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Abstract— The generalized K—fading model, characterized by as for low—cost receiver implementations. In this paper, we
two parameters, k and m, was recently shown to accurately cap- derive closed—form expressions for the bit error probghbili
ture the effects of composite shadowing and multipath fadig in (BEP) of two non—coherent transmission schemes dver

wireless communication systems. In this paper, we derive ased— - . . .
form expressions for the bit error probability of two non—coherent  9€neralizedik—fading branches with (post-detection) equal-

transmission schemes ovel. diversity branches being subject to gain combining (EGC) at the receiver. Specifically, focusns
generalized K—fading. Specifically, focus is on binary differential binary differential phase—shift keying (DPSK) modulatigith
phase-shift keying (DPSK) and binary non—coherent frequecy—  conventional differential detection at the receiver (imsed
shift keying (FSK) modulation with equal—gain combining atthe o5 o subsequent received symbols) and orthogonal binary

receiver. We also derive expressions for the asymptotic dévsity . . g .
order, which reveal an interesting interplay between the to eduéncy—shift keying (FSK) modulation with non—cohéren

fading parameters k and m. Moreover, we show that the diversity detection at the receiver [9, Ch. 9.4]. Thediversity branches
order of the considered non—coherent transmission schemésthe could, for example, be created by multiple receive antennas
same as in the case of coherent transmission. Finally, nurieal  \We also present a high—-SNR analysis and provide expressions
performance results are presented, and our analytlcal redts are for the resulting asymptotic diversity order, which reveal
corroborated by means of Monte-Carlo simulations. interesting interplay between the two fading parameteasd
m. Concerning thé{—fading model, we consider the scenario
l. INTRODUCTION where the shadowing part is fully correlated across links,

HE performance of wireless communication systems Yshereas the multipath fading is independent and idenyicall
largely governed by shadowing and multipath fadingfistributed (i.i.d.) across thd. branches. Since shadowing
effects [1, Ch. 2]. While major obstacles between trangmittrepresents a large—scale fading effect, it can be expeoted t
and receiver cause macroscopic fading effects, i.e., fiicns  affect all diversity branches simultaneously, while in ehft
in the average received signal-to—noise ratio (SNR),eseatt Scattering environment the multipath fading part can tgiyc
in the vicinity of transmitter and receiver entail micropan be considered independent across links, e.g., if the aatenn
fading effects, i.e., fluctuations in the instantaneougived Spacings are chosen sufficiently large.
SNR. Recently, the generalizei—fading model, which is It is worth noting that the existing papers on non—coherent
characterized by two parameteks; 0 andm >0, was shown transmission schemes over (generalizag)fading links [3],
to accurately capture the effects of composite shadowinig g, [6] are all restricted to a single branchL{1). For
multipath fading [2]. In particular, it comprises a largaiety L >1, to the best of the authors’ knowledge no closed-form
of channel conditions, ranging from severe shadowing (smakpressions for the BEP and the asymptotic diversity orfler o
values ofk) to mild shadowing (large values &) and from the considered non—coherent transmission schemes inajener
severe multipath fading (small values-f to mild multipath ized K—fading (or for alternative, e.g., coherent, transmission
fading (large values ofn). schemes) have yet been presented in the literature. Alsce th
A favorable property of the generalizéd—fading model is are no similar analyses for the competing composite logabrm
that it allows for a closed—form expression for the prokigbil shadowing/multipath fading models.
density function (PDF) of the instantaneous received SNR,The remainder of this paper is organized as follows. In
which is in contrast to, e.g., competing composite shadowection Il, the generalizef —fading model is briefly recapit-
ing/multipath fading models that are based on the lognormidated. In Section Ill, the closed—form BEP expressionsfer
PDF [2]. As a result, several analytical performance resulary DPSK/non—coherent FSK modulation ovegeneralized
for generalizedk —fading and ‘ordinary’K—fading channels K—fading branches are presented. In Section 1V, asymptotic
(m=1) have been reported in the literature [3]-[8]. performance results are reported and the diversity ordéreof
Most of the papers mentioned above have focussed @@n—coherent transmission schemes is determined. Mateove
coherent transmission schemes, which rely on the availabil is shown that the diversity order of the considered non-
ity of accurate channel knowledge at the receiver side. @®herent transmission schemes is, in fact, the same as in the
contrast to this, non—coherent transmission schemesneiteni case of coherent transmission. Finally, numerical peréoroe
the need for channel estimation at the receiver and are tHi@sults are presented in Section V, and conclusions areedffe
attractive for high—-mobility and low—SNR scenarios as welh Section VI.
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the instantaneous SNR conditioned on the average SNR  Second, we define the index vectoE [k, ..., k1] € Nf and
is given by the index set

2 L —
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L(m)ym whereN, denotes the set of all integers greater than or equal
whereT'(z) denotes the Gamma function. The average SNB zero, and we note that the terph= (v, +- - -+v)" can be
7 itself is a random variable with PDF given by expressed as [11, Ch. 24]
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where y2E{5} and E{-} denotes statistical expectation. l

l . .
Combining (1) and (2), the PDF of the instantaneous SN#€re(,) = !/(k1!---x.!). Based on the above findings, the
~ results as [2] conditional BEPP, () can be written as

aftl p—1 . " ) l
() = sy Y 7 Kalay), @) B0 = 51 a9 (10)
Y F(k)r(m)2ﬁ \/_ 22L 1 ; KGZKL K
wherea22,/m/5, a2k—m, 32k+m—1, and K, (z) de- L oo
notes the modified Bessel function of the second kind and X H/ e I A Py (V) d |
orderv. A1 /0
Plugging in (1) for the conditional PDFg.,5(v:|7y) and
Ill. PERFORMANCEANALYSIS FOR NON—COHERENT employing 3.381, no. 4] from [12], we find the following
TRANSMISSION SCHEMES expression fotP, (7):
In this section, we derive closed—form BEP expressionsifor b 1 m L L—1 ]
. : - m
nary D_PSK/non—coher_ent FSK modulation (_)\legenerallze(_j P(y) = ST (ﬁ) ch g Z ( > (11)
K-fading branches with EGC at the receiver. As explained m —o wek, \F

above, we assume that the shadowing part is fully correlated L .
whereas the multipath fading is i.i.d. across thébranches. > H I(m+ky) 777
Correspondingly, all branches are characterized by idainti byt (gy+m)me
fading parameters; andm, and by the same average SNRgaseq on the PDF (2) of the average SNRhe average BEP
7, which itself is a random variable with PDF given by (2). By(5)2E-{B(3)} can be written as

Considering binary DPSK/non—coherent FSK modulation 7

over L branches with EGC at the receiver, the instantaneousp -1 1 = . l
EGC output SNR is given by [9, Ch. 9.4] b(7) = 92L—1 T(k) (D(m))L 7+ Z cy Z K
. =0 rekK;
L o0 sht+l—1 o=7/7
S [L_i D(m+ka) gl e
" ;% ) x ml s (L5 1 1)mLH dy. (12)

where~; denotes the instantaneous SNR associated with fRmploying 3.383, no. 5] from [12] and assuming that (i)
Ith branch. For a fixed value of, the BEP of the consideredm is a finite non-integer valdeand (i) k#mL, we find the
non—coherent transmission schemes is given by [10, Ch] 14f@llowing closed—form expression for the average BBf7Y):

L—1 _ 1 1 T
Py(n) = %e*“ > algm), G 1 b(3) = i T(k) sin(rA ) (13)
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where L1 X ch [Z (n) <H(m)m>1
Al 2L —1 1=0 K€K, A=1
Cl:ﬂz< K )’ ©) mlopeg
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and g1 for binary DPSK andg£1/2 for binary non— 97 PA=tg) 77 \g7
coherent FSK modulation. In order to arrive at a closed—form m \F Sin(m@ma) - a,.. [ m
expression for the average BER,(7), we first average (5) - (—_) W s (—_) 5
over the instantaneous branch SNRRswhile conditioning on 97 ol 97

7. In the final step, the resulting conditional BEP, denoted @ghere (), 2T (z+v)/I'(z) denotes the Pochhammer sym-

Py (%), is then averaged ove. bol and L (z) the generalized Laguerre function. Moreover,
We first note that — due to the assumption of independent have used the identity (x)I'(1—z) =7/ sin(rx) for the

multipath fading across the branches — the joint PDF of theGamma function and introduced the short-hand notations

instantaneous branch SNRs(l€{1, ..., L}), conditioned on Ak.,mék—mL, wkylék—l-l, andwm,lémL+l.

the average SNR, is given by

L 1As will be seen in Section V, error probabilities for valuesc N, where
N denotes the set of all integers greater than zero, can tiyploa evaluated
Pty |7 (V15 YLIY) = pr 15 (el7)- (7)  with a high accuracy by replacing with a slightly different valuen-+e ¢ N,
=1 wheree >0 is a small perturbation value.



IV. ASYMPTOTIC ANALYSIS AND DIVERSITY ORDER (16) to the exact expression (13) can be expected to be rather

The closed—form BEP expression (13) is relatively easy #°W. since the dominant term will only emerge for very
evaluate, but involves the non—standard generalized lragjud@rge values ofy. However, if k and mL are sufficiently
function. Correspondingly, the primary behavior of the redifferent, the convergence of (16) is typically quite fazst,will
sulting BEP curve is not obvious. In the following, we willpe seen from the numerical performance results presented in
therefore study the behavior of (13) for high SNR value3€ction V.

(ﬁ—.>oo). In partlgular: we.derlve an expression for the '€ Coherent Transmission Scheme
sulting (asymptotic) diversity order )
Next, we compare the above result for binary DPSK/non—

d2 lim _8log(Pb_(v)). (14) coherent FSK modulation with the asymptotic diversity arde
y—o0 dlog(¥) obtained in the case of a coherent transmission scheme.
Subsequently, we present a corresponding analysis fortiee ¢ AS an example, we consider a binary PSK scheme with
of a coherent transmission scheme and show that the repulf@ximum-ratio combining (MRC) at the receiver. The corre-
diversity order is, in fact, the same as that of the consitlersponding average BEP can be determined via the following

non—coherent transmission schemes. finite—range integral [14]:
/2
A. Non-Coherent Transmission Schemes P,(y) = l/ / M., (_%) do, (20)
_ . ™ Jo sin”(¢)

For z—0, the generalized Laguerre functidif (x) can be
approximated as [13, Ch. 13.2] where M., (z)£E{e*t} denotes the moment-generating

(b+1) function (MGF) of the instantaneous MRC output SNR

L (x) = . (15) =3/, ~. Note that (20) is valid for arbitrary fading

T(a+1) correlations, provided that an expression for the MGFE (z)
where= denotes asymptotic equality. For— oo, the average is available.

BEP (13) can thus be approximated as In order to derive an expression fd,, (x), recall that
. L the joint PDF p,, ., 15(71,...72]7), conditioned on the
P(y) = 2271 sign (A, m) . T (ﬁ_) (16) average SNR%, can be written as the product of the
2 L(k)  sin(mlem) \g7 conditional PDFsp.,5(v|7) of the instantaneous branch

L-1 (1= Akm]) e, SNRs vy, (l€{1,...,L}), cf. (7). Correspondingly, the con-
X ch D, = T(1—ng) ditional MGF of the instantaneous MRC output SNR,
=0 " M., 5 (2) £ [ €7 Py 15 (1:/7) de, is given by

where ¢; £ min{k, mL}, sign(z) denotes the sign function L
(i.e.,sign(z)=+1 for all #>0 andsign(z)=—1 otherwise), M, 5(2) =] [ My 5(2). (21)

I =1

B, & Z <l) H(m)’“ ’ (17) Based on (1) and$B.381, no. 4] from [12], the conditional
ner, M/ O\GC0 MGF of the instantaneous branch SNR M, 5(z), can be
calculated as
and NG

o { S(rpm)/ sinrnn) fork<mD oo Moo= (2 ) Rela) <o, (@2

== 1 for k>mlL (18) me

. o _ _ which is the well-known MGF for Nakagamix fading [9,
Correspondingly, the asymptotic diversity order is obgdias -}, 2.2]. Based on (2), (21) and (22), the (unconditional)MG

d = ¢, = min{k,mL}. (19) of 44 can be written as
00 ~k—
This result reveals an interesting interplay between macro M., (z) = 1 _ / 7 e 7745, (23)
scopic diversity due to shadowing effects and microscopic d ' (k)3 Jo (1 — %ﬁ)mL

versity due to multipath fading: the asymptotic diversitgder
is always limited by either the shadowing effeét{(mL) or
the multipath fading¢. L < k), depending on which one of the
two fading effects is more severe.

Assuming thatm is a finite non—integer value and employing
[63.383, no. 5] from [12], we find the following closed—form
expression for the MGF of:

In order to arrive at (16), we have utilized that r~co My, () = (k)—mr - (mL)1—k (24)

only one of the twoL? (z)-terms in (13) dominates, namely mL
o a . ' — I'(mL)T(1—mL _ —
the one which is associated with the te@%)@. Correspond- X [<—711> (m 1“)1 ( A mL). _i’zm (—T_n>
ingly, if k~mlL the convergence of the asymptotic solution T (1-F) T
k

2The (asymptotic) diversity order is the negative slope efBfEP curve for — (ﬂ) M . LA]’:”" (ﬂ) ,

high SNR values on a log—log scale. It has been shown to befal nseasure Xy F(l —mL) - Ty

for characterizing the principal behavior of digital trarission schemes over _
various fading channels [10, Ch. 14.4]. Y <00, Re{:v} <0.
SAs earlier, we assume that£mlL, since otherwise (13) is not valid. . .
However, it turns out that (16) yields nearly identical festor k=mL + ¢ As earlier, we haV_e used tha(z)I'(1 __I) =m/sin(rz). We
andk=mL — ¢, if € is chosen sufficiently small. note that the derived MGF expression (24) could also be
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Fig. 1. Average BEPP,(¥) versus overall average SNR¥ in dB for the Fig. 2. Average BEPP, () versus overall average SNR¥ in dB for the
casek =3 andm =1 (mild shadowing). Solid lines represent analytical resultcasek =3 andm =1 (mild shadowing). Solid lines represent analytical result
for binary DPSK (DBPSK) modulation with EGC at the receivenlaated for DBPSK modulation with EGC at the receiver, evaluatedefdasn (13)
based on (13) using the valuks=3.01 andm =0.99. Dashed lines represent using the valueg¢ =3.01 andm =0.99. Dashed lines represent corresponding
corresponding analytical results for coherent BPSK mdghrawith MRC  asymptotic results evaluated based on (16).
at the receiver evaluated based on (20), (24) using nunhdritzgration.
Corresponding simulation results foe=3 andm =1 are indicated by markers
‘0’ (both for DPSK and PSK modulation). . .

the caseék=3 andm =1 (mild shadowing) and. {1, ...,4}.

Solid lines represent analytical results evaluated basdd®),
sing the values =3.01 andm =0.99. Dashed lines represent
halytical results for coherent binary PSK modulation with

useful for other performance analyses (e.g., outage asply
and is therefore of general interest. Also, as shown in [1

the MGF expression (24) can be employed to extend t C at the receiver (for the casdse {1, 3,4}), evaluated

above results to the case of non—binary modulation schefne :
further evaluation of (20) based on (24) appears to be dif,ficjoased on (20) and (24) using the same valyes3.0l and

however m=0.99. Corresponding simulation results fé&r=3 and
Now, based on (15) and employing3[621, no. 1] from m=1, obtained by Monte—Carlo simulations over a large

_ . number of independent channel realizations, are indichyed
[12], the average BEP (20) foj — oo can be approximated markers 6’ (both for DPSK and PSK modulation). As can

as . be seen, the analytical results and the simulation resudts a
B(5) = sign(Ak,m) (k)—mr - (mL)1—k (25) in good agreement, which corroborates our analysis in Sec-
2m tion 11l. Note that significant diversity gains are accorshkd
I'(¢1) (A= |Akm|)—¢ for L>1, both in the case of DPSK and PSK modulation. As
T'(1—<(2) can be seen, the general behavior of the BEP curves is the same
A\t for coherent and non—coherent transmission. The asymptoti
X <7> B(G1+1/2,6+1/2), advantage of binary PSK over binary DPSK modulation is

about 3 dB, similar to the case of pure Rayleigh fading.
where(; £max{k,mL} and B(z,y) denotes the Beta func- In Fig. 2, we compare the exact analytical BEPs for DPSK
tion. Correspondingly, the diversity order of binary PSHKnodulation according to (13) with the asymptotic BEPs ac-
modulation with MRC at the receiver is given by cording to (16} As earlier, the valueg=3.01 andm=0.99
were employed for evaluating the expressions (13) and (16).

d = ¢ = min{k,mL}, (26) |t can be seen that convergence is comparatively fast for the
just as in the case of the considered non—coherent trarismisgasesL =2 and L = 4. In particular, the BEP curves exhibit
schemes, cf. (19). the predicted diversity orders of=2m =2 andd =k =3,

respectively. However, as discussed in Section 1V, in tiseca
V. NUMERICAL PERFORMANCE RESULTS L =3 convergence is very slow, sinéezmL. In this example,

SNR values on the order afo0 dB are required, until the
exact analytical BEP (13) approaches the asymptotic BEP
(16) and assumes the predicted asymptotic diversity orfler o
d=3m~=~k=3. Note that since the maximum diversity order
% accomplished for, =3, the relative performance advantage
or L>3 branches is comparatively small in this example.

In the following, numerical performance results are présgn
which illustrate our findings in Section 1ll and Section IV
In particular, we will present Monte—Carlo simulation rissu
SO as to corroborate our analytical performance resultsaris
example, we focus on the BEP performance of binary DP
modulation with EGC at the receiver.

Fig. 1 presents numerical results for the average BEF) “For binary PSK modulation with MRC at the receiver we haveaivtetd
as a function of the overall average received SNIRin dB for  very similar results (not depicted).
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Fig. 3. Average BEPP, () versus overall average SNR# in dB for

have derived closed—form expressions for the BEP of binary
DPSK modulation and binary non—coherent FSK modulation
over L generalizedK—fading links with EGC at the receiver.
Moreover, we have conducted an asymptotic performance
analysis for high SNR values and have studied the resulting
diversity order for various cases. Our results have shown
that there is an interesting interplay between the two fadin
parameterg andm: the asymptotic diversity order is always
limited by either the shadowing effect or the multipath fayli
depending on which one of the two fading effects is more
severe. Moreover, we have shown that the diversity order of
the considered non—coherent transmission schemes isrtiee sa
as in the case of coherent transmission. Finally, numerical
performance results were presented, in order to illustize
above findings, and our analytical performance results were
corroborated by means of Monte-Carlo simulations.

An extension of the presented results to the case of non—
binary coherent and non—coherent transmission schemes can
e found in [15]. Moreover, it is worth noting that the

the casek =1 andm =3 (severe shadowing). Solid lines represent analytical

results for DBPSK modulation with EGC at the receiver evidabased ger)eralizeQK—fading mOdel_ is alsq useful to m0d9| casc:_;tde
on (13) using the value&=1.01 and m=2.99. Dashed lines represent fading, which occurs, e.g., in mobile—to—mobile commusnica

corresponding analytical results for coherent BPSK mdahrawith MRC
at the receiver evaluated based on (20), (24) using nunhdritzgration.

tion scenarios [16], [17]. A corresponding analysis caro als

Corresponding simulation results fot=1 and m=3 are indicated by D€ found in [15].

markers 0’ (both for DPSK and PSK modulation). The dotted lines repngés
asymptotic BEP curves for the cage=4 evaluated based on (16) for DPSK
modulation and based on (25) for PSK modulation.

(1]
2
Finally, in Fig. 3 numerical performance results for the
casek=1 and m=3 (severe shadowing) anfic {1,4} are [
presented. Again it can be seen that the analytical results
(solid lines for binary DPSK and dashed lines for binary4]

PSK modulation) and the simulation results (marker} are

in good agreement. The analytical results for binary DPSHKs]
and binary PSK modulation were again evaluated based on
(13) and (20), (24), respectively, using the values1.01 (g
and m=2.99. Interestingly, in contrast to the case of mild
shadowing,L > 1 branches offer no diversity benefit at all. As
can be seen, in the case of binary DPSK modulation the BER,
curve for L=4 is even slightly worse than the BEP curve
for L=1 (due to the SNR normalization). The BEP curvesg
for L=2 and L =3 (not depicted) lie in between the curves
for L =1 and L = 4. As predicted by the asymptotic BEP ]
(16), included here for the cade=4 (dotted line), the BEP
curves of binary DPSK fod, > 1 are all characterized by the[10]
same asymptotic diversity order df=k = 1. Also note that 1]
the convergence of the asymptotic BEP (16) to the exact BIEP
(13) is comparatively fast in this example. Finally, we nibtat
while in the case of binary PSK modulation the asymptotﬁ:z]
diversity order is the same as for binary DPSK modulatiofi3]
the order of the curves is swapped here, ile= 4 offers a [14]
slight performance advantage ovkr=1 (the BEP curves for
L =2 and L =3 were again found in between the curves for
L=1and L=4). [15]

VI. CONCLUSIONS [16]

The generalized{—fading model, which is characterized by

two fading parameters;>0 and m>0, has recently been
recognized as an accurate model for wireless scenarios with
composite shadowing and multipath fading. In this paper, we
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