventional MIMO system with co-located antennas and statistically independent links; (b) MIMO
system with co-located antennas and correlated links (insufficient antenna spacing at the transmitter side); (c) MIMO system with distributed transmit antennas.

ability of space-time codes resulting for both types of system is

considered in Section IV. In Section V, a simple performance

measure originally proposed for spatially correlated MIMO sys-

tems is discussed [18], and the equivalent measure for dis-

tributed systems is derived. Finally, the use of statistical trans-

mit power allocation schemes is discussed in Section VI. Con-

clusions are drawn in Section VII.

B. Mathematical Notation

Matrices and vectors are written in upper case and lower case

bold face, respectively. If not stated otherwise, all vectors are

column vectors. The complex conjugate of a complex num-

ber a is marked as a∗, and the Hermitian transposed of a ma-

trix A as AH. The (i, j)-th element of A is denoted as [A]i,j .

The trace of an (M×M)-matrix A, i.e., the sum over all di-

agonal elements, is denoted as tr(A). The rank and the de-

terminant of A is denoted as rank(A) and det(A), respec-

tively. The square-root A1/2 of a Hermitian matrix A (i.e.,

A=AH) is defined as A1/2 HA1/2 = A1/2A1/2 H = A. More-

over, ||A||F =
√

tr(AAH) denotes the Frobenius norm of A.

diag(a) is a diagonal matrix with diagonal elements given by

the vector a, and vec(A) is a vector which results from stacking

the columns of an (N×M)-matrix A in a joint vector. Finally,

E{.} denotes statistical expectation.

II. SYSTEM AND CORRELATION MODEL

Throughout this paper, the complex baseband notation is used.

We consider a point-to-point MIMO communication link with

M transmit and N receive antennas. The transmit and receive

antennas are either co-located or distributed and are assumed

to have fixed positions. The discrete-time channel model for

quasi-static frequency-flat fading is given by

y[k] = Hx[k] + n[k], (1)

where k denotes the discrete time index, y[k] the kth received

vector of size (N×1), H the (N×M )-channel matrix, x[k] the

kth transmitted vector of size (M×1), and n[k] the kth additive

noise vector. It is assumed that H, x[k] and n[k] are statis-

tically independent. The channel matrix H is assumed to be

constant over an entire data block of length Nb, and changes

randomly from one data block to the next. Correspondingly, we

will sometimes use the following block transmission model:

Y = HX + N, (2)

where Y := [y[0], ..., y[k], ..., y[Nb−1] ], (3)

X := [x[0], ..., x[k], ..., x[Nb−1] ], (4)

N := [n[0], ..., n[k], ..., n[Nb−1] ]. (5)

The entries hji of H (i = 1, ...,M , j = 1, ..., N ) are as-

sumed to be zero-mean (circularly symmetric) complex Gaus-

sian random variables with variance σ2
ji/2 per real dimension,

i.e. hji ∼ CN{0, σ2
ji} (Rayleigh fading). The instantaneous re-

alizations of the channel matrix H are assumed to be perfectly

known at the receiver. The covariance between two channel

coefficients hji and hj′i′ is denoted as

σij,i′j′ := E{hji h∗
j′i′} = σ∗

i′j′,ij (6)

and the corresponding spatial correlation as

ρij,i′j′ := σij,i′j′

/

√

σ2
ji σ2

j′i′ . (7)

(Note that |ρij,i′j′ | is always between zero and one.)

The entries xi[k] of the transmitted vector x[k] are treated

as zero-mean random variables with variance σ2
xi

. (Possibly,

they are correlated due to some underlying space-time code.)

We assume an overall transmit power constraint of P , i.e.,
∑

i σ2
xi
≤P . For the time being, we consider the case of equal

power allocation among the transmit antennas, i.e., σ2
xi

=P/M
for all i=1, ...,M . Finally, the entries of n[k] are assumed to be

zero-mean, spatially and temporally white complex Gaussian

random variables with variance σ2
n/2 per real dimension, i.e.,

nj [k] ∼ CN{0, σ2
n} and E

{

n[k]nH[k′]
}

= σ2
n · δ[k−k′] · IN .

A. MIMO System with Co-located Antennas

In the case of co-located antennas (both at the transmitter and

the receiver side), all links experience – on average – similar

propagation conditions. It is therefore reasonable to assume

that the variance of the channel coefficients hji is the same for

all transmission links. Correspondingly, we define σ2
ji :=σ2 for

all i = 1, ...,M and j = 1, ..., N . (A generalization to unequal

variances is, however, straightforward.) Moreover, we define

RTx :=E{HHH}/(Nσ2), RRx :=E{HHH}/(Mσ2), (8)

where RTx denotes the transmitter correlation matrix and RRx

the receiver correlation matrix (tr(RTx)=M , tr(RRx)=N ).

Throughout this paper, the so-called Kronecker-correlation

model [7] is employed. This means that (i) the transmit antenna

correlations ρij,i′j =:ρTx,ii′ (i, i′=1, ...,M ) do not depend on

the specific receive antenna j under consideration, (ii) the re-

ceive antenna correlations ρij,ij′ =:ρRx,jj′ (j, j′=1, ..., N ) do

not depend on the specific transmit antenna i under considera-

tion, and (iii) the spatial correlations ρij,i′j′ can be written as

the product ρij,i′j′ := ρTx,ii′ · ρRx,jj′ . Altogether, the overall



spatial correlation matrix R :=E{vec(H)vec(H)H}/σ2 of size

(MN×MN ) can be written as the Kronecker product

R = RTx ⊗ RRx, (9)

RTx := [ρTx,ii′ ]i,i′=1,...,M , RRx := [ρRx,jj′ ]j,j′=1,...,N . (10)

Moreover, the channel matrix H can be written as

H := R
1/2
Rx GR

1/2
Tx , (11)

where G denotes an (N×M )-matrix with independent and

identically distributed (i.i.d.) entries gji ∼ CN{0, σ2}, i.e.,

E{vec(G)vec(G)H}=σ2IMN . The square-roots of RTx, RRx

can be obtained via the corresponding eigenvalue decomposi-

tions (e.g., by means of the Jacobian algorithm [19, Ch. 8.4]):

R
1/2
Tx := UTx Λ

1/2
Tx UH

Tx, R
1/2
Rx := URx Λ

1/2
Rx UH

Rx, (12)

where ΛTx, ΛRx are diagonal matrices containing the (real-

valued) eigenvalues λTx,i and λRx,j of RTx and RRx, re-

spectively, and UTx, URx are unitary matrices containing the

corresponding eigenvectors (UTxU
H
Tx =IM , URxU

H
Rx =IN ).

Note that the eigenvalues λTx,i and λRx,j are always greater or

equal to zero [20, Ch. 1.5]. Since ΛTx and ΛRx are diagonal,

Λ
1/2
Tx and Λ

1/2
Rx are also diagonal and contain the (non-negative)

square-roots of the eigenvalues λTx,i and λRx,j , respectively.

B. MIMO System with Distributed Antennas

To start with, consider a MIMO system with distributed trans-

mit antennas and co-located receive antennas, as depicted in

Fig. 1 (c). The cooperating transmitting nodes may, for exam-

ple, be part of a simulcast network [10] that serves a certain

area around the receiving node. In this example, the receiving

node would represent a single user with a fixed position or a

subscriber home equipped with a fixed antenna array.2 Alterna-

tively, the cooperating transmitters may also be wireless relays

[11],[12], forwarding messages of a certain source node to a

certain destination node (in a cooperative fashion). In this ex-

ample, the receiving node would represent the destination node.
As a generalization to Fig. 1 (c), the individual transmitting

nodes may in the sequel be equipped with multiple antennas.

To this end, let T denote the number of transmitting nodes, Mt

the number of antennas employed at the tth transmitting node

(t = 1, ..., T ), and let M again denote the overall number of

transmit antennas, i.e.,
∑

t Mt =:M . As earlier, let N denote

the number of receive antennas used. For simplicity, we assume

that all transmit antennas are uncorrelated. (For antennas be-

longing to different transmitting nodes, this condition is surely

met.) A generalization to the case of correlated transmit anten-

nas is, however, straightforward.
Similar to Section II-A, it is again reasonable to assume that

all channel coefficients associated with the same transmitting

node t have the same variance σ2
t . Correspondingly, assuming

an appropriate ordering of the columns of H, we obtain

E{HHH}/N = diag([σ2
1 , ..., σ2

t , ..., σ2
T ]) =: ΣTx, (13)

where each variance σ2
t occurs Mt times. Following the Kron-

ecker-correlation model, we may thus write

H := R
1/2
Rx GΣ

1/2
Tx , (14)

2Simulcast networks are typically employed for broadcasting applications
(where many users are served simultaneously) or for paging applications (where
a single user with unknown position is served).

where G denotes an (N×M )-matrix with i.i.d. entries

gji ∼ CN{0, 1}. Typically, the variances σ2
t (and thus the aver-

age link SNRs) vary significantly between the individual trans-

mitting nodes, due to different link lengths and, possibly, due

to shadowing effects.3 (Note that the received power decays at

least with the square of the link length.)

Similarly, in a MIMO system with co-located transmit anten-

nas and distributed receive antennas, where R receiving nodes

(possibly equipped with multiple antennas) cooperate, we have

E{HHH}/M = diag([σ2
1 , ..., σ2

r , ..., σ2
R ]) =: ΣRx (15)

and H := Σ
1/2
Rx GR

1/2
Tx , (16)

where gji ∼ CN{0, 1} with E{vec(G)vec(G)H}= IMN . The

cooperating receivers may, for example, be part of a reach-back

network for wireless sensors, which serves a certain area around

the transmitting node. (In this example, the transmitting node

would represent a single wireless sensor broadcasting measure-

ments to the nodes within the reach-back network.)

C. Normalization

In order to treat systems with co-located antennas and systems

with distributed antennas in a single unified framework, we em-

ploy the following normalization in the sequel:

tr
(

E{vec(H)vec(H)H}
)

:= MN. (17)

For MIMO systems with co-located antennas this means we set

σ2 :=1, i.e., E{vec(H)vec(H)H} = R = RTx ⊗ RRx. For

MIMO systems with distributed transmit or receive antennas, it

means we set tr(ΣTx) :=M or tr(ΣRx) :=N , respectively.

III. EQUIVALENCE OF SPATIALLY CORRELATED MIMO

SYSTEMS AND DISTRIBUTED MIMO SYSTEMS

In the following, we will show that for any MIMO system with

co-located antennas, which follows the Kronecker-correlation

model (11), an equivalent MIMO system with distributed anten-

nas can be found, and vice versa, in the sense that both systems

are characterized by identical capacity distributions.

For the time being, we assume that no channel state informa-

tion is available at the transmitter. In this case, the capacity of

the MIMO system (1) is given by the well-known expression [2]

C(H) = log2 det

(

IN +
P

Mσ2
n

HHH

)

bit/channel use.

(18)

C(H) is in the following called instantaneous capacity, because

it is associated with a single realization of the random channel

matrix. Correspondingly, C(H) itself is a random variable with

probability density function (pdf) denoted as p(C(H)).

A. Capacity Distribution in the Case of Co-located Antennas

To start with, consider a MIMO system with co-located transmit

and receive antennas and an overall spatial covariance matrix

E{vec(H)vec(H)H}=RTx ⊗ RRx.

3As long as the transmitting nodes have fixed positions and a single receiv-
ing node is considered (also with a fixed position), no macroscopic diversity

is available. Shadowing effects are solely captured by the variances σ2
t

. The
benefits of macroscopic diversity would, for example, become apparent when
averaging over many possible positions of the receiving node.



Let
RA, RB :=

{

RTx, RRx if M <N
RRx, RTx else

, (19)

i.e., the matrix RA is always related to the side with less anten-

nas. Moreover, let

Nmin := min{M,N} and Nmax := max{M,N}. (20)

For simplicity, we assume that both matrices RA and RB have

full rank and distinct eigenvalues

0 < λA,1 < ... < λA,Nmin
and (21)

0 < λB,1 < ... < λB,Nmax
, (22)

respectively. Under these premises, the characteristic function

(cf) of the instantaneous capacity C(H),

cfC(jω) := E{ejωC(H)} (23)

(j=
√
−1, ω∈ IR), was evaluated in [21]. The result is of form

cfC(jω) =
K ϕ(jω)

ψ(RA,RB)
det

([

V(RB)
M(RA,RB, jω)

])

, (24)

which depends on the number of transmit and receive an-

tennas, the overall transmit power P , the noise variance σ2
n,

and the matrices RA and RB (see [21],[22] for further de-

tails).4 More specifically, the term ψ(RA,RB) as well as the

((Nmax−Nmin)×Nmax)-Vandermonde matrix V(RB) and the

(Nmin×Nmax)-matrix M(RA,RB, jω) depend solely on the

eigenvalues of RA and RB, but not on specific entries of RA

or RB. Moreover, the constant K and the term ϕ(jω) are

completely independent of RA and RB. Correspondingly, any

MIMO system having an overall spatial covariance matrix

E{vec(H)vec(H)H} = (UMRTxU
H
M ) ⊗ (UNRRxU

H
N )

=: R′
Tx ⊗ R′

Rx, (25)

where UM is an arbitrary unitary (M×M )-matrix and UN an

arbitrary unitary (N×N )-matrix, will exhibit exactly the same

characteristic function (24) of the instantaneous capacity C(H),
because the eigenvalues of R′

Tx and RTx and of R′
Rx and RRx

are identical. Specifically, we may choose UM :=UH
Tx and/or

UN :=UH
Rx, in order to find an equivalent (with respect to the

characteristic function cfC(jω)) MIMO system with distributed

transmit and/or distributed receive antennas:

UH
TxRTxUTx = ΛTx =: ΣTx (26)

UH
RxRRxURx = ΛRx =: ΣRx. (27)

The characteristic function cfC(jω) contains the complete in-

formation about the statistical properties of C(H). Specifically,

the pdf of C(H) can be calculated as5 [21]

p(C(H)) =
1

2π

∫ +∞

−∞

cfC(jω)e−jωC(H)dω. (28)

Based on the pdf p(C(H)), further statistical characteristics

of C(H) can be obtained, such as the cumulative distribu-

tion function (cdf) Pr{C(H)<C0}, the ergodic capacity C̄ =

E{C(H)}, or the p%-outage capacity Cp%
out, i.e., the capacity

value C0 for which the cdf yields p% [2].

4If the eigenvalues of RA or RB are not distinct, the characteristic function
of C(H) can be obtained as a limiting case of (24).

5The characteristic function of a random variable can be interpreted as the
Fourier transform of the corresponding pdf, evaluated at −jω. Therefore, the
pdf can be obtained from the characteristic function via the corresponding in-
verse transform.

B. Capacity Distribution in the Case of Distributed Antennas

Based on (26) and (27), for any spatially correlated MIMO sys-

tem an equivalent distributed MIMO system can be found. Vice

versa, given a MIMO system with distributed transmit and/or

distributed receive antennas, the diagonal elements of the ma-

trix ΣTx/ ΣRx may be interpreted as the eigenvalues of a corre-

sponding correlation matrix RTx/ RRx (provided that the nor-

malization according to Section II-C is applied).
In [17] it was shown that for any number of transmit/ receive

antennas, a unitary matrix ŨM / ŨN can be found such that the

transform
ŨMΣTxŨ

H
M =: RTx (29)

ŨNΣRxŨ
H
N =: RRx (30)

yields a correlation matrix RTx/ RRx with diagonal entries

equal to one and non-diagonal entries with magnitudes ≤1.

Suitable unitary matrices are, for example, the (n×n)-Fourier

matrix with entries ũij =ej2π(i−1)(j−1)/n/
√

n (i, j =1, ..., n),
which exists for any number n, or the normalized (n×n)-

Hadamard matrix, which is known to exist for all n=2ν , where

ν is an arbitrary positive integer number.

C. Two Simple Examples

Consider a system with two co-located transmit antennas and a

single receive antenna, and let

RTx =

[

1 ρ
ρ∗ 1

]

, ρ = |ρ|ejφ, (31)

where |ρ|≤1 and φ∈ [0, 2π). In this case, one obtains

UTx =
1√
2

[

ejφ −ejφ

1 1

]

, ΛTx =

[

1+|ρ| 0
0 1−|ρ|

]

. (32)

Thus, setting ΛTx =:ΣTx, we have found an equivalent sys-

tem with two distributed transmit antennas and a single re-

ceive antenna: Let D denote the distance between transmitter

and receiver in the co-located system. Assuming that the re-

ceived power scales with D−p, where p denotes the path-loss

exponent (typically, 2≤p≤4), we obtain D′
1 =D(1+|ρ|)−1/p

and D′
2 =D(1−|ρ|)−1/p for the distances in the equivalent dis-

tributed system. For example, for ρ=0.8, D=100 meters, and

p=2 we get D′
1≈74.5 meters and D′

2≈223.6 meters.
Next, consider a system with two distributed transmit anten-

nas and a single receive antenna, and let

ΣTx =

[

σ2
1 0
0 σ2

2

]

, σ2
1 , σ2

2 ∈ IR≥0. (33)

where σ2
1+σ2

2 =M =2. Using the (2×2)-Hadamard matrix

Ũ2 :=
1√
2

[

1 1
1 −1

]

(34)

we find an equivalent system with two co-located transmit an-

tennas, one receive antenna and a transmitter correlation matrix

RTx := Ũ2ΣTxŨ
H
2 =

[

1 1
2 (σ2

1−σ2
2)

1
2 (σ2

1−σ2
2) 1

]

. (35)

Let D1 and D2 denote the distances between the distributed

transmit antennas and the receive antenna. Then, the corre-

sponding distance D′ in the equivalent co-located system is

given by D′=D1 ·(σ2
1)−1/p =D2 ·(σ2

2)−1/p.



D. Numerical Results

In order to illustrate the findings of Section III-A and III-B,

some numerical results are presented in Fig. 2, for different

MIMO systems with four transmit and three receive anten-

nas. Displayed are the capacity distributions resulting for (i) a

conventional MIMO system with uncorrelated links, (ii) a co-

located MIMO system with correlated antennas, and (iii) the

corresponding equivalent distributed MIMO system. (More-

over, the associated ergodic capacities are marked by dotted

lines.) For the spatially correlated MIMO system, a single-

parameter (n×n)-correlation matrix

Rn,ρ :=

















1 ρ ρ4 · · · ρ(n−1)2

ρ 1 ρ · · · ρ(n−2)2

ρ4 ρ
...

...
...

. . .
...

ρ(n−1)2 ρ(n−2)2 · · · · · · 1

















(36)

(ρ∈ IR) was used for RTx and RRx, which was proposed in [23]

for uniform linear antenna arrays with n antenna elements. For

the transmitter side, the parameters n=M and ρTx =0.8 were

chosen, and for the receiver side the parameters n=N and

ρRx =0.7. The corresponding matrices ΣTx and ΣRx in the

equivalent distributed MIMO system are given by

ΣTx = diag([ 0.0198 0.2125 1.0459 2.7217 ]), (37)

ΣRx = diag([ 0.1228 0.7599 2.1173 ]). (38)

As can be seen in Fig. 2, the capacity distributions for the spa-

tially correlated MIMO system and the equivalent distributed

MIMO system are, in fact, identical. Compared to the con-

ventional MIMO system with uncorrelated links, the ergodic

capacity is significantly reduced (from 23.7 bit/channel use to

18.9 bit/channel use), and the width of the capacity distribution

is (slightly) increased.

IV. ASYMPTOTIC EQUIVALENCE CONCERNING THE

PAIRWISE ERROR PROBABILITY OF SPACE-TIME CODES

The results in Section III are very general and provide theo-

retical limits for coded MIMO systems with co-located or dis-

tributed antennas. In the following, we focus on space-time

coded MIMO systems with spatially correlated or distributed

antennas. Specifically, we will show that (asymptotically) spa-

tially correlated MIMO systems and distributed MIMO systems

lead to identical pairwise error probabilities (PEPs).
Consider the block transmission model (2). We assume that

a space-time encoder with memory length ν (e.g., a space-time

trellis encoder) is used at the transmitter side – possibly in a

distributed fashion. The space-time encoder maps a sequence

of (Nb−ν) information symbols (followed by ν known tailing

symbols) onto an (M×Nb) space-time transmission matrix X

(Nb >M ), which is referred to as code matrix in the sequel.

Assuming that the channel matrix H is perfectly known at the

receiver, the metric for maximum-likelihood sequence estima-

tion (MLSE) is given by [24]

µ(Y, X̃) :=
∣

∣

∣

∣Y − HX̃
∣

∣

∣

∣

2

F
, (39)

where X̃ denotes a hypothesis for the code matrix X. The PEP

P (X→E), i.e., the probability that the MLSE decoder decides
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Fig. 2. Capacity distributions for different MIMO systems with four transmit

and three receive antennas, at an SNR of 10 log10 P/(Mσ2
n) = 20 dB (ana-

lytical results according to (24) and (28); the results were validated by means

of Monte-Carlo simulations over 107 independent channel realizations).

in favor of an erroneous code matrix E 6=X, although the matrix

X was transmitted, is given by [25]

P (X→E) = Pr{µ(Y,E) ≤ µ(Y,X) } (40)

= E

{

Q

(
√

P

2Mσ2
n

∣

∣

∣

∣H (X−E)
∣

∣

∣

∣

F

)}

,

where Q(x) denotes the Gaussian Q-function. (The expectation

is taken over the channel matrix H.) The PEP can, for example,

be used to approximate the resulting bit error rate (BER) [24].

A. PEP in the Case of Co-located Antennas

Consider again a system with co-located antennas and spatial

covariance matrix E{vec(H)vec(H)H}=RTx ⊗ RRx. Let us

denote

ΨX,E := (X−E)(X−E)H. (41)

In the sequel, we assume that the employed space-time code

achieves a diversity order of MN (full spatial diversity). This

implies that the matrix ΨX,E has always full rank, i.e.,

rank(ΨX,E) = M (42)

for any pair of code matrices (X 6=E). In [25], it was shown

that the PEP (40) can be expressed in the form of a single finite-

range integral, according to

P (X→E) =
1

π

∫ π/2

0

M
∏

i=1

N
∏

j=1

[

1 +
P

4Mσ2
n

ξTx,iλRx,j

sin2θ

]−1

dθ,

(43)

where ξTx,1, ..., ξTx,M denote the eigenvalues of the matrix

ΨX,E RTx and λRx,1, ..., λRx,N the eigenvalues of RRx, as

earlier. Moreover, it was shown in [25] that the presence of

receive antenna correlation always degrades the PEP (for any

SNR value, particularly for high SNRs). As opposed to this,

the impact of transmit antenna correlation depends on the em-

ployed space-time code: In the low SNR regime, the presence

of transmit antenna correlation can improve the PEP, whereas

for large SNR values the PEP is always degraded.



B. PEP in the Case of Distributed Antennas

Based on the same arguments as in Section III, we can always

find a MIMO system with distributed receive antennas, which

leads to exactly the same PEP as the above co-located system:

Any MIMO system with overall spatial covariance matrix

E{vec(H)vec(H)H} = RTx ⊗ (UNRRxU
H
N ), (44)

with UN being an arbitrary unitary (N×N )-matrix, will lead

to the same PEP expression (43). In particular, we may again

choose UN :=UH
Rx, in order to obtain UH

RxRRxURx =:ΣRx.

As opposed to this, a MIMO system with distributed transmit

antennas and overall spatial covariance matrix

E{vec(H)vec(H)H} = ΣTx ⊗ RRx (45)

(ΣTx :=UH
TxRTxUTx) will normally not lead to the same PEP

expression (43), because the eigenvalues of ΨX,E RTx and

ΨX,E ΣTx are, in general, different. Still it can be seen that

asymptotically, i.e., for large SNR values, the PEP expressions

again become the same: In [26] it was shown that for large SNR

values (43) is well approximated by

P (X→E) ≤
(

P

4Mσ2
n

)−rTx rRx

× (46)

× det(ΨX,E RTx)
−rRx det(RRx)

−rTx ,

where rTx :=rank(RTx) and rRx :=rank(RRx). Assuming

that RTx has full rank (rTx :=M ), we have

det(ΨX,E RTx) = det(ΨX,E) det(RTx)

= det(ΨX,E) det(ΣTx) = det(ΨX,E ΣTx), (47)

i.e., the expression (46) does not change if RTx is replaced by

ΣTx. Similarly, given a MIMO system with distributed trans-

mit/ receive antennas, we can find an (asymptotically) equiva-

lent co-located MIMO system by evaluating (29), (30).

V. A SIMPLE PERFORMANCE MEASURE

Section III and IV have shown that co-located and distributed

MIMO systems are (asymptotically) equivalent with regard to

many important performance measures, such as the capacity

distribution (and thus the ergodic and outage capacity) and the

PEP of space-time codes. Apart form this, it was shown in [17]

that co-located and distributed MIMO systems are also equiva-

lent with regard to the average symbol error rate of OSTBCs.

The antenna correlation matrices RTx and RRx (or, equiv-

alently, the matrices ΣTx and ΣRx) do, however, not directly

reflect the associated system performance in terms of capac-

ity or error rate. Correspondingly, it is not immediately clear,

how two systems with different correlation matrices compare.

To this end, we consider a simple performance measure ∆(R)
between zero and one, which allows for a classification of dif-

ferent systems. The performance measure was earlier proposed

in [18] in order to categorize spatially correlated MIMO sys-

tems with regard to their ergodic capacity. Moreover, it was

already successfully used in [17] for categorizing spatially cor-

related and distributed OSTBC-systems with regard to their av-

erage symbol error rate.

Consider again a MIMO system with co-located antennas and

an overall spatial covariance matrix R = RTx ⊗ RRx. The

corresponding performance measure ∆(R) is defined as [18]

∆(R) =
1

√

MN(MN − 1)

√

√

√

√

√

√

MN
∑

i=1

MN
∑

j=1
j6=i

| [R]i,j |2 . (48)

Note that ∆(R) is always between zero and one, where zero

corresponds to the uncorrelated case (∆(IMN )=0) and one to

the fully correlated case, where | [R]i,j |=1 for all i, j. We may

reformulate (48) according to

∆(R) =
||R − IMN ||F

√

MN(MN − 1)
. (49)

Moreover, let the eigenvalue decomposition of R be given by

R := UMN ΛUH
MN , (50)

where UMNUH
MN = IMN . Since R is the Kronecker product

of RTx and RRx, the set {λi| i=1, ...,MN} of the eigenvalues

of R is given by all pairwise products λTx,iλRx,j of the eigen-

values of RTx and RRx [27, Ch. 12.2]. Utilizing the fact that

the Frobenius norm is invariant under a unitary matrix trans-

form, we have

||R − IMN ||F = ||Λ − IMN ||F, (51)

i.e., (49) may be reformulated as

∆(R) =

√

∑M
i=1

∑N
j=1(λTx,iλRx,j − 1)2

MN(MN − 1)
. (52)

Thus we have found a new expression for ∆(R) as a function

of the eigenvalues of RTx and RRx, which can directly be used

for MIMO systems with distributed transmit and/or receive an-

tennas (by replacing the eigenvalues λTx,i by the variances σ2
t

and/or the eigenvalues λRx,j by the variances σ2
r ).

VI. TRANSMIT POWER ALLOCATION SCHEMES BASED ON

STATISTICAL CHANNEL KNOWLEDGE

In several publications, it was shown that the performance of

MIMO systems may be improved significantly by using some

sort of channel knowledge at the transmitter, see e.g. [28]. The

use of (full or partial) instantaneous channel knowledge at the

transmitter was, for example, considered in [3],[29],[30]. How-

ever, accurate instantaneous channel knowledge at the transmit-

ter is costly and may be difficult to acquire [13].
As an alternative, the use of statistical channel knowledge at

the transmitter was studied in [13]-[15],[28]. Statistical chan-

nel knowledge can easily be gained in practical systems, for

example off-line through field measurements, ray-tracing simu-

lations or based on physical channel models, or on-line based on

long-term averaging of the channel coefficients [13]. Optimal

statistical transmit power allocation schemes for spatially cor-

related MIMO systems were, for example, derived in [13]-[15]

with regard to different optimization criteria: Minimum symbol

error probability [13], minimum PEP of space-time codes [14],

and maximum ergodic capacity [15]. Due to the (asymptotic)

equivalence of co-located and distributed MIMO systems, these

power allocation strategies can also be used in distributed sys-

tems, without any loss of optimality.
As an example, we will consider the ergodic capacity as the

performance measure of interest.



A. Maximizing Ergodic Capacity

Consider again a MIMO system with co-located antennas and

an overall spatial covariance matrix R = RTx ⊗ RRx. In or-

der to maximize the ergodic capacity, it was shown in [15] that

the optimal strategy is to transmit in the directions of the eigen-

vectors of the transmitter correlation matrix RTx. To this end,

the transmitted vector in (1) is pre-multiplied with the unitary

matrix UTx from the eigenvalue decomposition of RTx. More-

over, a diagonal weighting matrix

W1/2 := diag([
√

w1, ...,
√

wM ]), tr(W) := M, (53)

is used in order to perform the transmit power weighting along

the eigenvectors of RTx (see, for example, [31] for further de-

tails). Altogether, the transmitted vector can be expressed as

x[k] := UTxW
1/2x′[k], (54)

where σ2
x′

i

:=E{x′
i[k]x′∗

i [k]}=P/M for all i=1, ...,M . Under

these premises, the instantaneous capacity (18) becomes

C(H,Qx) = log2 det

(

IN +
1

σ2
n

HQxH
H

)

bit/channel use,

(55)

where Qx := E{x[k]xH[k]}= P/M · UTxWUH
Tx denotes the

covariance matrix of x[k].
Unfortunately, a closed-form solution for the optimal weight-

ing matrix Wopt, which maximizes the ergodic capacity

C̄(Qx) :=E{C(H,Qx)}, is not known. The optimal power

weighting results from solving the optimization problem [15]

maximize

g(W) := E

{

log2 det

(

IN +
M
∑

i=1

wiλTx,i ziz
H
i

σ2
n

)}

(56)

subject to tr(W) := M and wi ≥ 0 for all i ,

where the vectors zi are i.i.d. complex Gaussian random

vectors with zero mean and covariance matrix ΛRx, i.e.,

zi,j ∼ CN{0, λRx,j} for all i=1, ...,M . (Note that the opti-

mum power weighting depends both on the eigenvalues of RTx

and on the eigenvalues of RRx.) Based on the same arguments

as in Section III, the resulting transmit power weighting will

also be optimal for a distributed MIMO system with overall co-

variance matrix R=ΣTx⊗RRx or R=RTx⊗ΣRx with ΣTx,

ΣRx given by (26) and (27).
The expression (56) is, in general, difficult to evaluate. In the

following, we will therefore consider a tight upper bound on

C̄(Qx), which greatly simplifies the optimization of W. Since

the log-function is convex-∩, we may apply Jensen’s inequality

to the expression for C̄(Qx) [32], which yields

C̄(Qx) ≤ log2 E

{

det

(

IN +
1

σ2
n

HQxH
H

)}

. (57)

For the case Qx = P/M · IM , the right-hand side of (57) was

further evaluated in [32], based on the principal minor determi-

nants of RTx and RRx. In this context, the only constraint on

RTx and RRx is that they have to be positive definite Hermi-

tian matrices. Now, from Section III it is known that the pdf

of C(H) does not change, if RTx and RRx are replaced by the

corresponding eigenvalue matrices ΛTx and ΛRx (which are,
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Fig. 3. Ergodic capacity as a function of the SNR P/(Mσ2
n) in dB, for un-

correlated and correlated MIMO systems with four transmit and three receive
antennas. Solid lines: Simulative results obtained by means of Monte-Carlo

simulations over 105 independent channel realizations. Dashed lines: Corre-
sponding analytical upper bounds based on (58). The transmit power weights
for the red and the green curve were optimized numerically.

of course also positive definite Hermitian matrices). Moreover,

since the log-function is bijective, this will also hold for the pdf

of det(IN+P/(Mσ2
n)HHH), and in particular for the expected

value. Correspondingly, the principal minor determinants of

RTx and RRx occurring in [32] may be replaced by appropri-

ate products of eigenvalues. Finally, moving on to the case of

unequal power allocation, i.e., Qx = P/M · UTxWUH
Tx, we

may simply replace RTx by UTxWΛTxU
H
Tx (or, equivalently,

ΛTx by WΛTx), since the latter is still a positive definite Her-

mitian matrix. Altogether, one thus obtains

C̄(Qx) ≤ log2

(

1 +

Nmin
∑

m=1

(

P

Mσ2
n

)m

m! × (58)

×
∑

i∈Im

wi1λTx,i1 · · ·wim
λTx,im

∑

j∈Jm

λRx,j1 · · ·λRx,jm

)

,

where Im and Jm denote index sets defined as

Im := {i := [i1, ..., im] | 1≤ i1 <i2 < · · ·<im≤M} (59)

Jm := {j := [j1, ..., jm] | 1≤j1 <j2 < · · ·<jm≤N} (60)

(m∈ZZ, 1≤m≤Nmin). For a fixed SNR value P/(Mσ2
n), the

right-hand side of (58) may now be maximized numerically in

order to find the optimum power weighting matrix Wopt.

B. Numerical Results

As an example, we consider a co-located MIMO system with

four transmit and three receive antennas. As in Section III-D,

the correlation matrices RTx and RRx are assumed to be

of form (36) with correlation parameters ρTx :=0.8 and

ρRx :=0.7. Fig. 3 displays the ergodic capacity as a function of

the SNR P/(Mσ2
n) in dB that results for different MIMO sys-

tems. (Simulative results are represented by solid lines; the cor-

responding analytical upper bounds are represented by dashed

lines.) As can be seen, compared to the uncorrelated system

(blue curve) the ergodic capacity of the correlated system (equal



power allocation, black curve) is reduced significantly, espe-

cially for large SNR values. For the red and the green curve,

the transmit power weights w1, ..., wM were optimized numeri-

cally, based on (58). The green curve represents the case, where

both RTx and RRx is known at the transmitter side. For the red

curve, however, it was assumed that the transmitter knows only

RTx (i.e., the transmitter presumes RRx =IN .) As can be seen,

in both cases the ergodic capacity of the correlated system is

improved significantly, especially in the low SNR regime. (For

SNR values smaller than −2 dB, the achieved capacity is even

larger than in the uncorrelated case.) Interestingly, although the

upper bound (58) depends both on the eigenvalues of RTx and

RRx, the difference between the red and the green curve is neg-

ligible in the considered example, i.e., the knowledge of RRx

at the transmitter is of little benefit. Finally, it should be noted

that for P/(Mσ2
n) → 0 the optimal power weighting tends to

the (one-dimensional) beamforming solution, where the com-

plete transmit power is focussed on the largest eigenvalue of

RTx (see also [15]). For P/(Mσ2
n)→∞, however, one obtains

(in the considered example) an equal power allocation solution

over the Nmin =3 largest eigenvalues of RTx.

VII. CONCLUSIONS

This paper has shown that MIMO systems with co-located an-

tennas and MIMO-systems with distributed antennas can be

treated in a single unified framework. Specifically, it was shown

that for any MIMO system with correlated antennas an equiv-

alent MIMO system with distributed antennas can be found,

and vice versa, in the sense that both systems are character-

ized by identical capacity distributions. Moreover, with regard

to space-time coding is was shown that both systems offer the

same (asymptotic) pairwise error probability. Finally, the bene-

fits of statistical transmit power allocation schemes was demon-

strated. Due to the above equivalence, these schemes can be

used both for spatially correlated and for distributed MIMO sys-

tems, without any loss of optimality.
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