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Abstract— We consider a simple reduced-complexity receive
diversity scheme for spatially correlated multiple-antenna sys-
tems, which consists of an inner decorrelation stage based on the
Karhunen-Loève transform and an outer selection stage. The task
of the selection stage is to provide an optimal trade-off between
complexity and performance, by selecting an appropriate subset
of the eigenvalues/ eigenvectors of the receiver correlation matrix
for further processing. The considered receive diversity scheme is
solely based on second-order channel statistics. The main focus
of the paper is to analyze the complexity-performance trade-off
offered by the reduced-dimension receiver and to study the im-
pact of estimation errors concerning the receiver correlation ma-
trix. By means of numerical results, it is shown that the considered
receive diversity scheme provides quite a robust performance. We
also consider a statistical transmit power allocation scheme, which
might be employed in conjunction with the reduced-dimension re-
ceiver so as to improve performance.

I. INTRODUCTION

DURING THE LAST decade, the use of multiple anten-
nas for wireless communication systems has attracted

considerable interest, because multiple-antenna systems offer
huge advantages over conventional single-antenna systems. On
the one hand, it was shown in [1],[2] that the capacity of a
multiple-input multiple-output (MIMO) system with M trans-
mit (Tx) antennas and N receive (Rx) antennas grows linearly
with min{M,N}. Correspondingly, multiple antennas provide
a promising means to increase the spectral efficiency of a sys-
tem. On the other hand, it was shown in [3],[4] that multiple
antennas can also be utilized, in order to provide a spatial diver-
sity gain and thus to improve the error performance of a system.

The results in [1]-[4] are based on the assumption that the
individual transmission links from the transmit antennas to the
receive antennas are statistically independent. Spatial correla-
tion, caused by insufficient antenna spacings or a lack of scatter-
ing from the physical environment, can cause significant degra-
dations in capacity and error performance [5],[6]. In cellular
systems, spatial correlation is an issue both at the base station
and at the mobile station: Though at the base station generous
antenna spacings can be granted, there is comparably little scat-
tering from the physical environment, because the transmitted/
received signals are typically concentrated within a small an-
gular region. As opposed to this, the mobile station normally
experiences rich scattering from many local scatterers, but the
antenna spacings are often small due to a limited terminal size.

In this paper, we consider a simple reduced-complexity re-
ceive diversity scheme for spatially correlated multiple-antenna
systems, which solely requires knowledge of the second-order
statistics of the MIMO channel. Such statistical channel knowl-
edge can easily be acquired, for example off-line through field
measurements, ray-tracing simulations or based on physical
channel models, or on-line based on long-term averaging of

the channel coefficients [7]. The receive diversity scheme un-
der consideration consists of an inner decorrelation stage based
on the Karhunen-Loève transform (KLT) [8, Ch. 8.5] and an
outer selection stage. (The general structure of this reduced-
dimension receiver was earlier considered in [9]. Here, we com-
bine it with subsequent space-time decoding/ equalization.)

The benefit of such a receiver structure is that it provides a
flexible trade-off between complexity and performance: Using
all spatial dimensions offered by the individual receive anten-
nas is of course optimal, but it leads to a high complexity for
subsequent receiver stages. In the case of correlated receive
antennas, however, an appropriate subset of spatial dimensions
is usually sufficient in order to achieve a performance close to
the optimum. In other words, the complexity of subsequent re-
ceiver stages can be reduced significantly at the expense of only
a small performance loss. This complexity reduction is carried
out by the selection stage, by selecting an appropriate subset of
the eigenvalues (and the associated eigenvectors) of the receiver
correlation matrix for further processing.

The main focus of this paper is to analyze the complexity-
performance trade-off offered by the reduced-dimension re-
ceiver and to study the influence of estimation errors concerning
the receiver correlation matrix. As will be see, a mismatched
decorrelation and selection stage due to estimation errors can
have some impact on the complexity-performance trade-off,
since a wrong number of eigenvalues/ eigenvectors might be
retained for further processing. Still, it is shown that the con-
sidered receive diversity scheme is quite robust against these
effects. Specifically, the robustness of the scheme can be im-
proved by modifying the selection rule originally proposed in
[9] accordingly. We also consider a statistical transmit power al-
location scheme, which might be employed in conjunction with
the reduced-dimension receiver so as to improve performance.

A. Paper Organization
The paper is organized as follows: In Section II, the system and
correlation model used throughout this paper is introduced. In
Section III, the receive diversity scheme under consideration is
discussed. Specifically, closed-form expressions and numeri-
cal results for the resulting bit error rates are presented. The
impact of estimation errors is analyzed in Section IV. Finally,
the statistical transmit power allocation scheme is considered in
Section V, and conclusions are drawn in Section VI.

B. Mathematical Notation
Matrices and vectors are written in upper case and lower case
bold face, respectively. If not stated otherwise, all vectors are
column vectors. The complex conjugate of a complex num-
ber a is marked as a∗, and the Hermitian transposed of a ma-
trix A as AH. The trace of an (M×M)-matrix, i.e., the sum
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over all diagonal elements, is denoted as tr(A). The square-
root A1/2 of a Hermitian matrix A (i.e., A=AH) is defined as
A1/2 HA1/2 = A1/2A1/2 H = A. diag(a) is a diagonal matrix
with diagonal elements given by the vector a, and vec(A) is a
vector which results from stacking the columns of an (N×M)-
matrix A in a joint vector. E{.} denotes statistical expectation.

II. SYSTEM AND CORRELATION MODEL

Throughout this paper, the complex baseband notation is used.
We consider a MIMO system with M transmit and N receive
antennas. The corresponding discrete-time channel model for
quasi-static frequency-flat fading is given by

y[k] = Hx[k] + n[k], (1)

where k denotes the discrete time index, y[k] the (N×1)-
received vector, H the (N×M )-channel matrix, x[k] the
(M×1)-transmitted vector, and n[k] an (N×1)-noise vector. It
is assumed that H, x[k] and n[k] are statistically independent.

The channel matrix H is assumed to be constant over an
entire data block, spanning K subsequent time indices, and
changes randomly from one data block to the next. Specifi-
cally, the entries hji of H (i = 1, ...,M , j = 1, ..., N ) are as-
sumed to be zero-mean (circularly symmetric) complex Gaus-
sian random variables with variance σ2

h/2 per real dimension,
i.e. hji ∼ CN{0, σ2

h} (Rayleigh fading).1
The vector x[k] is assumed to contain space-time encoded

data symbols a[k] (randomly) drawn from a Q-ary symbol al-
phabet A. Within the scope of this paper, we focus on orthogo-
nal space-time block codes (OSTBCs) [3],[4] such as the well-
known Alamouti-STBC for M=2 transmit antennas. How-
ever, the reduced-dimension receiver considered here (as well
as the statistical transmit power allocation scheme) can be used
in conjunction with any other space-time coding technique.
The entries xi[k] of the vector x[k] are assumed to have zero
means and equal variances.2 Moreover, we assume an over-
all power constraint of P/N , i.e., E{|xi[k]|

2} := P/(MN),
i = 1, ...,M . (Thus, a fair comparison is possible between sys-
tems with different numbers of antennas.) Typically, the en-
tries of x[k] are statistically independent random variables (only
across the individual transmit antennas, not in time direction),
i.e., E{x[k]xH[k]}= P/(MN) · IM .

Finally, the entries of n[k] are zero-mean, spatially and tem-
porally white (circularly symmetric) complex Gaussian ran-
dom variables with variance σ2

n/2 per real dimension, i.e.,
nj [k] ∼ CN{0, σ2

n} and E
{
n[k]nH[k′]

}
= σ2

n · δ[k−k′] · IN .
(The noise variance σ2

n is assumed to be known at the receiver.)
The spatial correlation between two channel coefficients hji

and hj′i′ is defined as

ρij,i′j′ := E{hji h
∗
j′i′}/σ

2
h = ρ∗i′j′,ij . (2)

(Note that the magnitude of ρij,i′j′ is always between zero and
one.) Moreover, we define

RTx := E{HHH}/(Nσ2
h), RRx := E{HHH}/(Mσ2

h), (3)

where RTx denotes the transmitter correlation matrix and RRx

the receiver correlation matrix (tr(RTx)=M , tr(RRx)=N ).
Within the scope of this paper, the Kronecker-correlation

model [5] is used. This means that (i) the transmit antenna

1For simplicity, we assume equal variances for the individual channel coeffi-
cients hji. A generalization to unequal variances is, however, straight forward.

2For the time being, we consider equal power allocation at the transmitter.

correlations ρij,i′j =:ρTx,ii′ (i, i′=1, ...,M ) do not depend on
the specific receive antenna j under consideration, (ii) the re-
ceive antenna correlations ρij,ij′ =:ρRx,jj′ (j, j′=1, ..., N ) do
not depend on the specific transmit antenna i under consid-
eration, and (iii) the spatial correlations ρij,i′j′ can be writ-
ten as ρij,i′j′ := ρTx,ii′ · ρRx,jj′ . Altogether, the overall spa-
tial correlation matrix R :=E{vec(H)vec(H)H}/σ2

h of size
(MN×MN ) can be written as the Kronecker product

R = RTx ⊗ RRx, (4)
RTx := [ρTx,ii′ ]i,i′=1,...,M , RRx := [ρRx,jj′ ]j,j′=1,...,N . (5)

Moreover, the channel matrix H can be written as

H := R
1/2
Rx GR

1/2
Tx , (6)

where G denotes an (N×M )-matrix with spatially uncorrelated
entries gji ∼ CN{0, σ2

h}. The square-roots R
1/2
Tx and R

1/2
Rx

can be obtained via the eigenvalue decompositions of RTx and
RRx (e.g., by means of the Jacobian algorithm [10, Ch. 8.4]):

R
1/2
Tx := UTx Λ

1/2
Tx UH

Tx, R
1/2
Rx := URx Λ

1/2
Rx UH

Rx, (7)

where ΛTx, ΛRx are diagonal matrices containing the (real-
valued) eigenvalues λTx,i and λRx,j of RTx and RRx, re-
spectively, and UTx, URx are unitary matrices containing the
corresponding eigenvectors (UTxU

H
Tx =IM , URxU

H
Rx =IN ).

Note that the eigenvalues λTx,i and λRx,j are always greater or
equal to zero [11, Ch. 1.5]. Since ΛTx and ΛRx are diagonal,
Λ

1/2
Tx and Λ

1/2
Rx are also diagonal and contain the (non-negative)

square-roots of the eigenvalues λTx,i and λRx,j , respectively.
With the above assumptions, the following covariance matrix

results for the received vector y[k]:

E
{
y[k]y[k]H

}
= E

{
Hx[k]xH[k]HH

}
+ E

{
n[k]nH[k]

}

=
P

MN
· E
{
HHH

}
+ σ2

n IN

=
P

N
· σ2

h RRx + σ2
n IN . (8)

In the case of frequency-selective fading, (1) generalizes to

y[k] =

L∑

l=0

H(l)x[k−l] + n[k], (9)

where L denotes the channel memory length (assumed identical
for all transmission links). The variance of the entries h(l)

ji of
H(l) is in the sequel denoted by σ2

h,l. The spatial correlation

between two channels coefficients h(l)
ji and h(l)

j′i′ is defined as

ρ
(l)
ij,i′j′ := E{h

(l)
ji h

(l)∗
j′i′ }/σ

2
h,l. (10)

In the case of frequency-selective fading, (8) generalizes to

E
{
y[k]y[k]H

}
(11)

=

L∑

l=0

L∑

l′=0

E

{

H(l) x[k−l] xH[k−l′]H(l′)H
}

︸ ︷︷ ︸

=:ΘRx

+σ2
n IN .

In accordance with the flat-fading case, we therefore define

RRx := N ΘRx/(Pσ̃
2
h), (12)
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Dimension D≤N

Fig. 1. Transmission model with receive diversity scheme for spatially correlated MIMO systems (frequency-flat fading).

where σ̃2
h is chosen such that the trace of the resulting receiver

correlation matrix RRx is equal to N . By this means, equa-
tion (8) can be used both for flat-fading and frequency-selective
fading (with σ̃2

h instead of σ2
h). Note that in the frequency-

selective case RRx represents an effective spatial correlation
matrix seen at the receiver, which includes the spatial correla-
tions of the MIMO channel, the intertap correlations, as well as
the temporal correlations of the space-time encoded vector x[k].
(In the case of temporally uncorrelated vectors x[k], we have
σ̃2

h =σ2
h,0+...+σ2

h,L.) Unfortunately, the definition of a simi-
lar effective spatial correlation matrix for the transmitter side is
less straight forward, unless E{H(l)HH(l)}/(Nσ2

h,l)=:RTx is
the same for all indices l.

III. RECEIVE DIVERSITY SCHEME FOR SPATIALLY
CORRELATED MIMO SYSTEMS

In the following, the basic principle of the receive diversity
scheme under consideration is discussed. For the sake of sim-
plicity, we restrict the discussion to the case of frequency-flat
fading. However, based on (8) and (12) a generalization to
frequency-selective fading is straight forward.

A. Decorrelation and Selection Stage
The transmission model under consideration is depicted in
Fig. 1. The information symbols a[k] are space-time encoded
using an OSTBC, and the resulting (M×1)-vector x[k] is trans-
mitted over the MIMO channel with channel matrix H. The
receiver consists of an inner decorrelation stage (based on the
KLT) and a subsequent selection stage. The overall transmis-
sion model (without selection stage) can be written as follows:

y′[k] = UH
RxHx[k] + UH

Rxn[k] =: H′ x[k] + n′[k], (13)

where H′ :=UH
RxH and n′[k] :=UH

Rxn[k]. The decorrelation
stage transforms the given channel matrix H according to (6)
into a semi-correlated channel matrix H′=Λ

1/2
Rx GR

1/2
Tx , by

using the unitary matrix URx from the eigenvalue decompo-
sition of RRx:

E
{
H′H′H

}
= UH

Rx E
{
HHH

}
URx = Mσ2

h ΛRx. (14)

Note that the resulting noise vector n′[k] is still spatially white
(with unaltered variance):

E
{
n′[k]n′H[k]

}
= UH

RxE
{
n[k]nH[k]

}
URx = σ2

n · IN . (15)

The channel matrix H′ is often called virtual channel matrix in
the literature, and the N outputs of the decorrelation stage UH

Rx
(vector y′[k]) represent virtual receive antennas.

D

Nσ
2
n

0 N1 2 (N−1)

(N−D)σ
2
n

. . .3

P

Choose D=2

Pdisc

Fig. 2. Choice of the parameter D in the selection stage (example, σ2

h
=1).

The task of the selection stage is to provide an optimal trade-
off between complexity and performance, by selecting an ap-
propriate subset of the N virtual receive antennas for further
processing [9]. More specifically, the selection stage selects
those D≤N components of the vector y′[k] that correspond to
the strongest eigenvalues λRx,j (and the associated eigenvec-
tors) of the receiver correlation matrix RRx. This yields a new
vector y′′[k] of size (D×1). On the one hand,D should be cho-
sen as small as possible, in order to keep the resulting complex-
ity of subsequent receiver stages small. On the other hand, if
the chosen number of discarded signal dimensions is too large,
a significant performance loss will occur. In [9], the following
criterion was proposed for the selection of the parameter D:

Pdisc :=
P

N
· σ2

h

∑

j∈Jdisc

λRx,j

!
≤ (N−D) · σ2

n , (16)

where Jdisc denotes the index set for the discarded eigenval-
ues λRx,j (|Jdisc|=N−D). In other words, the parameter D
should be chosen as small as possible, but such that the aver-
age discarded sum power of the desired signal, Pdisc, is smaller
or equal to the average sum power of the discarded noise. The
optimization criterion (16) is illustrated in Fig. 2.3

B. Equalization and Detection Stage

Obviously, the receive diversity scheme under consideration is
solely based on second-order channel statistics (in terms of the
receiver correlation matrix, the channel variance, and the noise

3Note that both the decorrelation stage and the selection stage is completely
independent of the transmitter correlation matrix RTx.
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variance). For the subsequent equalization/ detection step, how-
ever, we assume perfect knowledge of the instantaneous chan-
nel matrix H′. In the case of flat fading, the information sym-
bols a[k] can be recovered at the receiver by means of a simple
linear detection operation based on an equivalent channel ma-
trix Heq [3],[4]. In the case of frequency-selective fading, a
bank of appropriate a-posteriori probability (APP) equalizers
[12] can be used at the receiver, in order to recover the informa-
tion symbols a[k] (one APP equalizer for each receive antenna).
In a final step, the APP values provided by the individual equal-
izers have to be combined accordingly (e.g., in the case of log-
likelihood ratios, by a summation).4

C. Complexity-Performance Trade-off

In the following, the error performance of a spatially correlated
OSTBC system with reduced-dimension receiver is evaluated,
so as to illustrate the offered complexity-performance trade-off.
To start with, we consider a full-dimension receiver (D=N ).
Moreover, for the time being we focus on the case of flat fading.

The OSTBC (in conjunction with the appropriate linear de-
tection step at the receiver) transforms the (M×N )-MIMO sys-
tem (1) into an equivalent single-antenna system of form [16]

z[k] =





M∑

i=1

N∑

j=1

|hji|
2



 a[k] + w[k], (17)

where z[k] denotes the kth received symbol after the linear
detection step, a[k] the kth information symbol, and w[k] an
additive white Gaussian noise (AWGN) sample. Correspond-
ingly, the (M×N )-OSTBC system is equivalent to an (1×MN )
maximum-ratio-combining (MRC) system [17], where we as-
sume that (i) the OSTBC provides a temporal rate of 1 sym-
bol/ channel use (‘full rate’)5 and (ii) the underlying overall
received energy per information symbol, Es, after linear de-
tection/ MRC is the same in both systems. Using the average
power constraint P/(MN) from Section II for the transmitted
symbols, the overall received signal-to-noise ratio (SNR) after
linear detection/ MRC results as Pσ2

h/σ
2
n =:Es/N0, where N0

denotes the single-sided noise power density.
The error performance of a spatially correlated (1×MN )-

MRC system (and thus of the corresponding (M×N )-OSTBC-
system) can in turn be analyzed by means of the KLT. Consider
the following (1×MN )-system:

y[k] = h a[k] + n[k]. (18)

(For the (1×MN )-channel vector h and the (1×MN )-noise
vector n[k], the same statistical properties are assumed as in
Section II.) Let R :=E{hhH}/σ2

h denote the overall spatial
correlation matrix, which corresponds to the Kronecker product
of the transmitter and receiver correlation matrix in the equiva-
lent (M×N )-OSTBC system, cf. (4). Based on the eigenvalue
decomposition R :=UΛUH, the system (18) is decorrelated as

y′[k] := UH y[k] =: h′ a[k] + n′[k], (19)

4Alternatively, one might replace the OSTBC by a space-time coding scheme
suitable for frequency-selective fading, such as (generalized) delay diversity
[12]-[14] or the time-reversal STBC in [15].

5It should be noted that full-rate OSTBCs exist solely for two transmit an-
tennas (Alamouti-STBC) [18]. However, since in this paper focus is on the
complexity-performance trade-off offered by the reduced-dimension receiver,
we will always assume a full-rate OSTBC for simplicity.

where E{h′h′H}=Λ and E{n′[k]n′H[k]}=σ2
nIN . As can be

seen, the decorrelated system is characterized by unequal av-
erage link SNRs determined by the eigenvalues λ1, ..., λMN

of R. In [19] it was shown that the two systems (18) and (19)
are equivalent in the sense that MRC provides the same average
symbol error rate in both cases.

In the following, we focus on binary antipodal transmis-
sion6 (i.e., a[k] ∈ {±1}). The average bit error rate (BER)
of the (decorrelated) MRC-system – and thus of the equivalent
OSTBC-system – can be calculated in closed form, according
to [20, Ch. 14.5]

P̄b =
1

2

MN∑

j=1






MN∏

j′=1

j′ 6=j

γj

γj − γj′






(

1 −

√
γj

1 + γj

)

, (20)

where γj :=P σ2
h λj/(MN σ2

n), j=1, ...,MN , denotes the av-
erage SNR for the jth receive antenna. (The overall average
SNR is given by γ :=γ1 + ...+ γMN =Es/N0.) A high-SNR
approximation (σ2

n → 0) of (20) yields [20, Ch. 14.5]

P̄b ≈

(
MN

4 γ

)MN (
2MN − 1

MN

) MN∏

j=1

1

λj
, (21)

where it was assumed that all eigenvalues of the correlation ma-
trix R are greater than zero. Two important observations can be
made in (21): (i) Asymptotically, P̄b is always proportional to
γ−MN , i.e., the diversity order of the system is not reduced as
long as the correlation matrix R has full rank; (ii) the prod-
uct term in (21), which is solely determined by the eigenvalues
of R, causes an asymptotic up-shift of the BER curve (in a log-
log plot): As shown in [21], the product term is always greater
or equal to one (and it is only equal to one in the uncorrelated
case, i.e., for Λ = IMN ).

Next, we consider a reduced-dimension receiver (D<N ).
Since R is the Kronecker product of the transmitter correla-
tion matrix RTx and the receiver correlation matrix RRx in
the equivalent (M×N )-OSTBC system, the set of eigenval-
ues {λj | j=1, ...,MN} of R is given by all pairwise products
{λTx,i · λRx,j | i=1, ...,M, j=1, ..., N} of the eigenvalues of
RTx and RRx [22, Ch. 12.2]. Therefore, based on (20) the
average BER of a spatially correlated (M×N )-OSTBC system
with reduced-dimension receiver results as

P̄b =
1

2

M∑

i=1

∑

j∈Jret








M∏

i′=1

∏

j′∈Jret

(i′,j′) 6= (i,j)

1

1 −
λTx,i′λRx,j′

λTx,iλRx,j








×

×

(

1 −

√

P σ2
h λTx,iλRx,j

MN σ2
n + P σ2

h λTx,iλRx,j

)

, (22)

where Jret denotes the index set for the retained eigenvalues
λRx,j , i.e., Jret ∪ Jdisc ={1, ..., N} . The corresponding high-
SNR approximation (σ2

n → 0) is given by

P̄b ≈

(
MN

4 γ

)MD(
2MD − 1

MD

) M∏

i=1

∏

j∈Jret

1

λTx,iλRx,j
. (23)

6Channel coding is not taken into account. However, an outer channel coding
scheme can be added to further improve performance.
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Fig. 3. BER performance of a (2×4)-OSTBC system with reduced-dimension
receiver: Binary transmission, flat Rayleigh fading (analytical results, solid
curves) and frequency-selective Rayleigh fading (simulative results for the
GSM Typical Urban scenario [24], dashed curves), uncorrelated transmit an-
tennas, receiver correlation matrix RRx =RM,ρ with M =4 and ρ=0.7. The
analytical results for flat fading were validated by means of Monte Carlo sim-
ulations. As an example, simulation results are included for the case D=2
(marked by black dots). The simulative results for the frequency-selective case
were obtained by means of Monte-Carlo simulations over 10,000 independent
data blocks. A root-raised cosine receive filter with roll-off factor r=0.5 was
used, leading to a channel memory length of L≈ 3. For simplicity, it was as-
sumed that the antenna correlations according to (10) are identical for all indices
l=0, ..., L and comply with the Kronecker correlation model (4).

As can be seen, due to the selection stage the diversity order is
reduced from MN to MD. Additionally, the overall received
SNR is reduced from γ=Pσ2

h/σ
2
n to γ′=(Pσ2

h−Pdisc)/σ
2
n.

Due to these two effects, the BER performance of the system
will deteriorate if a reduced dimensionD<N is selected. How-
ever, if the discarded eigenvalues of the receiver correlation ma-
trix are small, the performance loss will be negligible (at least
for low SNR values), i.e., the complexity of subsequent receiver
stages can be reduced significantly while retaining (virtually)
the same performance. This principle is illustrated in the fol-
lowing section by means of numerical results.

D. Numerical Results
As an example, we consider a (2×4)-OSTBC system with un-
correlated transmit antennas and a receiver correlation matrix
RRx 6= I4. Specifically, we use a single-parameter correlation
matrix

RM,ρ :=











1 ρ ρ4 · · · ρ(M−1)2

ρ∗ 1 ρ · · · ρ(M−2)2

ρ4 ∗ ρ∗
...

...
...

. . .
...

ρ(M−1)2∗ ρ(M−2)2∗ · · · · · · 1











(24)

(ρ∈ IC) for RRx, which was proposed in [23] for uniform lin-
ear antenna arrays with M antenna elements. In the sequel, we
set ρ :=0.7 (real-valued). Fig. 3 displays the BER performance
as a function of Es/N0 in dB, which results for different re-
ceiver dimensions D=1, ..., 4. Both flat fading (solid curves)
and frequency-selective fading (dashed curves) is considered.

The basic behavior of the BER curves is the same for flat
fading and frequency-selective fading. (Note, however, that the
the BER curves for frequency-selective fading exhibit a steeper
asymptotic slope, due to a larger inherent diversity order.) The
curves for D=4 represent the respective optimum BER perfor-
mance and the highest receiver complexity. As can be seen,

when discarding the weakest eigenvalue of RRx (which saves
one fourth of the complexity for subsequent equalization/ detec-
tion), the associated performance loss is very small throughout
the complete SNR range under consideration (D=3). When
discarding also the second smallest eigenvalue of RRx (D=2),
a significant performance loss occurs for large SNR values.
Note, however, that the selection criterion (16) suggests this
choice of D only if Es/N0 is smaller or equal to 4 dB. Ob-
viously, in this SNR region the associated performance loss is
rather small, i.e., for Es/N0≤4 dB one half of the receiver
complexity can be saved at the expense of only a small perfor-
mance loss. Finally, when reducing the number of dimensions
toD=1, a significant performance loss occurs for the complete
SNR range under consideration. (In fact, the selection criterion
suggests this choice only ifEs/N0 is smaller or equal to 2 dB.)7

IV. IMPACT OF ESTIMATION ERRORS

So far, we have assumed that the correlation matrix RRx is per-
fectly known at the receiver. In a practical system, however,
RRx needs to be estimated. In the case of estimation errors, the
reduced-dimension receiver will thus be based on an erroneous
receiver correlation matrix R̂Rx. In general, both the eigenvec-
tors and the eigenvalues of R̂Rx will be different from those of
the actual receiver correlation matrix RRx, i.e.,

R̂Rx = ÛRx Λ̂Rx ÛH
Rx, (25)

where ÛRx 6=URx and Λ̂Rx 6=ΛRx. (We assume that R̂Rx is
still a Hermitian matrix.) Correspondingly, Eq. (14) does not
hold anymore and generalizes to

E
{
H′H′H

}
= Mσ2

h ÛH
RxURxΛRxU

H
RxÛRx

︸ ︷︷ ︸

=:ΞRx

. (26)

(If ÛRx 6=URx, the product ÛH
RxURx does not yield the iden-

tity matrix.) The mismatched decorrelation stage ÛRx will
cause a certain shift between the received powers (desired sig-
nal) of the individual virtual receive antennas. This power shift
is captured by the diagonal elements ξRx,jj of the matrix ΞRx

(ξRx,jj 6=λRx,j). Moreover, the selection stage will be based on
erroneous eigenvalues λ̂Rx,j , i.e., the criterion (16) changes to

P̂disc :=
P

N
· σ2

h

∑

j∈Jdisc

λ̂Rx,j

!
≤ (N−D) · σ2

n . (27)

This might lead to a wrong number of spatial dimensions re-
tained for further processing. Furthermore, due to the mis-
matched decorrelation stage P̂disc does not exactly represent the
discarded sum power of the desired signal: The sum power that
is actually discarded is given by

Pdisc =
P

N
· σ2

h

∑

j∈Jdisc

ξRx,jj . (28)

7Note that the asymptotic slope of the curve for D=2 is the same as for
the (2×2)-OSTBC system: Since two of the four eigenvalues λj,Rx are dis-
carded, the effective diversity order is reduced from eight to four. The sum
of the discarded eigenvalues is equal to 0.43, which leads to an SNR loss of
10 log10(4/(4−0.43)) dB≈0.5 dB with respect to the uncorrelated (2×2)-
OSTBC system. In the case D=1, the asymptotic slope of the curve is the
same as for the (2×1)-OSTBC system, because the diversity order is reduced
to two. Moreover, an SNR loss of about 2.3 dB results with respect to the
uncorrelated (2×1)-OSTBC system.
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TABLE I
MINIMUM NUMBER D OF SPATIAL DIMENSIONS TO BE RETAINED IN ORDER TO MEET THE SELECTION CRITERION (16), FOR PERFECT KNOWLEDGE OF

THE CORRELATION PARAMETER ρ. CHANGES RESULTING FOR ESTIMATES |ρ̂| = 0.9 ρ AND |ρ̂| = 1.1 ρ ARE MARKED WITH † AND ‡, RESPECTIVELY.

Correlation 10 log10(Es/N0) dB
value ρ (and ρ̂) 0 1 2 3 4 5 6 7 8 9 10
0.0 (0.00†, 0.00‡) 1 4 4 4 4 4 4 4 4 4 4
0.1 (0.09†, 0.11‡) 1 4 4 4 4 4 4 4 4 4 4
0.2 (0.18†, 0.22‡) 1 2 4 4 4 4 4 4 4 4 4
0.3 (0.27†, 0.33‡) 1 2 3 4 (3‡) 4 4 4 4 4 4 4
0.4 (0.36†, 0.44‡) 1 1 2 3 3 (4†) 4 4 4 4 4 4
0.5 (0.45†, 0.55‡) 1 1 2 2 (3†) 3 (2‡) 3 (4†) 3 (4†) 4 (3‡) 4 4 4
0.6 (0.54†, 0.66‡) 1 1 2 (1‡) 2 (3†) 2 (3†) 3 (2‡) 3 (4†) 3 (4†) 3 (4†) 4 (3‡) 4 (3‡)
0.7 (0.63†, 0.77‡) 1 1 1 (2†) 2 (1‡) 2 (3†) 3 (2‡) 3 (2‡) 3 (2‡) 3 (4†, 2‡) 3 (4†) 3 (4†)
0.8 (0.72†, 0.88‡) 1 1 1 1 (2†) 2 (3†, 1‡) 3 (1‡) 3 (2‡) 3 (2‡) 3 (2‡) 3 (2‡) 3 (2‡)
0.9 (0.81†, 0.99‡) 1 1 1 1 1 (2†) 1 (2†) 3 (1‡) 3 (1‡) 3 (1‡) 3 (1‡) 3 (1‡)
1.0 (0.90†) 1 1 1 1 1 1 1 (3†) 1 (3†) 1 (3†) 1 (3†) 1 (3†)

This will lead to a change in the overall received SNR γ ′ after
the selection stage, compared to the case of perfect knowledge
of RRx (given the same number of retained spatial dimensions).
However, this effect is usually quite small, as long as the es-
timate for RRx is not too bad. (This has, for example, been
demonstrated in [7] by means of simulation results.)

In the following, the impact of estimation errors is illustrated
by means of a simple numerical example. For this purpose,
we assume that the receiver correlation matrix RRx is of form
(24), and that a direct estimate ρ̂ of the correlation parameter
ρ := |ρ|e jφ is available at the receiver. Correspondingly, the
reduced-dimension receiver is based on an erroneous receiver
correlation matrix R̂Rx =RM,ρ̂. We consider again the (2×4)-
OSTBC system from Section III-D (ρ=0.7). Moreover, for |ρ̂|
we assume a value of (1±0.1) ρ, and for ∆φ := |φ−φ̂| a value
of 0.1 rad. (Note that an estimation error of 10% for |ρ| and
an estimation error of 0.1 rad for φ is already quite large. Usu-
ally, such an estimation accuracy can easily be achieved, for ex-
ample, by averaging the channel coefficients over a reasonable
number of channel realizations.)

To start with, we consider the impact of the mismatched
decorrelation stage. The eigenvalues of the receiver correla-
tion matrix RRx are given by λRx,1 =2.367, λRx,2 =1.196,
λRx,3 =0.374 and λRx,4 =0.064. For comparison, the diago-
nal elements of ΞRx result as ξRx,11 =2.335, ξRx,22 =1.222,
ξRx,33 =0.374, ξRx,44 =0.069 for |ρ̂| = 1.1ρ. (For |ρ̂| = 0.9ρ
one obtains ξRx,11 =2.345, ξRx,22 =1.210, ξRx,33 =0.381,
ξRx,44 =0.065.) As can be seen, the resulting power shift be-
tween the individual virtual receive antennas is indeed quite
small. We will therefore neglect this effect in the following.

Next, we study the impact of the eigenvalue mismatch. To
start with, consider the case where the correlation parameter ρ
of the receiver correlation matrix is perfectly known. Table I
displays the minimum number D of spatial dimensions (eigen-
values/ eigenvectors of RRx) that have to be retained, in order
to meet the selection criterion (16), given different values of
Es/N0 and different (real-valued) correlation parameters ρ be-
tween zero and one. For example, consider the case ρ = 0.7:
Given an SNR value of 8 dB, the selection criterion suggests to
retain three of the four eigenvalues λRx,j for further processing.
Going back to Fig. 3, it can be seen that this choice is indeed
reasonable: On the one hand, reducing the number of retained
eigenvalues to two causes a significant performance loss. On

the other hand, increasing the number of retained eigenvalues
to four gives virtually no performance improvement and solely
increases the receiver complexity.

If the correlation parameter ρ is not perfectly known, the
selection stage will consider erroneous eigenvalues λ̂Rx,j ,
cf. (27). Correspondingly, for some correlation values and
SNR values the number of retained eigenvalues might change,
compared to the case of perfect knowledge of ρ. This is also
shown in Table I for the examples |ρ̂|=0.9 ρ and |ρ̂|=1.1 ρ
(the phase offset ∆φ does not have any impact on the esti-
mates of the eigenvalues λRx,j): Changes compared to the case
of perfect knowledge of ρ are marked with † (|ρ̂|=0.9 ρ) and
with ‡ (|ρ̂|=1.1 ρ). Consider again the example ρ=0.7 and
Es/N0 =8 dB: In the case |ρ̂|=0.63, the selection stage retains
all four eigenvalues for further processing, which leads to an
unnecessarily high receiver complexity. In the case |ρ̂|=0.77,
however, the selection stage retains only two of the four eigen-
values, which leads to a notable performance loss, cf. Fig. 3.

Altogether, it can be said that (for the considered example)
the performance of the reduced-dimension receiver is quite ro-
bust with regard to estimation errors, because the performance
loss or the complexity overhead due to possible wrong deci-
sions made by the selection stage is limited. In order to further
improve the robustness of the reduced-dimension receiver, the
selection criterion (27) can be modified according to

P̂disc

!
≤ (N−D) · σ2

n + ψ , (29)

where the parameter ψ has to be adjusted accordingly: If it is
rather affordable to accept some performance loss for certain
correlation values and SNR values, one should choose a value
ψ>0. However, if it is rather affordable to accept an unnec-
essarily high receiver complexity in some cases, one should
choose a value ψ<0.

V. STATISTICAL TRANSMIT POWER ALLOCATION

In several publications, it was shown that the performance of
MIMO systems may be improved significantly by using some
sort of channel knowledge at the transmitter, see e.g. [25]. Since
accurate instantaneous channel knowledge at the transmitter
is costly and may be difficult to acquire in a practical sys-
tem [7], we study the use of statistical channel knowledge at the
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Fig. 4. Transmission model with transmit diversity scheme for spatially correlated MIMO systems (frequency-flat fading).

transmitter here. Specifically, we consider a statistical transmit
power allocation scheme, which requires solely the knowledge
of the transmitter correlation matrix RTx. The scheme might,
for example, be combined with the reduced-dimension receiver
so as to improve performance.8

The general structure of the statistical transmit power allo-
cation scheme under consideration is depicted in Fig. 4 (for flat
fading). It was earlier studied in [7],[25] and consists of an inner
decorrelation stage UTx (similarly to the reduced-dimension
receiver, cf. Fig. 1) and an outer transmit power allocation stage,
represented by a diagonal weighting matrix

W := diag([w1, ..., wM ]), tr(W) = M. (30)

The decorrelation stage transforms the given channel matrix
H according to (6) into a semi-correlated channel matrix
H′ = R

1/2
Rx GΛ

1/2
Tx , by using the unitary matrix UTx from the

eigenvalue decomposition of RTx as a precoding matrix:

E
{
H′HH′

}
= UH

Tx E
{
HHH

}
UTx = Nσ2

h ΛTx (31)

(cf. (14)). The overall transmission model can be written as:

y[k] = Hx[k] + n[k] = HUTxW
1/2x′′[k] + n[k]

=: H′ x′[k] + n[k] =: H′′ x′′[k] + n[k] , (32)

with H′ :=HUTx, x′[k] :=W1/2x′′[k], and H′′ :=H′ W1/2,
where x′′[k] denotes the space-time encoded vector without sta-
tistical transmit power allocation. (Note that the detection of
the space-time encoded information symbols a[k] has to be car-
ried out based on the system model y[k]=H′′x′′[k]+n[k].) As
earlier, we assume that the entries of x′′[k] are statistically inde-
pendent random variables with variance P/(MN). Due to the
power constraint on W, the transmitted vector x[k] will always
meet the same overall power constraint as the vector x′′[k].

A. Error Performance and Optimal Transmit Power Allocation

In the following, we again focus on binary antipodal transmis-
sion (i.e., a[k] ∈ {±1}) and frequency-flat fading. Moreover,
for simplicity we assume that a full-dimension receiver is em-
ployed (D=N ). Under the assumptions made in Section III-C,

8It is important to note that the statistical transmit power allocation scheme
can be employed completely independently from the reduced-dimension re-
ceiver. Specifically, the decorrelation stage and the selection stage in the
reduced-dimension receiver remain unchanged, when statistical transmit power
allocation is performed.

the average BER of a spatially correlated (M×N )-OSTBC sys-
tem with statistical transmit power allocation stage is given by9

P̄b =
1

2

M∑

i=1

N∑

j=1








M∏

i′=1

N∏

j′=1

(i′,j′) 6= (i,j)

1

1 −
wi′λTx,i′λRx,j′

wiλTx,iλRx,j








×

×

(

1 −

√

P σ2
h wiλTx,iλRx,j

MN σ2
n + P σ2

h wiλTx,iλRx,j

)

. (33)

The optimal transmit power allocation strategy in terms of a
minimum symbol error probability was derived in [7] as a func-
tion of the overall SNR γ=Es/N0. The result is a waterfilling
solution with respect to the inverse eigenvalues 1/λTx,i of the
transmitter correlation matrix RTx:

wi,opt = M




1

M ′
−

1

γ




1

λTx,i
−

1

M ′

M ′

∑

i′=1

1

λTx,i′









+

, (34)

where [x ]+ :=max{0, x} and M ′ denotes the number of
spatial dimensions actually used (i.e., the number of power
weights wi,opt>0). For high SNR values, this solution tends
to the equal-power-allocation (EPA) solution, i.e., wi,opt =1
for all i (M ′=M ). For low SNR values, one obtains the
eigen-beamforming (EBF) solution, where the complete trans-
mit power is concentrated on the strongest eigenvalue of RTx

(M ′=1). A particularly simple power allocation strategy is to
employ a transmitter-sided MRC scheme, where the eigenval-
ues λTx,i themselves are used as weighting factors (wi :=λTx,i,
i=1, ...,M ), i.e, strong eigenvalues are strongly weighted and
weak eigenvalues are weakly weighted. As will be shown in
the next section, the MRC scheme yields a near-optimum per-
formance over a wide SNR range.

B. Numerical Results and Impact of Estimation Errors
As an example, we consider a (4×1)-OSTBC system with a
transmitter correlation matrix RTx =RM,ρ according to (24),
where M=4 and ρ :=0.8 (real-valued). Fig. 5 displays the
BER performance as a function of Es/N0 in dB, which results
for the different transmit power allocation strategies discussed
above (solid lines). For low SNR values the EBF scheme is

9If the statistical transmit power allocation scheme is employed in conjunc-
tion with the reduced-dimension receiver, the average BER can be determined
based on (22), by replacing the eigenvalues λTx,i by wiλTx,i, respectively.
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Fig. 5. BER performance of a (4×1)-OSTBC system with different statistical
transmit power allocation strategies (analytical results): Binary transmission,
flat Rayleigh fading, transmitter correlation matrix RTx =RM,ρ with M =4
and ρ=0.8. All analytical results were validated by means of Monte Carlo
simulations. As an example, simulation results are included for the EBF scheme
(marked by black dots).

best (as expected), although the difference to the MRC scheme
is barely visible.10 In fact, the MRC scheme provides a good
performance over the complete SNR range under consideration
and is quite close to the optimal waterfilling solution (34). De-
pending on the SNR value the MRC scheme provides a gain of
up to 2 dB over the EBF scheme/ the EPA scheme. Interest-
ingly, even for SNR values up to 15 dB the MRC scheme still
outperforms the EPA scheme. However, for larger SNR values
the EPA scheme becomes superior (not shown).

If the transmitter correlation matrix is not perfectly known,
the statistical transmit power allocation scheme will use a mis-
matched decorrelation stage ÛTx 6=UTx and a mismatched
power allocation stage Ŵ (due to an erroneous eigenvalue ma-
trix Λ̂Tx 6=ΛTx). In effect, this will cause an overall mismatch
in the power weighting, which is captured by the diagonal ele-
ments of the matrix

ΞTx := ÛH
TxUTx ŴΛTx UH

TxÛTx. (35)

As an example, numerical results have been included in Fig. 3
for the case of the MRC scheme (dashed lines). As earlier,
it was assumed that a direct estimate ρ̂ of the correlation pa-
rameter ρ is available, where for |ρ̂| values of 0.9 ρ and 1.1 ρ
were considered and for ∆φ a value of 0.1 rad. As can be seen,
the BER performance of the MRC scheme is quite robust with
regard to these estimation errors. (Moreover, since the MRC
scheme is not optimal, estimation errors can even improve the
performance slightly.)

VI. CONCLUSIONS

In this paper, a simple reduced-complexity receive diversity
scheme for spatially correlated MIMO systems has been con-
sidered, which consists of an inner decorrelation stage and an
outer selection stage. The considered reduced-dimension re-
ceiver requires solely statistical knowledge of the MIMO chan-
nel, which can easily be acquired in practical systems. Using an

10Note that the BER curve of the EBF scheme has the same asymptotic slope
as the curve of the single-antenna system, because the EBF scheme reduces the
diversity order from four to one. However, compared to the single-antenna sys-
tem an SNR gain of 10 log10(2.72) dB≈4.4 dB is achieved, since the maxi-
mum eigenvalue of RTx is given by λTx,max =2.72.

appropriate selection criterion, it was shown that the scheme of-
fers a good trade-off between complexity and performance and
is quite robust with regard to estimation errors. Finally, a statis-
tical transmit power allocation scheme was considered, which
might be combined with the reduced-dimension receiver so as
to improve performance.
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