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Abstract— The application of distributed space-time coding
schemes in a simulcast network is considered, and a key challenge
is addressed which arises in the downlink: Since the local oscilla-
tors employed at the individual transmitting nodes may indepen-
dently differ from the nominal carrier frequency, frequency offsets
will occur between the individual transmission signals. The influ-
ence of these frequency offsets on the performance of a specific dis-
tributed space-time coding scheme is investigated, and both simu-
lative and analytical results are presented. Appropriate receiver-
sided counter measures are considered and possibilities are dis-
cussed to estimate the occurring frequency offsets at the receiver.

Index Terms—Wireless communications, cooperative networks,
distributed space-time coding techniques, frequency offsets.

I. I NTRODUCTION

I N WIRELESS communications, system performance is
often limited by fading, caused by non-constructive inter-

ference due to multipath signal propagation. Counter measures,
that exploit some sort ofdiversity, significantly improve perfor-
mance.

In this context, the application of multiple transmit (Tx)
and/or multiple receive (Rx) antennas has recently gained much
interest [1]. Utilizing the benefits ofspatialdiversity, multiple
antenna systems promise large gains over conventional (1x1)-
systems with only one Tx and one Rx antenna - especially in
rich scattering environments. Spatial diversity results from the
fact that the individual transmission paths from the Tx anten-
nas to the Rx antennas are likely to fade independently, i.e., the
probability that all paths are degraded at the same time is sig-
nificantly smaller than the probability that a single transmission
path is in a deep fade.

In a multiple antenna system, signal processing is not only
performed in the time domain, but also in the spatial domain,
i.e., across the individual Tx and Rx antennas.Space-time
codes (STCs)for multiple antenna systems, such as space-time
trellis codes (STTCs) (e.g. [2],[3]) and space-time block codes
(STBCs) (e.g. [4],[5]), yield an additional diversity and/or cod-
ing gain compared to the (1x1)-system. With STCs, multiple
antennas are only required at the transmitter, whereas multiple
Rx antennas are optional.

The concept of multiple antennas may be transferred toco-
operativewireless networks, in which multiple (single-antenna)
nodes cooperate in order to realize a joint transmission strat-
egy. Just as in a multiple-antenna system, the nodes may ex-
ploit spatial diversity by sharing their antennas in the context of
a distributedSTC scheme (‘cooperative diversity’). Examples
for cooperative wireless networks include simulcast networks
(e.g. [6],[7]) and relay-assisted networks (e.g. [8]-[10]).

Simulcast networks are, for example, employed for broad-
casting or for paging applications, i.e., either when many mo-
bile users shall be served simultaneously or when the position
of a single desired user is unknown. Conventionally, several
serving nodes simultaneously transmit the same signal using
the same carrier frequency. In cellular networks, simulcasting
may be used in areas that are served by multiple base stations
in order to reduce the probability of shadowing. However, con-
ventional simulcasting does not yield a diversity gain [6].

In a relay-assisted network, the transmitted signal of a certain
source node, e.g., a mobile station, is received by several relay
nodes, which then forward the signal to a certain destination
node. Relaying may either be performed by fixed stations or by
other mobile stations, as in [8]. Application examples include
cellular systems, sensor networks, and ad-hoc networks.

Distributed STC techniques are suitable both for simulcast
networks and for relay-assisted networks. In particular, arelay-
assisted network may be viewed as a special type of simulcast
network, if only a few transmission errors occur between the
source node and the relay nodes and if the individual relays
simultaneously transmit on the same carrier frequency.

Within the scope of this paper, the focus is on simulcast net-
works. A key challenge shall be addressed that arises in the
downlink: The local oscillators (LOs) employed at the individ-
ual transmitting nodes may independently differ from the nom-
inal carrier frequency� � , because a coupling between the LOs
cannot be presumed. Due to this, frequency offsets with respect
to � � will occur between the individual transmission signals.

The paper is organized as follows: Section II introduces the
topology of the simulcast network as well as the class of STC
schemes considered throughout this paper. Focus is on the well-
known Alamouti scheme for two Tx antennas [11],[12].

In Section III, it is shown that the orthogonality of the Alam-
outi scheme is lost in the presence of frequency offsets (see
also [13]), which causes severe performance degradations ifno
counter measures are applied. Three different receiver concepts
are considered and their performance is determined on the basis
of simulative and analytical results:
(i) Conventional Alamouti detection using the hermitian con-

jugate of the equivalent orthogonal channel matrix.
(ii) Zero-forcing detection using the inverse of the equivalent

orthogonal channel matrix.
(iii) Maximum-likelihood detection.
In this context, the following scenarios are addressed:
(a) The occurring frequency offsets are perfectly known at the

receiver.
(b) Non-perfect estimates of the frequency offsets are avail-

able at the receiver.
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Fig. 1. Simulcast network with� transmitting nodes and one receiving node.

(c) The frequency offsets are completely unknown at the re-
ceiver.

Concerning scenario (b), two possible frequency-offset es-
timation techniques are discussed in Section IV: A training-
based estimation method and a blind estimation method.
Specifically, it is illustrated that frequency-offset estimation in
cooperative wireless networks is more difficult than frequency-
offset estimation in systems with only a single transmitting
node. Concluding remarks are given in Section V.

II. SIMULCAST NETWORK TOPOLOGY AND CLASS OF
DISTRIBUTED SPACE-TIME CODING SCHEMES

An example for a simulcast network with� transmitting
nodes and one receiving node is given in Fig. 1. It is assumed
that all nodes employ a single antenna. If no shadowing oc-
curs, a diversity degree of� may be achieved by means of an
appropriate distributed STC scheme for� Tx antennas. For
instance, an orthogonal STBC [4],[5] may be employed. On
the one hand, orthogonal STBCs achieve full diversity in terms
of the number of transmitting nodes. On the other hand, they
have another property that is desirable for the applicationunder
consideration [9]: Ifany subset of�  � transmitting nodes
is completely obstructed due to shadowing, orthogonal STBCs
still grant a diversity degree of! � " � # . A drawback of these
STC schemes is, however, that for� $ % no orthogonal STBC
exists with a temporal rate of one [14]. For� & % , the well-
known Alamouti scheme [11], which also belongs to the class
of orthogonal STBCs, provides a temporal rate of one; there-
fore the focus shall be on this case here. Even if there are more
than two transmitting nodes available, it may still be useful to
employ the Alamouti scheme – in conjunction with aselection
diversityscheme [15] choosing those two nodes that are associ-
ated with the best transmission paths toward the receiving node,
e.g., in terms of signal-to-noise ratio (SNR).

In the following, it is assumed that the' -th transmitting node
( ( ) * ) of the simulcast network has a frequency offset+ , - * ,
and the receiving node (. ) ) has a frequency offset+ , / (cf.
Fig. 1). Then, the overall frequency offset associated with the
transmitted signal0 * ! 1 # is given by [13]+ , * & + , - * " + , / 2 (1)

Throughout the paper, the normalized frequency offset3 * 2& + , * 4 (2)

is of interest, where4 denotes the symbol duration. It is as-
sumed here that5 3 * 5 6 7 2 7 8 for all ' , which appears to be rele-
vant for most practical wireless communication systems.

III. I NFLUENCE OF THEFREQUENCY OFFSETS

In this section, the influence of the frequency offsets intro-
duced by the individual transmitting nodes shall be investigated
on the basis of a distributed Alamouti scheme (� & % ). To start
with, the Alamouti scheme is briefly reviewed. Throughout this
paper, the equivalent complex baseband representation is used.

A. Review of the Alamouti Scheme

The Alamouti scheme [11] was designed for quasi-static
frequency-flat fading channels. In the Alamouti scheme,9 -ary
data symbols are processed as pairs: ; : < = > ; : < ? @ = = and trans-
mitted over two antennas according toA : < = 2& B ; : < = " ; C : < ? @ =; : < ? @ = ; C : < = D E " ( F G H F I J H ) <E " ( F G H F I J H ) < ? @K KL I M H I I N @ L I M H I I N % (3)

where! 2 # C denotes complex conjugation1. The Alamouti matrixA : < = is orthogonal andA O : < = A : < = & P 5 ; : < = 5 Q ? 5 ; : < ? @ = 5 Q R S Q > (4)

where
A O : < = is the hermitian conjugate of

A : < = , and S Q is the
identity matrix of size (% T % ).

Given a quasi-static frequency-flat fading channel, each
transmission path from Tx antenna' ( ' & @ > % ) to the Rx an-
tenna can be modeled by means of a single complex-valued
channel coefficientU * , which is constant over the duration of an
entire data block. Taking into account the space-time mapping
according to the Alamouti matrix

A : < = , the received symbolsV : < = and V : < ? @ = are given by the following matrix equation [16,
Ch. 7.3.2]:B V : < =V C : < ? @ = DW X Y Z[ \ ] ^ & (5)

_ ` B U a " U QU CQ U Ca DW X Y Zb c d
B ; : < =; C : < ? @ = DW X Y Ze \ ] ^ ? B � : < =� C : < ? @ = DW X Y Zf \ ] ^ >

where _ $ 7 is a real-valued normalization factor2 and � : < = and� : < ? @ = denote samples of a complex additive white Gaussiang
In this paper, the transposed of the original matrix [11] is used.h
For a fair comparison with a (1x1)-system, the overall transmitted power

should be normalized with respect to the number of Tx antennasused, i.e.,i
should be chosen asi jk l m n o .



noise (AWGN) process with zero mean and variancep qr , taken
at time indexs and s t u , respectively. The equivalent (v w v )
channel matrixx y z is orthogonal, which is due to the orthog-
onality of the Alamouti matrix{ | s } . This property enables
maximum-ratio combining (MRC) at the receiver by means of
the following simple matrix multiplication, provided that the
channel coefficients are perfectly known:~ | s } �� x �y z � | s } � � x �y z x y z � | s } t x �y z � | s } � � � � � �x �y z x y z � � � � � � q t � � q � q �� � � ��� � � q �� � (6)

and ~ | s } �� | � | s } � � � | s t u } } � denotes the soft estimate of� | s } .
As can be seen, the orthogonality ofx y z leads to a decoupling
of � | s } and � | s t u } in terms ofindependentsoft estimates� | s }
and � | s t u } . Due to the diagonal structure of� , the desired
symbols are always combined in a constructive way, because
they are multiplied by a sum of absolute terms. The noise, how-
ever, is combined incoherently (matrixx �y z ), which leads to a
diversity gain over the (1x1)-system.

B. Orthogonality Loss Due to Frequency Offsets

The orthogonality of the Alamouti scheme is lost in the pres-
ence of frequency offsets� � ( � � u � v ) [13]. This will cause
more or less severe performance degradations, depending on
whether the receiver is able to exploit knowledge about the fre-
quency offsets.

In the following, it is assumed that the receiver has perfect
knowledge of the channel coefficients� � and � q at the begin-
ning of each data block, so as to isolate the effects of the fre-
quency offsets. Time-varying variables are in the sequel de-
noted by � � � . For the time being, a single data block shall be
considered.

Due to the frequency offsets, the channel coefficients are as-
sociated with a time-varying phase term, according to� � | s } �� � �   � ¡ q ¢ £ ¤ ¥ � � � u � v � (7)

This leads to a modified channel matrix, which is now time-
varying:

x y z | s } � ¦ � � | s } § � q | s }� �q | s t u } � �� | s t u } ¨ � (8)

Three different scenarios shall be considered here, regarding
knowledge of the frequency offsets� � at the receiver (further
details may be found in [13]):
(a) The frequency offsets areperfectlyknown. Then, the re-

ceiver may use the above matrixx y z | s } , in order to per-
form symbol detection according to (6). The product ma-
trix x �y z | s } x y z | s } �� � | s }
does not exactly yield a diagonal matrix, as opposed to the
matrix � in (6). However, this orthogonality loss tends to
be rather small for practical values of� � and � q , i.e., � | s }
is close to a diagonal matrix for alls .

(b) Non-perfectestimates©� � of the frequency offsets are avail-
able at the receiver, where©� � �� � � t ª � �
Then, the receiver may use the matrix

x y z « ¬ | s } � ­ � �   � ¡ q ¢ ®£ ¯ ¥ § � q   � ¡ q ¢ ®£ ° ¥� �q   � ± ¡ q ¢ ®£ ° ² ¥ ³ � ´ � ��   � ± ¡ q ¢ ®£ ¯ ² ¥ ³ � ´ µ
for symbol detection. Depending on the quality of the es-
timates ©� � , the orthogonality loss may be more or less se-
vere. The desired symbols are not necessarily combined in
a constructive way anymore, and the non-zero secondary
diagonal elements of the product matrixx �y z « ¬ | s } x y z | s } �� � ¬ | s }
may cause significant interference between the data sym-
bols � | s } and � | s t u } .

(c) The frequency offsets are completelyunknown. Then, the
receiver will still use matrixx y z for symbol detection.
Depending ons , the diagonal elements of the product ma-
trix x �y z x y z | s } �� ¶ | s }
can be close to zero whereas the secondary diagonal
elements can assume large values. This will cause severe
performance degradations.

In the following, two enhanced receiver concepts shall be dis-
cussed, namely zero-forcing (ZF) detection (e.g. [17]), and
maximum-likelihood (ML) detection, where the focus is on the
above scenarios (a) and (b).

C. Zero-Forcing (ZF) Detection

Instead of using the hermitian conjugate of the matrixx y z | s }
in the case of perfect knowledge of the frequency offsets, as
done in the conventional Alamouti detection scheme, thein-
versematrix x ± �y z | s } is used for symbol detection. This yields
the soft estimate~ · ¸ | s } �� x ± �y z | s } � | s } � � � | s } t x ± �y z | s } � | s } � (9)

The determinant ofx y z | s } is given by¹ � º � x y z | s } � � � � � � q � ± ¡ q ¢ £ ¯ t � � q � q � ± ¡ q ¢ £ ° � (10)

Since it is assumed that� � � � � � � q � » u , the condition ofx y z | s }
is virtually determined solely by the magnitude of the channel
coefficients. If the frequency offsets� � are zero, ZF detection
is equivalent to conventional Alamouti detection, wherex ± �y z | s } � u� x �y z | s } �
Eq. (9) may be rewritten by using the Moore-Penrose pseudoin-
verse [17] ofx y z | s } :x ³y z | s } �� ¼ x �y z | s } x y z | s } ½ ± � x �y z | s } �



Therefore, ZF detection may be interpreted as an add-on to con-
ventional Alamouti detection:¾ ¿ À Á Â Ã Ä Å ÆÇ È Á Â Ã É Á Â Ã Ä Ê Å ËÇ È Á Â Ã Å Ç È Á Â Ã Ì Í Î Å ËÇ È Á Â Ã É Á Â ÃÄ Ê Å ËÇ È Á Â Ã Å Ç È Á Â Ã Ì Í Î ¾ Á Â Ã Ï (11)

As can be seen in (9), ZF detection completely removes inter-
ference (see termÐ Ñ Á Â Ã ). However, it is well known that ZF
detection may also lead to noise enhancement, depending on
the condition ofÅ Ç È Á Â Ã . An improvement of ZF detection is
referred to as minimum-mean-square-error (MMSE) detection
(e.g. [17]), which is in this case given by¾ Ò Ò Ó Ô Á Â Ã Ä Ê Å ËÇ È Á Â Ã Å Ç È Á Â Ã Õ Ö ×Ø Ù × Ì Í Î Å ËÇ È Á Â Ã É Á Â Ã Ï (12)

MMSE detection yields the minimum overall distortion due to
residual interference and noise.

Simulation results (see Section III-G) show that the perfor-
mance of ZF detection is already virtually the same as that of
ML detection (see following section). Therefore, MMSE detec-
tion shall not be considered in the sequel.

Applying ZF detection in the case of non-perfect frequency-
offset estimates at the receiver means that, as opposed to (9),
the interference is not completely removed:¾ ¿ À Á Â Ã Ä Å Í ÎÇ È Ú Û Á Â Ã É Á Â Ã Ä Ð Ü ¿ À Ú Û Á Â Ã Ñ Á Â Ã Õ Å Í ÎÇ È Ú Û Á Â Ã Ý Á Â Ã
(cf. (5)), whereÜ ¿ À Ú Û Á Â Ã ÏÄ Å Í ÎÇ È Ú Û Á Â Ã Å Ç È Á Â Ã ÞÄ Ù × Ï
D. Maximum-Likelihood (ML) Detection

In the case of perfect knowledge of the frequency offsets at
the receiver, the ML estimate ofÑ Á Â Ã is given byßÑ Ò à Á Â Ã Ä á â ã ä å æçè é ê ë ìì É Á Â Ã í Ð Å Ç È Á Â Ã îÑ Á Â Ã ìì × ï

(13)

where îÑ Á Â Ã denotes a hypothesis for theð -ary data symbol vec-
tor Ñ Á Â Ã . For each ML estimate

ßÑ Ò à Á Â Ã , ð × different metrics
have to be computed, corresponding to theð × possible hy-
pothesesîÑ Á Â Ã . As opposed to conventional Alamouti detection
or ZF detection, ML detection yields hard estimates, which are
therefore denoted by a vector

ßÑ Ò à Á Â Ã rather than by a vector¾ Ò à Á Â Ã . If the frequency offsetsñ ò are zero, the ML estimateßÑ Ò à Á Â Ã is equivalent to a hard decision on the corresponding
soft estimate obtained by conventional Alamouti detection or
ZF detection. Given non-perfect frequency-offset estimates, the
matrix Å Ç È Ú Û Á Â Ã is used to calculate the metric (13) instead ofÅ Ç È Á Â Ã , which leads to a systematic error.

E. Receiver Complexities

The receiver complexities for conventional Alamouti detec-
tion and for ZF detection do not depend on the cardinalityð
of the symbol alphabet. For conventional Alamouti detection,

about 20 floating point operations (flops) are required for each
soft estimate¾ Á Â Ã , and for ZF detection about 30 flops (includ-
ing matrix inversion). In contrast to this, the number of flops
required for an ML estimate

ßÑ Ò à Á Â Ã grows with ð × . The ap-
proximate receiver complexities resulting for different values ofð are stated in Table I. As can be seen, the complexity of ML
detection is well above the one for conventional Alamouti de-
tection or ZF detection, already forð Ä ó . In the following,
ML detection shall be used as a benchmark concerning system
performance. For a practical implementation, however, it seems
to be less attractive, due to the good results obtained with ZF
detection (cf. Section III-G).

TABLE I
RECEIVER COMPLEXITIES PER ESTIMATE FOR DIFFERENT

CARDINALITIES OF THE SYMBOL ALPHABET

Cardinality ô Example Conv. Alamouti ZF ML
2 BPSK 20 30 110
4 QPSK 20 30 430
8 8-PSK 20 30 1700
16 16-QAM 20 30 7000
64 64-QAM 20 30 110000

F. Bit Error Probability in Case of Non-Ideal Local Oscillators

In [13], analytical expressions for the bit error probability
(BEP) are derived, for the example of QPSK (ð Ä ó ) and a
quasi-static frequency-flat fading channel. These BEP expres-
sions apply for conventional Alamouti detection as well as for
ZF detection.

Let õ Î ê and õ × ê denote the first and the second bit mapped on
the quaternary data symbolö Á Â Ã , Á õ Î ê õ × ê Ã ÷ø ö Á Â Ã , and let ù Á Â Ã
denote the corresponding soft estimate, either obtained bycon-
ventional Alamouti detection or by ZF detection. Gray mapping
of the bits is assumed according toÁ ú ú Ã ÷ø û ü ý Á þ ÿ � ó Ã Á ú � Ã ÷ø û ü ý Á þ � ÿ � ó ÃÁ � � Ã ÷ø û ü ý Á þ � ÿ � ó Ã Á � ú Ã ÷ø û ü ý Á þ � ÿ � ó Ã Ï
Let � � Ç Á Â Ã ÏÄ � û � ù Á Â Ã 	 and � 
 � Á Â Ã ÏÄ � ä � ù Á Â Ã 	 denote the real
and the imaginary part ofù Á Â Ã for 
 � � � � ø � , respectively
( 
 � denotes the average energy per data symbol and� � the
single-sided noise spectral density). Since� 
 � Á Â Ã is the distance
betweenù Á Â Ã and the decision threshold for bitõ Î ê , the BEP forõ Î ê is given by [18, Ch. 5.2]� � Î Á Â Ã Ä � �� � � � ×
 � Á Â Ã� 
 �� � �� ï

(14)

if the imaginary parts ofö Á Â Ã and ù Á Â Ã have equal signs, other-
wise by � � Î Á Â Ã Ä �� �� � � � ×
 � Á Â Ã� 
 �� � �� ï

(15)

where �� � � � ÏÄ � í � � � � . Along the same lines, the bit er-
ror probability

� � × Á Â Ã for the second bit may be calculated,
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Fig. 2. Performance results for conventional Alamouti detection, given
(a) ideal local oscillators (LOs), (b) non-ideal LOs, frequency offsets com-
pletely unknown at the receiver, and (c) perfect knowledge of the frequency
offsets.

using  !" # $ % & . Analytical expressions for the distances " # $ % &
and  ' ( $ % & as a function of the channel coefficients and the fre-
quency offsets are developed in [13]. It is straightforwardto
extend this to the case of ZF detection.

The expectation of the bit error probability) * + $ % & ( , - . / 0 )
with respect to the channel coefficients is given by1) * + $ % & - 2 3 4 5 6 7 ) * + $ % & 8 6 / (16)

where3 4 5 6 7 denotes the joint pdf of the channel coefficients.
The integral is over all possible realizations of6 .The overall av-
erage bit error probability, given blocks of9 : QPSK symbols,
results as 1) * - .0 9 : ; < = >?@ A B 1) * > $ % & C 1) * ! $ % & D (17)

G. Simulation Results

For perfect and for non-perfect knowledge of the frequency
offsets at the receiver, the performance loss shall be illustrated
in the following, which results for the distributed Alamouti
scheme, given the different receiver concepts discussed earlier.

For the simulations, it was assumed that there is a signif-
icant line-of-sight signal component between either transmit-
ting node and the receiving node. In this context, a quasi-static
frequency-flat Rician fading channel model with a Rice factor
of E - F 8 G was used for both transmission paths. The simu-
lation results were obtained by means of Monte-Carlo simula-
tions. Each block contained9 : - . F F QPSK symbols (H - I ,
Gray mapping used). Channel coding has not been applied. An
outer channel code may, however, be added to further improve
performance.

To start with, frequency offsetsJ > - C F D F K and J ! - L F D F . 0
were considered. At the receiver, the channel coefficients were
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Fig. 3. Comparison between conventional Alamouti detection (dashed lines)
and ML detection (dotted lines) for the case of non-perfect estimates of the
frequency offsets at the receiver. The performance of ZF detection is virtually
the same as that of ML detection in all cases.

perfectly known at the beginning of each block, i.e., the ob-
served performance degradations are solely due to the time-
varying phases caused by the frequency offsets. The transmit
power was always normalized with respect to the number of
transmitting nodes, in order to provide a fair comparison be-
tween the distributed Alamouti scheme and the case when there
is only a single transmitting node (‘(1x1)-system’).

Fig. 2 presents performance results for conventional Alam-
outi detection, in terms of bit error rate (BER) vs.M N O P B in dB.
Moreover, analytical curves (dotted lines) are included [18,
Ch. 14.4] fordiversity receptionof uncoded QPSK overQ sta-
tistically independent Rayleigh fading channels (Q - . / 0 ) with
identical average signal-to-noise ratios (SNRs) of5 M N O P B 7 O Q .
As can be seen, the BER performance of the (1x1)-system is
slightly better than the analytical curve forQ - . , which is due to
the line-of-sight signal component. Likewise, given ideal LOs
(i.e., frequency offsets equal to zero), the BER performance of
the Alamouti scheme is slightly better than the analytical curve
for Q - 0 . The dashed lines represent the two extreme cases of
unknown and perfectly known frequency offsets at the receiver.
The corresponding analytical curves obtained on the basis of
Section III-F are as well included. The average bit error prob-
ability according to (16) and (17) was computed by averaging
over . F D F F F realizations of the channel coefficients. As can be
seen, simulative and analytical curves are in good accordance.
For perfect knowledge of the frequency offsets at the receiver,
the BER performance is very close to the case of ideal LOs,
since the loss of orthogonality is rather small (cf. SectionIII-
B). When the frequency offsets are unknown, however, a huge
average BER of aboutF D R results for all values ofM N O P B .

A comparison between conventional Alamouti detection
(dashed lines) and ML detection (dotted lines) is presentedin
Fig. 3, for the case of non-perfect estimates of the frequency
offsets at the receiver. The performance of ZF detection is vir-
tually the same as that of ML detection in all cases. Therefore,
the simulation results for ZF detection are omitted in the plot.
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As can be seen, a performance loss of less than 1 dB occurs at
a BER of c d e f , with respect to the case of ideal LOs, if one
frequency offset is perfectly known and the other one is esti-
mated with an error of 5% or better. ML/ZF detection yields
only small improvements over conventional Alamouti detec-
tion. However, as will be shown in Section IV, it is more re-
alistic to assume that a certain estimation error occurs forboth
frequency offsets. In this case, the performance loss is more se-
vere. Only if both frequency offsets are estimated with an error
of 3% or better, the system performance is superior to that of
the (1x1)-system. In this case, ML/ZF detection yields ac g h dB
gain over conventional Alamouti detection, at a BER ofc d e f .

So far, only a single pairi j , i k of frequency offsets has been
considered. Fig. 4 shows simulation results for the BER per-
formance in the case of ML detection, given frequency off-
sets l i j l m l i k l n d g d o ( p q r s t u c d dB). The case of perfectly
known frequency offsets at the receiver is displayed as well as
the case, where both frequency offsets are estimated with an
error of +3%. As a reference, the BER of the (1x1)-system is
also included. As can be seen, for large frequency offsets the
diversity gain over the (1x1)-system is lost.

Within the scope of this paper, only receiver-sided concepts
to compensate for the frequency offsets have been discussed.
Alternatively, a closed-loop scheme may be employed, where
the receiving node feeds back the frequency-offset estimates to
the transmitting nodes via a dedicated channel. The frequency
offsets may then be corrected directly at the transmitters.In
this case, significantly less accurate frequency-offset estimates
are required. For example, given a frequency offset ofi u d g d o
and an estimation error of 3%, the frequency offset may theo-
retically be reduced tol i v l u d g d d c w , which virtually leads to
the same BER performance as in the case of ideal LOs.

IV. FREQUENCY-OFFSETESTIMATION

In this section, a training-based and a blind frequency-offset
estimation technique are investigated. Specifically, it isillus-
trated that frequency-offset estimation in cooperative wireless

networks is more difficult than in systems with a single trans-
mitting node.

A. Training-Based Estimation Method

If the frequency offsets are zero, (5) may be rewritten asx v y z { u | } y z { ~ � � v y z { m (18)

where x v y z { gu y � y z { m � y z � c { { � m� v y z { gu y � y z { m � y z � c { { � m~ gu y � j m � k { � m
and } y z { according to (3). Obtaining an estimate for~ , given
known training symbols, is dual to obtaining an estimate for� y z { , given known channel coefficients (cf. (6)):�~ y z { gu | } � y z { x v y z { u ~ � | } � y z { � v y z { m (19)

assuming| u c r � w and l � y g { l k u c (cf. (4)).
In the case of non-zero frequency offsets, however, (18) holds

only approximately:x v y z { � | } y z { ~ y z { � � v y z { m (20)

where ~ y z { gu y � j y z { m � k y z � c { { � m
(cf. (7)). The error vector� y z { gu x v y z { � � | } y z { ~ y z { � � v y z { �
is given by� y z { u | � � k � � y z � c { � � � k � � � � � � � k � � � � � � j � �� j � y z � c { � � � k � � � � � � � k � � � � � � j � � � g (21)

Therefore, the corresponding estimate for~ y z { ,�~ y z { u ~ y z { � | } � y z { � � v y z { � � y z { � m (22)
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is erroneous even if the noise is zero. This fact is illustrated in
Fig. 5, where the first channel coefficient± ² ³ ´ µ and the corre-

sponding estimate¶± ² ³ ´ µ is depicted within the complex plane,
for · ¸ ¹ º » ¼ ½ and different values of´ . The frequency off-
sets were again chosen as¾ ² ¿ À Á Â Á Ã and ¾ Ä ¿ Å Á Â Á Æ Ç . The
magnitude of± ² ³ ´ µ was set to one and all training symbolsÈ ³ Â µ
were À Æ .

In the sequel, explicit estimates for the frequency offsets¾ ²
and ¾ Ä shall be calculated. Typically, frequency offsets may be
considered time-invariant. Therefore, it is sufficient to perform
a one-shot estimation using a single block ofÉ Ê training sym-
bols (É Ê even). Essentially, estimates for the frequency offsets
may be obtained on basis of several subsequent estimated vec-

tors ËÌ ³ ´ µ by averaging over the associated phase differences:¶¾ ² Í É Ê Î ¿ ÆÏ Ð Ñ Ò Ó Ô Õ ÄÖ× Ø Ä× Ù Ú Ù Û Ü Ý Þ ß ¶± ² ³ ´ µ¶± ² ³ ´ Å Ç µ à á¶¾ Ä Í É Ê Î ¿ ÆÏ Ð Ñ Ò Ó Ô Õ ²Ö× Ø â× ã ä ä Ü Ý Þ ß ¶± Ä ³ ´ µ¶± Ä ³ ´ Å Ç µ à á
where

Ò Â¿ É Ê ¹ Ç Å Æ . In Fig. 6 and Fig. 7, examples are given
for the relative estimation errorså æ Í É Ê Î Â¿ ¶¾ æ Í É Ê Î Å ¾ æ¾ æ á ç ¿ Æ á Ç
as a function ofÉ Ê , for · ¸ ¹ º » ¼ ½ and · ¸ ¹ º » ¿ Ç Á dB,
respectively (frequency offsets¾ ² and ¾ Ä as above, magnitudes
of ± ² ³ ´ µ and ± Ä ³ ´ µ set to one, all training symbolsÀ Æ ).

As can be seen,É Ê è é Á training symbols are required in
the case· ¸ ¹ º » ¼ ½ , in order to estimate both frequency off-
sets with an error of 3% or better (dotted lines). In the case of
finite · ¸ ¹ º » , the required number of training symbols might
be greater, depending on the current realizations of the noise
samples.
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B. Blind Estimation Method
In the case of QPSK symbolsÈ ³ ´ µ ñ ò À Æ á À Ï á Å Æ á Å Ï ó

, a
common blind frequency-offset estimation method is to raise
the received symbolsô ³ ´ µ to the power of four and subsequently
perform a fast Fourier transform (FFT) [19, Ch. 6.3.1]. Givena
(1x1)-system,ô õ ³ ´ µ yieldsô õ ³ ´ µ Â¿ ö ± ³ ´ µ È ³ ´ µ À ÷ ³ ´ µ ø õ¿ ± õ ³ ´ µ È õ ³ ´ µ À ù ³ ´ µ á (23)

where ù ³ ´ µ consists of five additive terms that are regarded as
noise in the following. Irrespective of the current realization ofÈ ³ ´ µ , the desired term± õ ³ ´ µ È õ ³ ´ µ results as± õ ³ ´ µ È õ ³ ´ µ ¿ ö ± ú û Ä ü ý × ø õ È õ ³ ´ µ ¿ ± õ ú û Ä ü õ ý × Â (24)

Therefore, an FFT of the sequenceò ô õ ³ ´ µ ó × Ø » þ ÿ ÿ ÿ þ Ó � Õ ² will
yield a spectral line at

Ð ¾ plus noise. If the noise power is suf-
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Fig. 8. Blind frequency-offset estimation method for the Alamouti scheme:
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ficiently small, the spectral line may be detected by means of
a simple maximum search over the absolute values of the FFT
output.

The same strategy may, in principle, as well be pursued in
the case of the distributed Alamouti scheme. One obtains


 � � 
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � 
 � � (25)

where �� � 
 � consists of altogether 20 additive noise terms.
Simulations conducted for a quasi-static Rician fading chan-

nel with Rice factor� �  ! " and # $ % & ' � (  dB have shown
that in the case of the (1x1)-system, detection of the frequency
offset ) is typically possible on basis of just a single data block.
Generally, the resulting FFT values should be averaged over
few data blocks, in order to reduce the influence of the noise
and thus to guarantee reliable detection. As opposed to this,
in the case of the Alamouti scheme one needs to average over
a comparably large number of data blocks, so as to enable a
reliable detection of the frequency offsets) �

and ) � .
Fig. 8 illustrates the above blind estimation method for the

Alamouti scheme. As an example, absolute FFT values are
shown that were obtained by averaging over 20 data blocks
( � �  ! " , # $ % & ' � (  dB). The block length was chosen
as * + � , ( - and the length of the FFT was 4096. As earlier, the
frequency offsets were set to) � � �  .  / and ) � � 0  .  , ( (the
chosen FFT length enables distinction of two points that differ
by  . 1 % of ) � ). As can be seen, the spectral lines at2 ) �

and, � 2 ) � (due to the negative sign of) � ) are clearly visible and
may be detected by means of a simple maximum search.

V. CONCLUSIONS

In this paper, it has been shown that the performance of a
distributed Alamouti scheme in a simulcast network can be
significantly degraded by frequency offsets that may occur at
the individual transmitting nodes. Different receiver concepts
have been considered, and their sensitivity to the quality of the
frequency-offset estimates has been illustrated. It turned out

that the frequency-offset estimates are required to be quite ac-
curate, in order to keep the resulting orthogonality loss small
and thus the occurring performance loss. Finally, two differ-
ent methods have been discussed to estimate the frequency off-
sets. It has been demonstrated, that frequency-offset estimation
is more difficult than in the case when there is only a single
transmitting node.

ACKNOWLEDGMENT

The authors would like to thank Ralf Seeger, Ronald Böhnke,
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of Communications Engineering, University of Bremen), and
Dr. Jörg Kliewer (Institute for Circuits and System Theory, Uni-
versity of Kiel) for fruitful discussions and helpful suggestions.

REFERENCES
[1] D. Gesbert, M. Shafi , D. Shiu, P. J. Smith, and A. Naguib, “From theory

to practice: An overview of MIMO space-time coded wireless systems,”
IEEE J. Select. Areas Commun., vol. 21, no. 3, pp. 281-302, Apr. 2003.

[2] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for
high data rate wireless communication: Performance criterion and code
construction,”IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744-765,
Mar. 1998.

[3] V. Tarokh, A. Naguib, N. Seshadri, and A. R. Calderbank, “Space-time
codes for high data rate wireless communication: Performance criteria in
the presence of channel estimation errors, mobility, and multiple paths,”
IEEE Trans. Commun., vol. 47, no. 2, pp. 199-207, Feb. 1999.

[4] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block cod-
ing for wireless communications: Performance results,”IEEE J. Select.
Areas Commun., vol. 17, no. 3, pp. 451-460, Mar. 1999.

[5] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes
from orthogonal designs,”IEEE Trans. Inform. Theory, vol. 45, no. 5,
pp. 1456-1467, June 1999.

[6] A. Wittneben, “Basestation modulation diversity for digital SIMUL-
CAST,” in Proc. IEEE Veh. Technol. Conf. (VTC’91), 1991, pp. 848-853.

[7] D. Kim, G. L. St über, and N. Hightower, “Performance of simulcast sys-
tems in mobile radio environments,” inProc. IEEE Veh. Technol. Conf.
(VTC’97), 1997, pp. 495-499.

[8] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity –
Part I and II,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927-1948,
Nov. 2003.

[9] J. N. Laneman and G. W. Wornell, “Distributed space-time-coded pro-
tocols for exploiting cooperative diversity in wireless networks,” IEEE
Trans. Inform. Theory, vol. 49, no. 10, pp. 2415-2425, Oct. 2003.

[10] P. A. Anghel, G. Leus, and M. Kaveh, “Distributed space-time coding in
cooperative networks,” inProc. V IEEE Nordic Signal Processing Sym-
posium (NORSIG–2002), 2002, paper no. SunAmOR2–2.

[11] S. M. Alamouti, “A simple transmit diversity technique for wireless com-
munications,”IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451-
1458, Oct. 1998.

[12] J. Mietzner, M. Kautza, and P. A. Hoeher, “Application of theAlamouti
scheme in resilient microwave radio links,”IEE Electron. Lett., vol. 39,
no. 12, pp. 927-928, June 2003.

[13] J. Mietzner, J. Eick, and P. A. Hoeher, “Frequency-offsetsensitivity of
resilient microwave links applying the Alamouti scheme,” inProc. 5th
Int. ITG Conf. on Source and Channel Coding (SCC), 2004, pp. 165-172.

[14] X.-B. Liang and X.-G. Xia, “On the nonexistence of rate-one general-
ized complex orthogonal designs,”IEEE Trans. Inform. Theory, vol. 49,
no. 11, pp. 2984-2989, Nov. 2003.

[15] Z. Chen, J. Yuan, B. Vucetic, and Z. Zhou, “Performance of Alamouti
scheme with transmit antenna selection,”IEE Electron. Lett., vol. 39,
no. 23, pp. 1666-1668, Nov. 2003.

[16] G. Bauch, “Turbo-Entzerrung” und Sendeantennen-Diversity mit
“Space-Time-Codes” im Mobilfunk.PhD thesis, Department of Commu-
nications Engineering, Munich University of Technology, 2001. (in Ger-
man).

[17] E. Biglieri, G. Taricco, and A. Tulino, , “Performance of space-time codes
for a large number of antennas,”IEEE Trans. Inform. Theory, vol. 48,
no. 7, pp. 1794-1803, Jul. 2002.

[18] J. G. Proakis,Digital Communications.4th ed., New York: McGraw-Hill,
2001.

[19] R. D. Gitlin, J. F. Hayes, and S.B. Weinstein,Data Communications Prin-
ciples.New York: Plenum Press, 1992.


