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Abstract—The application of a distributed space-time coding
scheme in a simulcast network is considered. A key challenge is
addressed which is particularly crucial in the downlink: Since
the distances between the individual transmitting nodes and the
receiving node are typically different, the transmitted signals are
subject to different propagation delays and to different path losses.
The influence of these effects on the system performance is inves-
tigated for the example of a specific space-time coding scheme,
based on simulative and analytical results. Specifically, the issue
of equalization/detection at the receiver is addressed, and a joint
equalizer/detector algorithm of practicable complexity is proposed
for large relative propagation delays.

Index Terms—Wireless communications, cooperative networks,
distributed space-time coding techniques.

I. INTRODUCTION

W
IRELESS communication systems with multiple anten-
nas have recently attracted considerable interest [1].

This is because the performance of a wireless system is often
limited by fading and may be significantly improved by exploit-
ing some sort of diversity, for example, spatial diversity.
Spatial diversity results from the fact that the individual
transmission paths from the transmit (Tx) antennas to the re-
ceive (Rx) antennas are likely to fade independently. Space-
time codes (STCs) for multiple antenna systems yield an addi-
tional diversity and/or coding gain compared to a (1x1)-system
with only a single antenna at either end of the link. With STCs,
multiple antennas are only required at the transmitter, whereas
multiple Rx antennas are optional.
The concept of multiple antennas may be transferred to co-

operative wireless networks, where multiple (single-antenna)
nodes share their antennas by using a distributed STC scheme.
Just as in a conventional multiple-antenna system, the nodes
may thus exploit spatial diversity (‘cooperative diversity’). The
idea of cooperating network nodes is gaining more and more
attention in the literature, because cooperating nodes build the
basis of any ad-hoc network. In addition, cooperative diver-
sity promises considerable benefits also for other types of net-
works, such as cellular networks and sensor networks. Exam-
ples for cooperative wireless networks include simulcast net-
works (e.g. [2]) and relay-assisted networks (e.g. [3]).
Simulcast networks are, for example, employed for broad-

casting or for paging applications, i.e., either when many mo-
bile users are to be served simultaneously or when the position
of a single desired user is unknown. Conventionally, several
serving nodes simultaneously transmit the same signal using
the same carrier frequency. Simulcasting may, for example,
be applied in satellite-aided systems (cf. Fig. 1 (a)). In cellu-
lar systems, simulcasting may be used in areas that are served
by multiple base stations, in order to reduce the probability of
shadowing (synchronized base stations are already deployed in
practice). However, conventional simulcasting does not yield a
diversity gain [2]. In relay-assisted networks, the transmitted
signal of a certain source node, e.g., a mobile station, is re-
ceived by several relay nodes, which then forward the signal to
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Fig. 1. (a) Satellite-aided system with a mobile user having intervisibility
with two satellites (b) Simulcast network with N Tx nodes and one Rx node
(downlink).

a certain destination node. Relaying may either be performed
by fixed stations or by other mobile stations.
In this paper, the application of a distributed STC scheme in

a simulcast network is addressed. An example for a simulcast
network withN Tx nodes and one Rx node is given in Fig. 1 (b).
If all nodes employ a single antenna and if no shadowing oc-
curs, a diversity degree of N may be achieved by means of an
appropriate distributed STC scheme forN Tx antennas. For in-
stance, an orthogonal space-time block code (OSTBC) [4],[5]
may be employed. On the one hand, OSTBCs achieve full di-
versity in terms of the number of Tx nodes. On the other hand,
they have another desirable property [3]: If any subset of n<N
Tx nodes is completely obstructed due to shadowing, OSTBCs
still grant a diversity degree of (N−n). A drawback of these
STC schemes is, however, that forN >2 no OSTBC exists with
a temporal rate of one [6]. ForN =2, the well-known Alamouti
scheme [4] provides a temporal rate of one; therefore the focus
will be on this scheme here. Even if there are more than two
Tx nodes available, it may still be useful to employ the Alam-
outi scheme – in conjunction with a selection diversity scheme
[7] choosing those two nodes that are associated with the best
transmission paths toward the Rx node, e.g., in terms of average
signal-to-noise ratio (SNR).
Within the scope of this paper, a key challenge is consid-

ered that is particularly crucial in the downlink of a simulcast
network: As the distances between the individual Tx nodes and
the Rx node are typically different, the transmitted signals si(t),
i = 1, ..., N , are subject to different propagation delays δi and
to different average path gains αi (cf. Fig. 1 (b)), provided that
no counter measures are applied. Different path gains αi may
also be caused by shadowing. Since these effects are due to the



distributed nature of the STC scheme under consideration, they
are usually not addressed in the standard literature on STCs.
The paper is organized as follows: The system model under

consideration is introduced in Section II. The impact of differ-
ent average path gains αi on the system performance is stud-
ied in Section III, based on analytical and simulative results. In
Section IV it is shown that different propagation delays δi cause
intersymbol interference (ISI). A joint equalizer/detector algo-
rithm for the Alamouti scheme in the presence of ISI proposed
in an earlier work [8] is briefly recapitulated, and the influence
of different propagation delays is investigated. Moreover, the
case of large relative propagation delays is considered, which
may, for example, occur in a satellite-aided system. It is shown
that the concept of ‘sparse’ wireless channels [9],[10] can be
exploited to derive an equalizer/detector algorithm of compara-
bly low complexity for this scenario.

II. SYSTEM MODEL

Throughout this paper, the equivalent complex baseband rep-
resentation is used. It is assumed that the Tx nodes are perfectly
synchronized in time and in frequency. In order to counteract
the different propagation delays δi, the Tx nodes may apply
some sort of timing-advance (TA) protocol [11, Ch. 8.3]. For
this purpose, each delay δi must be known at the corresponding
Tx node Txi. The Tx nodes may then adjust the timing of their
transmitted signals accordingly. Similarly, in order to counter-
act the different average path gains αi, the Tx nodes may apply
some sort of link-adaptation (LA) protocol [11, Ch. 8.10] to
adapt their average transmission powers.
In the sequel, focus is on a distributed Alamouti scheme,

where the two Tx nodes and the Rx node each employ a sin-
gle antenna. The Alamouti scheme [4] was designed for quasi-
static frequency-flat fading channels. In the equivalent discrete-
time channel model,M -ary data symbols are processed in pairs
[x[k], x[k+1] ] and transmitted over two antennas according to

A[k]
.
=

[

x[k] −x∗[k+1]
x[k+1] x∗[k]

]

←− Time index k
←− Time index k+1

↑ ↑

Antenna 1 Antenna 2 (1)

where (.)∗ denotes complex conjugation1. Here, focus will be
on binary transmission (M =2), i.e., x[k]∈{±1}.
The physical channel is modeled as a frequency-flat block-

fading channel, e.g., characterized by a Rayleigh distribution or
by a Rician distribution. Moreover, it is assumed that a square-
root Nyquist filter is used both at the Tx nodes and at the Rx
node (baud-rate sampling is presumed).
Normalization is in the sequel done such that δ1 = 0 and

α1 =1 for the first transmission path, without loss of generality.
For the second transmission path, let δ2 ≥ 0 and α2 ≤ 1. The
following four scenarios are distinguished:

(i) The Tx nodes apply perfect TA and perfect LA, i.e.,
δ2 = δ1 = 0 and α2 = α1 = 1.

(ii) The Tx nodes apply perfect TA, but no or non-perfect LA,
i.e., δ2 = δ1 = 0 and α2

.
= α ≤ 1.

(iii) The Tx nodes apply perfect LA, but no or non-perfect TA,
i.e., δ2

.
= δ ≥ 0 and α2 = α1 = 1.

(iv) The Tx nodes apply neither perfect TA nor perfect LA.

1In this paper, the transposed of the original matrix [4] is used.

The first scenario corresponds to a conventional multiple-anten-
na system with colocated antennas. In the sequel, focus is on
scenario (ii) and on scenario (iii). If neither perfect TA nor per-
fect LA is applied, the path gain α and the delay δ have inde-
pendent impacts on the system performance and may therefore
be treated separately. Accordingly, the last scenario does not
yield new insights and is therefore not considered further.
It is assumed in the sequel that for each realization of the fad-

ing process, the channel coefficients, i.e., the coefficients of the
equivalent discrete-time channel model, are perfectly known at
the receiver. If perfect TA is applied (and if the optimum sam-
pling phase is used), the transmission path from Tx node Txi

(i = 1, 2) to the Rx node can be modeled by a single complex-
valued channel coefficient hi

.
= ai exp(jφi)with E{|hi|

2}
.
=αi,

which is constant over the duration of a complete transmission
block (E{.} denotes expectation). In this case, the orthogonal
properties of the Alamouti matrix A[k] may be exploited, and
maximum-likelihood detection of the transmitted data symbols
x[k] and x[k+1] at the receiver may be performed by a sim-
ple matrix-vector multiplication and a subsequent hard deci-
sion [4]. However, if the relative propagation delay δ is not
compensated, ISI occurs (cf. Section IV) and an appropriate
equalizer/detector algorithm is required at the receiver.
To start with, the case of perfect TA is considered.

III. PERFECT TIMING ADVANCE

If perfect TA and additionally perfect LA is performed, i.e.
α = 1, the two transmission paths from Tx node Txi (i = 1, 2)
to the Rx node are characterized by the same average SNR. As-
suming Rayleigh fading, an analytical expression for the bit er-
ror rate (BER) performance of the distributed Alamouti scheme
is given by [12, Ch. 14.4]

Pb =
1

2

[

1 − µ −
µ

2

(
1− µ2

) ]

, µ =
1

√

1 + 2N0

Es

, (2)

whereEs denotes the average symbol energy andN0 the single-
sided noise power density. In order to provide a fair comparison
with a (1x1)-system, the overall transmission power of each Tx
node has been normalized by the factor 1/2. If no or non-perfect
LA is performed (α < 1), the two transmission paths will have
different average SNRs. In this case, the BER performance of
the distributed Alamouti scheme is given by [12, Ch. 14.5]

Pb =
1

2

[
1− µ

1− α
+

α (1− µα)

α− 1

]

, µα =
1

√

1 + 2N0

αEs

, (3)

again assuming Rayleigh fading. It can be shown that (2) and
(3) are equivalent for α→1.
Fig. 2 illustrates the BER performance of the distributed

Alamouti scheme as a function of Es/N0 in dB, for different
values of α. Simulation results are provided for both Rayleigh
fading (solid lines) and Rician fading with a Rice factor of
0 dB (dotted lines). The simulation results have been obtained
by means of Monte-Carlo simulation over 106 channel real-
izations. The analytical results for Rayleigh fading according
to (2) and (3) are as well included and marked with ‘+’. As
can be seen, the simulative results match the analytical results
very well. Note that for α = 1 a diversity degree of two is ob-
served – as expected, i.e., for large Es/N0 the BER decreases

with 1/(Es/N0)
2. For α = 0, however, a diversity degree of
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Fig. 2. BER performance of the distributed Alamouti scheme as a function of
Es/N0 in dB, given different average path gains α for the second transmission
path. Solid lines: Rayleigh fading (simulative and analytical results, marked
with ‘+’); dotted lines: Rician fading with Rice factor 0 dB.

one results, and a 3 dB-loss with respect to the corresponding
(1x1)-system is observed, due to the normalization of the over-
all transmission power. Given Rician fading, the BER curves
are in all cases approximately 1 dB better than the correspond-
ing curves for Rayleigh fading (large Es/N0).

IV. NON-PERFECT TIMING ADVANCE

If the distributed Alamouti scheme is used in conjunction
with no or with non-perfect TA, the relative propagation delay
δ on the second transmission path (Tx2 → Rx) is in general
greater than zero. Without loss of generality, it is assumed in
the sequel that the sampling phase is optimized with respect to
the first transmission path. This means that ISI is caused by the
second transmission path. Therefore, an equalizer is required at
the receiver.
In the sequel, it is assumed that a square-root Nyquist filter

f(τ) with cosine roll-off (roll-off factor r) is used at both the
Tx nodes and the Rx node. The overall impulse response of
transmitter and receiver is therefore given by g(τ)=f(τ)∗f(τ),
where the asterisk denotes convolution. In Fig. 3 the occurring

ISI is exemplified, showing the channel coefficients h
(l)
2 that

result for the second transmission path, given a roll-off factor
of r=0.2 and a delay δ = T/5. Plots for r=0 and r=1 are as
well included. In general, given a delay δ = ∆ with 0≤∆<1,

the channel coefficients h
(l)
2 result as

h
(l)
2 = c ·

sin (ξ)

ξ

cos (rξ)

1− (2rξ/π)
2

︸ ︷︷ ︸
.
= g(lT−∆)

· a2 exp(jφ2) , (4)

where ξ
.
=

π

T
(lT −∆) . (5)

The normalization factor c is chosen such
∑

l
g(lT−∆)=1. As

earlier, a2 and φ2 are constant over the duration of a complete
transmission block (E{a2

2}=α2
.
=1). It turns out that for l<−1

and for l > 2 the average powers E{|h
(l)
2 |

2} are approximately
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Fig. 3. Example for the ISI caused by the second transmission path, given a
relative propagation delay δ = T/5 (T denotes the symbol duration, baud-rate
sampling presumed; square-root Nyquist filter with cosine roll-off used at both
the Tx nodes and the Rx node, different roll-off factors 0≤r≤ 1 considered).

zero for all 0 ≤ ∆ < 1. The transmission path Tx2 → Rx is
therefore modeled by the channel coefficients

h2 = [h
(−1)
2 h

(0)
2 h

(1)
2 h

(2)
2 ] (6)

in the sequel. The dominant channel coefficients are h
(0)
2 and

h
(1)
2 . For delays δ=nT +∆, n>0 integer, one obtains

h2 = [ 0 · · · 0
︸ ︷︷ ︸

n zeros

h
(−1)
2 h

(0)
2 h

(1)
2 h

(2)
2 ] , (7)

and for δ =0 one obtains h2 =[ 0 a2 exp(jφ2) 0 0 ]. The chan-
nel coefficients for the first transmission path are always given
by h1 =[ 0 a1 exp(jφ1) 0 0 ].
In the sequel, the trellis-based joint equalizer/detector algo-

rithm for the Alamouti scheme in the presence of ISI proposed
in an earlier work [8] is briefly recapitulated.

A. Trellis-Based Equalizer/Detector for the Alamouti Scheme

The equalizer/detector has to account for the specific struc-
ture of the Alamouti scheme according to (1). This means, stan-
dard equalizer algorithms already available for a (1x1)-system
are not suitable, and a generalized algorithm is required. It turns
out that the received samples should be processed in pairs – cor-
responding to the transmitter structure, because then the equal-
izer complexity in terms of the number of trellis states is min-
imized [8]. To be specific, if the effective channel memory
length L is an even number, the number of states for maximum-
likelihood sequence estimation (MLSE) resulting for the Alam-
outi scheme is the same as in the corresponding (1x1)-system,

namely ML. If L is an odd number, ML+1 trellis states are
required. Due to the pairwise processing of the received sam-
ples, each trellis segment in the Alamouti trellis spans two
consecutive time indices k and k + 1, as opposed to a sin-
gle time index k in the (1x1)-system. The starting states of
the trellis segment for k, k +1 are given by all possible K-
tuples of M -ary symbol hypotheses x̃[ . ] for the data symbols
x[k−K], ... , x[k−1], where K =L for even L and K =L+1
for odd L. The target states are given by all possible K-tuples
[ x̃[k−K+2], ... , x̃[k−1] , x̃[k] , x̃[k+1] ].
In the case of the distributed Alamouti scheme, the effective

channel memory length L is in essence determined by the delay



δ occurring on the second transmission path (Tx2 → Rx). Only
if δ=0, the effective channel memory length is zero (flat fading
assumed). Otherwise, for n>0 integer, L is roughly

L ≈

{
n if δ = nT

n+2 if δ = nT +∆, 0<∆<1
(8)

(cf. (6) and (7)). For MLSE, the metric increment µi associated
with a certain branch i within the trellis segment for k, k+1 is
given by

µi = | y[k]− ỹi[k] |
2

+ | y[k+1]− ỹi[k+1] |
2

, (9)

where y[k], y[k+1] denote the received samples at time index
k and k+1, respectively, and ỹi[k], ỹi[k+1] the correspond-
ing hypotheses resulting from the starting state and the target
state of the trellis branch i under consideration. Using (7), the
hypotheses ỹi[ . ] for the branch i are calculated as

ỹi[k] = h
(0)
1 x̃i[k]

+ h
(−1)
2 x̃∗

i [k−n] − h
(0)
2 x̃∗

i [k+1−n]

+ h
(1)
2 x̃∗

i [k−2−n] − h
(2)
2 x̃∗

i [k−1−n] ,

ỹi[k+1] = h
(0)
1 x̃i[k+1]

− h
(−1)
2 x̃∗

i
[k+3−n] + h

(0)
2 x̃∗

i
[k−n]

− h
(1)
2 x̃∗

i
[k+1−n] + h

(2)
2 x̃∗

i
[k−2−n] (10)

if n ≥ 0 is an even integer (and 0 ≤ ∆ < 1). If n is an odd
integer, the hypotheses ỹi[ . ] are calculated according to

ỹi[k] = h
(0)
1 x̃i[k]

− h
(−1)
2 x̃∗

i [k+2−n] + h
(0)
2 x̃∗

i [k−1−n]

− h
(1)
2 x̃∗

i [k−n] + h
(2)
2 x̃∗

i [k−3−n] ,

ỹi[k+1] = h
(0)
1 x̃i[k+1]

+ h
(−1)
2 x̃∗

i
[k+1−n] − h

(0)
2 x̃∗

i
[k+2−n]

+ h
(1)
2 x̃∗

i
[k−1−n] − h

(2)
2 x̃∗

i
[k−n] . (11)

With growing delay δ, the complexity of the above equal-
izer/detector soon becomes prohibitive, due to the increased ef-
fective channel memory length L. In the following section, a
fixed equalizer/detector complexity is considered.

B. Fixed Equalizer/Detector Complexity

Assume an equalizer/detector with a fixed number of MLeq

trellis states, where Leq ≤ L. Then, the last λ = (L−Leq)
channel coefficients of h2 according to (7) are not taken into
account, i.e., they are implicitly set to zero when calculating the
hypotheses ỹi[ . ] according to (10) or (11). This causes residual
ISI, which leads to a systematic error in the metric increments
µi and thus to a performance loss. Fig. 4 shows the average
channel power

Pch = E{|h
(2−λ+1)
2 |2} + · · · + E{|h

(2)
2 |

2} (12)

discarded by the equalizer/detector as a function of the delay δ
(cf. (4)), for the example Leq = 4 and different roll-off factors
r. As can be seen, the equalizer/detector is suitable for delays
δ≤3T , whereas significant residual ISI occurs for larger delays.
In Section IV-D it is shown that an equalizer/detector algo-

rithm of practicable computational complexity can also be de-
rived for larger delays δ.
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Fig. 4. Average channel power Pch discarded by the equalizer/detector as a
function of the delay δ, for the example Leq =4 and different roll-off factors r.

C. Influence of the Relative Delay on the System Performance

In this section, the influence of the relative propagation de-
lay δ on the system performance is illustrated. This is done
by means of simulation results for binary transmission and
Rayleigh fading, obtained by Monte-Carlo simulation over 106

channel realizations.
Fig. 5 shows simulation results for delays δ that are a mul-
tiple of the symbol duration T (δ = 0, T, ... , 6T ), given an
equalizer/detector complexity of 26 (Leq = 6). On the second

transmission path only the channel coefficient h
(0)
2 is non-zero

in this case (cf. (7)), and the roll-off factor r does not have any
impact. As can be seen, for delays δ=nT with n≥2, the BER
performance is very close to the case δ=0. However, for δ=T
a significant performance loss occurs (about 7 dB at a BER of
10−3). Moreover, for large Es/N0 the slope of the BER curve
corresponds to that of the (1x1)-system, i.e., the diversity ad-
vantage is lost. This performance loss is due to the fact that
poor distance properties arise for δ = T . From (10) and (11)
it can be seen that there is a considerable difference between
the case δ = T and the cases δ = nT , n ≥ 2. For δ = T , the
received samples y[k] and y[k+1] are determined by just three
different transmitted data symbols, namely by x[k], x[k+1], and
x[k−2] (cf. (11), n

.
= 1), whereas for δ = nT with n≥ 2, y[k]

and y[k+1] are always determined by four different transmitted
symbols.
Fig. 6 shows simulation results for arbitrary delays δ between

δ = 0 and δ = 6T and Es/N0 = 20 dB, given different roll-off
factors r and an equalizer/detector with Leq = 4 and Leq = 6,
respectively. For delays δ > 2T , the BER performance is close
to the case δ = 0, provided that the complexity of the equal-
izer/detector is sufficiently large (the loss in Es/N0 is 0.5 dB
and less). For the equalizer/detector with Leq = 4 a significant
performance loss occurs if δ>3T , as expected (cf. Fig. 4).
The performance loss occurring for δ = T may be circum-

vented even if perfect knowledge of the delay δ is not available
at the Tx nodes. It might still be known, which of the two trans-
mission paths is associated with the larger propagation delay.
In this case, the Tx nodes may perform a coarse timing adapta-
tion, by delaying the corresponding signal by two of more sym-
bol durations. The equalizer/detector complexity at the receiver
must be chosen sufficiently large, however.
In the sequel, it is shown that an equalizer/detector algorithm

of practicable computational complexity can also be derived for
large delays.
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D. Large Relative Propagation Delays

According to (8), the effective channel memory length L in-
creases with growing n. However, revisiting (10) and (11), one
observes that the overall number of symbol hypotheses x̃[ . ] re-
quired to calculate the hypotheses for y[k] and y[k+1] does not
depend on the delay δ. This fact may be exploited in order to
significantly reduce the complexity of the equalizer/detector al-
gorithm, without causing any performance loss. Given a delay
δ =nT +∆, 0<∆< 1, a metric increment µi associated with
a certain trellis branch i is determined by altogether seven dif-
ferent symbol hypotheses x̃[ . ] (cf. (10) and (11)). Therefore,
although each trellis segment contains Mn+2M2 branches if
n is an even number and Mn+3M2 branches if n is an odd
number, there are altogether only M 7 different metric incre-
ments. By avoiding to compute the same metric increment sev-
eral times, the computational complexity is reduced to a de-

gree still tractable in practice, at least for binary transmission.
However, the storage requirements are the same as in the full-
complexity algorithm (Section IV-A), since the number of trel-
lis states is not reduced.
The above reasoning corresponds to the concept of trellis-

based equalization for sparse wireless communication chan-
nels [9]. Sparse channels are channels with a large effective
memory length, but only a few significant channel coefficients.
Given a sparse channel, two different approaches are proposed
in [9] and [10] to reduce both the computational complexity
and the storage requirements for trellis-based equalization. In
the case of the distributed Alamouti scheme, however, it turned
out that the approach in [9] does not lead to a reduced complex-
ity. Moreover, it turned out that the approach in [10] cannot be
applied to the case of the distributed Alamouti scheme, because
this approach requires a sparse channel with a distinct structure
in the time domain, which is not met.

V. CONCLUSIONS

In this paper, the application of a distributed Alamouti
scheme has been considered, and a key challenge has been
pointed out that is due to the distributed nature of the scheme:
Since the distances between the two transmitting nodes and the
receiving node are typically different, the transmitted signals
are subject to different propagation delays as well as to different
average path gains. By means of simulative and analytical re-
sults, it has been shown that both effects can cause a significant
performance loss, unless appropriate (transmitter-sided and/or
receiver-sided) counter measures are applied. Specifically, the
use of a trellis-based joint equalizer/detector algorithm for the
Alamouti scheme in the presence of intersymbol interference
has been investigated.
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