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Abstract— The generalizedK–fading model, characterized by
two parameters,k and m, was recently shown to accurately cap-
ture the effects of composite shadowing and multipath fading in
wireless communication systems. In this paper, we derive closed–
form expressions for the bit error probability of two non–coherent
transmission schemes overL diversity branches being subject to
generalizedK–fading. Specifically, focus is on binary differential
phase–shift keying (DPSK) and binary non–coherent frequency–
shift keying (FSK) modulation with equal–gain combining at the
receiver. We also derive expressions for the asymptotic diversity
order, which reveal an interesting interplay between the two
fading parametersk and m. Moreover, we show that the diversity
order of the considered non–coherent transmission schemesis the
same as in the case of coherent transmission. Finally, numerical
performance results are presented, and our analytical results are
corroborated by means of Monte-Carlo simulations.

I. I NTRODUCTION

T HE performance of wireless communication systems is
largely governed by shadowing and multipath fading

effects [1, Ch. 2]. While major obstacles between transmitter
and receiver cause macroscopic fading effects, i.e., fluctuations
in the average received signal–to–noise ratio (SNR), scatterers
in the vicinity of transmitter and receiver entail microscopic
fading effects, i.e., fluctuations in the instantaneous received
SNR. Recently, the generalizedK–fading model, which is
characterized by two parameters,k>0 andm>0, was shown
to accurately capture the effects of composite shadowing and
multipath fading [2]. In particular, it comprises a large variety
of channel conditions, ranging from severe shadowing (small
values ofk) to mild shadowing (large values ofk) and from
severe multipath fading (small values ofm) to mild multipath
fading (large values ofm).

A favorable property of the generalizedK–fading model is
that it allows for a closed–form expression for the probability
density function (PDF) of the instantaneous received SNR,
which is in contrast to, e.g., competing composite shadow-
ing/multipath fading models that are based on the lognormal
PDF [2]. As a result, several analytical performance results
for generalizedK–fading and ‘ordinary’K–fading channels
(m=1) have been reported in the literature [3]–[8].

Most of the papers mentioned above have focussed on
coherent transmission schemes, which rely on the availabil-
ity of accurate channel knowledge at the receiver side. In
contrast to this, non–coherent transmission schemes eliminate
the need for channel estimation at the receiver and are thus
attractive for high–mobility and low–SNR scenarios as well
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as for low–cost receiver implementations. In this paper, we
derive closed–form expressions for the bit error probability
(BEP) of two non–coherent transmission schemes overL
generalizedK–fading branches with (post–detection) equal–
gain combining (EGC) at the receiver. Specifically, focus ison
binary differential phase–shift keying (DPSK) modulationwith
conventional differential detection at the receiver (i.e., based
on two subsequent received symbols) and orthogonal binary
frequency–shift keying (FSK) modulation with non–coherent
detection at the receiver [9, Ch. 9.4]. TheL diversity branches
could, for example, be created by multiple receive antennas.
We also present a high–SNR analysis and provide expressions
for the resulting asymptotic diversity order, which revealan
interesting interplay between the two fading parametersk and
m. Concerning theK–fading model, we consider the scenario
where the shadowing part is fully correlated across links,
whereas the multipath fading is independent and identically
distributed (i.i.d.) across theL branches. Since shadowing
represents a large–scale fading effect, it can be expected to
affect all diversity branches simultaneously, while in a rich–
scattering environment the multipath fading part can typically
be considered independent across links, e.g., if the antenna
spacings are chosen sufficiently large.

It is worth noting that the existing papers on non–coherent
transmission schemes over (generalized)K–fading links [3],
[4], [6] are all restricted to a single branch (L=1). For
L>1, to the best of the authors’ knowledge no closed-form
expressions for the BEP and the asymptotic diversity order of
the considered non–coherent transmission schemes in general-
izedK–fading (or for alternative, e.g., coherent, transmission
schemes) have yet been presented in the literature. Also, there
are no similar analyses for the competing composite lognormal
shadowing/multipath fading models.

The remainder of this paper is organized as follows. In
Section II, the generalizedK–fading model is briefly recapit-
ulated. In Section III, the closed–form BEP expressions forbi-
nary DPSK/non–coherent FSK modulation overL generalized
K–fading branches are presented. In Section IV, asymptotic
performance results are reported and the diversity order ofthe
non–coherent transmission schemes is determined. Moreover,
it is shown that the diversity order of the considered non–
coherent transmission schemes is, in fact, the same as in the
case of coherent transmission. Finally, numerical performance
results are presented in Section V, and conclusions are offered
in Section VI.

II. T HE GENERALIZED K–FADING MODEL

The generalizedK–fading model describes a composite
Gamma–shadowing/Nakagami–m fading process. The PDF of
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the instantaneous SNRγ, conditioned on the average SNR̄γ,
is given by

pγ|γ̄(γ|γ̄) =
mmγm−1

Γ(m)γ̄m
exp

(

−mγ
γ̄

)

, m>0, γ≥0, (1)

whereΓ(x) denotes the Gamma function. The average SNR
γ̄ itself is a random variable with PDF given by

pγ̄(γ̄) =
γ̄k−1

Γ(k)¯̄γk
exp

(

− γ̄
¯̄γ

)

, k>0, γ̄≥0, (2)

where ¯̄γ,E{γ̄} and E{ · } denotes statistical expectation.
Combining (1) and (2), the PDF of the instantaneous SNR
γ results as [2]

pγ(γ) =
aβ+1

Γ(k)Γ(m)2β
γ

β−1

2 Kα(a
√
γ), (3)

wherea,2
√

m/¯̄γ, α,k−m, β,k+m−1, andKν(x) de-
notes the modified Bessel function of the second kind and
orderν.

III. PERFORMANCEANALYSIS FOR NON–COHERENT

TRANSMISSION SCHEMES

In this section, we derive closed–form BEP expressions for bi-
nary DPSK/non–coherent FSK modulation overL generalized
K–fading branches with EGC at the receiver. As explained
above, we assume that the shadowing part is fully correlated,
whereas the multipath fading is i.i.d. across theL branches.
Correspondingly, all branches are characterized by identical
fading parameters,k andm, and by the same average SNR,
γ̄, which itself is a random variable with PDF given by (2).

Considering binary DPSK/non–coherent FSK modulation
overL branches with EGC at the receiver, the instantaneous
EGC output SNR is given by [9, Ch. 9.4]

γt ,

L
∑

l=1

γl, (4)

whereγl denotes the instantaneous SNR associated with the
lth branch. For a fixed value ofγt, the BEP of the considered
non–coherent transmission schemes is given by [10, Ch. 14.4]

Pb(γt) =
1

22L−1
e−gγt

L−1
∑

l=0

cl (gγt)
l, (5)

where

cl ,
1

l!

L−1−l
∑

κ=0

(

2L− 1

κ

)

, (6)

and g,1 for binary DPSK andg,1/2 for binary non–
coherent FSK modulation. In order to arrive at a closed–form
expression for the average BEP̄Pb(¯̄γ), we first average (5)
over the instantaneous branch SNRsγl, while conditioning on
γ̄. In the final step, the resulting conditional BEP, denoted as
P̄b(γ̄), is then averaged over̄γ.

We first note that – due to the assumption of independent
multipath fading across theL branches – the joint PDF of the
instantaneous branch SNRsγl (l∈{1, ..., L}), conditioned on
the average SNR̄γ, is given by

pγ1,...,γL|γ̄(γ1, ..., γL|γ̄) =

L
∏

l=1

pγl|γ̄(γl|γ̄). (7)

Second, we define the index vectorκ , [κ1, ..., κL] ∈ N
L
0 and

the index set

Kl ,
{

κ∈N
L
0

∣

∣ κ1+· · ·+κL = l
}

, (8)

whereN0 denotes the set of all integers greater than or equal
to zero, and we note that the termγlt =(γ1+· · ·+γL)l can be
expressed as [11, Ch. 24]

γlt = (γ1+· · ·+γL)l =
∑

κ∈Kl

(

l

κ

)

γκ1

1 · · · γκL

L , (9)

where
(

l
κ

)

, l!/(κ1! · · ·κL!). Based on the above findings, the
conditional BEPP̄b(γ̄) can be written as

P̄b(γ̄) =
1

22L−1

L−1
∑

l=0

cl g
l
∑

κ∈Kl

(

l

κ

)

(10)

×
(

L
∏

λ=1

∫ ∞

0

e−gγλ γκλ

λ pγλ|γ̄(γλ|γ̄) dγλ

)

.

Plugging in (1) for the conditional PDFspγl|γ̄(γl|γ̄) and
employing [§3.381, no. 4] from [12], we find the following
expression forP̄b(γ̄):

P̄b(γ̄) =
1

22L−1

(

mm

Γ(m)

)L L−1
∑

l=0

cl g
l
∑

κ∈Kl

(

l

κ

)

(11)

×
(

L
∏

λ=1

Γ(m+κλ)
γ̄κλ

(gγ̄+m)m+κλ

)

.

Based on the PDF (2) of the average SNRγ̄, the average BEP
P̄b(¯̄γ),Eγ̄{P̄b(γ̄)} can be written as

P̄b(¯̄γ) =
1

22L−1

1

Γ(k) (Γ(m))L ¯̄γk

L−1
∑

l=0

cl g
l
∑

κ∈Kl

(

l

κ

)

×
∏L
λ=1

Γ(m+κλ)

ml

∫ ∞

0

γ̄k+l−1 · e−γ̄/¯̄γ
( gm γ̄ + 1)mL+l

dγ̄. (12)

Employing [§3.383, no. 5] from [12] and assuming that (i)
m is a finite non–integer value1 and (ii) k 6=mL, we find the
following closed–form expression for the average BEPP̄b(¯̄γ):

P̄b(¯̄γ) =
1

22L−1

1

Γ(k)

π

sin(π∆k,m)
(13)

×
L−1
∑

l=0

cl

[

∑

κ∈Kl

(

l

κ

)

(

L
∏

λ=1

(m)κλ

)]

×
[

(

m

g ¯̄γ

)mL
Γ(1−ϕm,l)
Γ(1−ψk,l)

L
−∆k,m

−ϕm,l

(

m

g ¯̄γ

)

−
(

m

g ¯̄γ

)k
sin(πϕm,l)

sin(πψk,l)
L

∆k,m

−ψk,l

(

m

g ¯̄γ

)

]

,

where (x)ν ,Γ(x+ν)/Γ(x) denotes the Pochhammer sym-
bol andLba(x) the generalized Laguerre function. Moreover,
we have used the identityΓ(x)Γ(1−x)=π/ sin(πx) for the
Gamma function and introduced the short–hand notations
∆k,m,k−mL, ψk,l,k+l, andϕm,l,mL+l.

1As will be seen in Section V, error probabilities for valuesm∈N, where
N denotes the set of all integers greater than zero, can typically be evaluated
with a high accuracy by replacingm with a slightly different valuem±ǫ /∈ N,
whereǫ>0 is a small perturbation value.
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IV. A SYMPTOTIC ANALYSIS AND DIVERSITY ORDER

The closed–form BEP expression (13) is relatively easy to
evaluate, but involves the non–standard generalized Laguerre
function. Correspondingly, the primary behavior of the re-
sulting BEP curve is not obvious. In the following, we will
therefore study the behavior of (13) for high SNR values
(¯̄γ→∞). In particular, we derive an expression for the re-
sulting (asymptotic) diversity order2

d, lim
¯̄γ→∞

−∂ log(P̄b(¯̄γ))

∂ log(¯̄γ)
. (14)

Subsequently, we present a corresponding analysis for the case
of a coherent transmission scheme and show that the resulting
diversity order is, in fact, the same as that of the considered
non–coherent transmission schemes.

A. Non–Coherent Transmission Schemes

For x→0, the generalized Laguerre functionLba(x) can be
approximated as [13, Ch. 13.2]

Lba(x)
.
=

(b+1)a
Γ(a+1)

, (15)

where
.
= denotes asymptotic equality. For¯̄γ→∞, the average

BEP (13) can thus be approximated as

P̄b(¯̄γ)
.
=

1

22L−1

sign(∆k,m)

Γ(k)

π

sin(π∆k,m)

(

m

g ¯̄γ

)ζ1

(16)

×
L−1
∑

l=0

cl Φl Ξl
(1−|∆k,m|)−ζ1−l

Γ(1−ψk,l)
,

where ζ1 , min{k,mL}, sign(x) denotes the sign function
(i.e., sign(x)=+1 for all x≥0 andsign(x)=−1 otherwise),

Φl ,
∑

κ∈Kl

(

l

κ

)

(

L
∏

λ=1

(m)κλ

)

, (17)

and3

Ξl ,

{

sin(πϕm,l)/ sin(πψk,l) for k<mL
1 for k>mL

. (18)

Correspondingly, the asymptotic diversity order is obtained as

d = ζ1 = min{k,mL}. (19)

This result reveals an interesting interplay between macro-
scopic diversity due to shadowing effects and microscopic di-
versity due to multipath fading: the asymptotic diversity order
is always limited by either the shadowing effect (k≤mL) or
the multipath fading (mL<k), depending on which one of the
two fading effects is more severe.

In order to arrive at (16), we have utilized that for¯̄γ→∞
only one of the twoLba(x)–terms in (13) dominates, namely
the one which is associated with the term( mg ¯̄γ )ζ1 . Correspond-
ingly, if k≈mL the convergence of the asymptotic solution

2The (asymptotic) diversity order is the negative slope of the BEP curve for
high SNR values on a log–log scale. It has been shown to be a useful measure
for characterizing the principal behavior of digital transmission schemes over
various fading channels [10, Ch. 14.4].

3As earlier, we assume thatk 6=mL, since otherwise (13) is not valid.
However, it turns out that (16) yields nearly identical results for k=mL + ǫ
andk=mL − ǫ, if ǫ is chosen sufficiently small.

(16) to the exact expression (13) can be expected to be rather
slow, since the dominant term will only emerge for very
large values of¯̄γ. However, if k and mL are sufficiently
different, the convergence of (16) is typically quite fast,as will
be seen from the numerical performance results presented in
Section V.

B. Coherent Transmission Scheme

Next, we compare the above result for binary DPSK/non–
coherent FSK modulation with the asymptotic diversity order
obtained in the case of a coherent transmission scheme.

As an example, we consider a binary PSK scheme with
maximum–ratio combining (MRC) at the receiver. The corre-
sponding average BEP can be determined via the following
finite–range integral [14]:

P̄b(¯̄γ) =
1

π

∫ π/2

0

Mγt

(

− 1

sin2(φ)

)

dφ, (20)

where Mγt(x),E{exγt} denotes the moment–generating
function (MGF) of the instantaneous MRC output SNR
γt =

∑L
l=1

γl. Note that (20) is valid for arbitrary fading
correlations, provided that an expression for the MGFMγt(x)
is available.

In order to derive an expression forMγt(x), recall that
the joint PDF pγ1,...,γL|γ̄(γ1, ..., γL|γ̄), conditioned on the
average SNRγ̄, can be written as the product of the
conditional PDFspγl|γ̄(γl|γ̄) of the instantaneous branch
SNRs γl (l∈{1, ..., L}), cf. (7). Correspondingly, the con-
ditional MGF of the instantaneous MRC output SNRγt,
Mγt|γ̄(x),

∫∞

0
exγt pγt|γ̄(γt|γ̄) dγt, is given by

Mγt|γ̄(x)=
L
∏

l=1

Mγl|γ̄(x). (21)

Based on (1) and [§3.381, no. 4] from [12], the conditional
MGF of the instantaneous branch SNRγl, Mγl|γ̄(x), can be
calculated as

Mγl|γ̄(x)=

(

m

m− x γ̄

)m

, Re{x}<0, (22)

which is the well-known MGF for Nakagami-m fading [9,
Ch. 2.2]. Based on (2), (21) and (22), the (unconditional) MGF
of γt can be written as

Mγt(x) =
1

Γ(k) ¯̄γk

∫ ∞

0

γ̄k−1

(

1 − x
m γ̄
)mL

· e−γ̄/¯̄γ dγ̄. (23)

Assuming thatm is a finite non–integer value and employing
[§3.383, no. 5] from [12], we find the following closed–form
expression for the MGF ofγt:

Mγt(x) = (k)−mL · (mL)1−k (24)

×
[

(−m
x ¯̄γ

)mL
Γ(mL) Γ(1−mL)

Γ(1−k) · L−∆k,m

−mL

(−m
x ¯̄γ

)

−
(−m
x ¯̄γ

)k
Γ(k) Γ(1−k)
Γ(1−mL)

· L∆k,m

−k

(−m
x ¯̄γ

)

]

,

¯̄γ<∞, Re{x}<0.

As earlier, we have used thatΓ(x)Γ(1−x)=π/ sin(πx). We
note that the derived MGF expression (24) could also be
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DBPSK with EGC (k=3, m=1)
BPSK with MRC (k=3, m=1)
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Fig. 1. Average BEPP̄b(¯̄γ) versus overall average SNRL ¯̄γ in dB for the
casek=3 andm=1 (mild shadowing). Solid lines represent analytical results
for binary DPSK (DBPSK) modulation with EGC at the receiver evaluated
based on (13) using the valuesk=3.01 andm=0.99. Dashed lines represent
corresponding analytical results for coherent BPSK modulation with MRC
at the receiver evaluated based on (20), (24) using numerical integration.
Corresponding simulation results fork=3 andm=1 are indicated by markers
‘o’ (both for DPSK and PSK modulation).

useful for other performance analyses (e.g., outage analysis)
and is therefore of general interest. Also, as shown in [15],
the MGF expression (24) can be employed to extend the
above results to the case of non–binary modulation schemes.A
further evaluation of (20) based on (24) appears to be difficult,
however.

Now, based on (15) and employing [§3.621, no. 1] from
[12], the average BEP (20) for̄̄γ→∞ can be approximated
as

P̄b(¯̄γ)
.
=

sign(∆k,m) (k)−mL · (mL)1−k
2π

(25)

× Γ(ζ1) (1−|∆k,m|)−ζ1
Γ(1−ζ2)

×
(

4m
¯̄γ

)ζ1

B
(

ζ1+1/2, ζ1+1/2
)

,

whereζ2 ,max{k,mL} andB(x, y) denotes the Beta func-
tion. Correspondingly, the diversity order of binary PSK
modulation with MRC at the receiver is given by

d = ζ1 = min{k,mL}, (26)

just as in the case of the considered non–coherent transmission
schemes, cf. (19).

V. NUMERICAL PERFORMANCERESULTS

In the following, numerical performance results are presented
which illustrate our findings in Section III and Section IV.
In particular, we will present Monte–Carlo simulation results,
so as to corroborate our analytical performance results. Asan
example, we focus on the BEP performance of binary DPSK
modulation with EGC at the receiver.

Fig. 1 presents numerical results for the average BEPP̄b(¯̄γ)
as a function of the overall average received SNRL ¯̄γ in dB for
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DBPSK with EGC (k=3, m=1, exact solution)
DBPSK with EGC (k=3, m=1, asymptotic solution)

L=1

L=2

L=3

L=4

Fig. 2. Average BEPP̄b(¯̄γ) versus overall average SNRL ¯̄γ in dB for the
casek=3 andm=1 (mild shadowing). Solid lines represent analytical results
for DBPSK modulation with EGC at the receiver, evaluated based on (13)
using the valuesk=3.01 andm=0.99. Dashed lines represent corresponding
asymptotic results evaluated based on (16).

the casek=3 andm=1 (mild shadowing) andL∈{1, ..., 4}.
Solid lines represent analytical results evaluated based on (13),
using the valuesk=3.01 andm=0.99. Dashed lines represent
analytical results for coherent binary PSK modulation with
MRC at the receiver (for the casesL ∈ {1, 3, 4}), evaluated
based on (20) and (24) using the same valuesk=3.01 and
m=0.99. Corresponding simulation results fork=3 and
m=1, obtained by Monte–Carlo simulations over a large
number of independent channel realizations, are indicatedby
markers ‘o’ (both for DPSK and PSK modulation). As can
be seen, the analytical results and the simulation results are
in good agreement, which corroborates our analysis in Sec-
tion III. Note that significant diversity gains are accomplished
for L>1, both in the case of DPSK and PSK modulation. As
can be seen, the general behavior of the BEP curves is the same
for coherent and non–coherent transmission. The asymptotic
advantage of binary PSK over binary DPSK modulation is
about 3 dB, similar to the case of pure Rayleigh fading.

In Fig. 2, we compare the exact analytical BEPs for DPSK
modulation according to (13) with the asymptotic BEPs ac-
cording to (16).4 As earlier, the valuesk=3.01 andm=0.99
were employed for evaluating the expressions (13) and (16).
It can be seen that convergence is comparatively fast for the
casesL= 2 andL= 4. In particular, the BEP curves exhibit
the predicted diversity orders ofd= 2m= 2 and d= k = 3,
respectively. However, as discussed in Section IV, in the case
L=3 convergence is very slow, sincek≈mL. In this example,
SNR values on the order of100 dB are required, until the
exact analytical BEP (13) approaches the asymptotic BEP
(16) and assumes the predicted asymptotic diversity order of
d=3m≈k=3. Note that since the maximum diversity order
is accomplished forL=3, the relative performance advantage
for L>3 branches is comparatively small in this example.

4For binary PSK modulation with MRC at the receiver we have obtained
very similar results (not depicted).



5

5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

Overall average SNR in dB

B
E

P

 

 

DBPSK with EGC (k=1, m=3)
BPSK with MRC (k=1, m=3)

L=1

L=4

L=4

Fig. 3. Average BEPP̄b(¯̄γ) versus overall average SNRL ¯̄γ in dB for
the casek=1 andm=3 (severe shadowing). Solid lines represent analytical
results for DBPSK modulation with EGC at the receiver evaluated based
on (13) using the valuesk=1.01 and m=2.99. Dashed lines represent
corresponding analytical results for coherent BPSK modulation with MRC
at the receiver evaluated based on (20), (24) using numerical integration.
Corresponding simulation results fork=1 and m=3 are indicated by
markers ‘o’ (both for DPSK and PSK modulation). The dotted lines represent
asymptotic BEP curves for the caseL=4 evaluated based on (16) for DPSK
modulation and based on (25) for PSK modulation.

Finally, in Fig. 3 numerical performance results for the
casek=1 andm=3 (severe shadowing) andL ∈ {1, 4} are
presented. Again it can be seen that the analytical results
(solid lines for binary DPSK and dashed lines for binary
PSK modulation) and the simulation results (markers ‘o’) are
in good agreement. The analytical results for binary DPSK
and binary PSK modulation were again evaluated based on
(13) and (20), (24), respectively, using the valuesk=1.01
and m=2.99. Interestingly, in contrast to the case of mild
shadowing,L>1 branches offer no diversity benefit at all. As
can be seen, in the case of binary DPSK modulation the BEP
curve for L=4 is even slightly worse than the BEP curve
for L=1 (due to the SNR normalization). The BEP curves
for L=2 andL=3 (not depicted) lie in between the curves
for L = 1 and L = 4. As predicted by the asymptotic BEP
(16), included here for the caseL=4 (dotted line), the BEP
curves of binary DPSK forL≥1 are all characterized by the
same asymptotic diversity order ofd= k= 1. Also note that
the convergence of the asymptotic BEP (16) to the exact BEP
(13) is comparatively fast in this example. Finally, we notethat
while in the case of binary PSK modulation the asymptotic
diversity order is the same as for binary DPSK modulation,
the order of the curves is swapped here, i.e.,L= 4 offers a
slight performance advantage overL=1 (the BEP curves for
L=2 andL=3 were again found in between the curves for
L=1 andL=4).

VI. CONCLUSIONS

The generalizedK–fading model, which is characterized by
two fading parameters,k>0 and m>0, has recently been
recognized as an accurate model for wireless scenarios with
composite shadowing and multipath fading. In this paper, we

have derived closed–form expressions for the BEP of binary
DPSK modulation and binary non–coherent FSK modulation
overL generalizedK–fading links with EGC at the receiver.
Moreover, we have conducted an asymptotic performance
analysis for high SNR values and have studied the resulting
diversity order for various cases. Our results have shown
that there is an interesting interplay between the two fading
parametersk andm: the asymptotic diversity order is always
limited by either the shadowing effect or the multipath fading,
depending on which one of the two fading effects is more
severe. Moreover, we have shown that the diversity order of
the considered non–coherent transmission schemes is the same
as in the case of coherent transmission. Finally, numerical
performance results were presented, in order to illustratethe
above findings, and our analytical performance results were
corroborated by means of Monte-Carlo simulations.

An extension of the presented results to the case of non–
binary coherent and non–coherent transmission schemes can
be found in [15]. Moreover, it is worth noting that the
generalizedK–fading model is also useful to model cascade
fading, which occurs, e.g., in mobile–to–mobile communica-
tion scenarios [16], [17]. A corresponding analysis can also
be found in [15].
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