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Abstract—In this paper, we propose two novel pre–equalization
schemes for multiple–input single–output (MISO) direct–sequence
ultra–wideband (DS–UWB) systems with pre–Rake combining
and symbol–by–symbol detection. The first pre–equalization filter
(PEF) scheme employs one PEF per transmit antenna, whereas
in the second, simplified PEF (S–PEF) scheme all transmit an-
tennas share the same PEF. For both schemes, the optimum fi-
nite impulse response (FIR) and infinite impulse response (IIR)
PEFs are calculated based on the minimum mean squared error
(MMSE) criterion. Our approach is sufficiently general to include
also complexity–reduced versions of pre–Rake combining that em-
ploy a limited number of Rake fingers. We show that under certain
conditions the S–PEF scheme achieves the same performance as
the more complex PEF scheme. Moreover, our simulation results
show that the proposed PEF schemes achieve significant perfor-
mance gains over pure pre–Rake combining without equalization,
even if only short PEFs are employed.

I. I NTRODUCTION

I N recent years, ultra–wideband (UWB) signaling has
emerged as a promising solution to high–rate short–range

wireless personal area networks. Due to their extremely large
bandwidths, UWB systems can resolve even dense multipath
components, such that Rake combining can be used at the re-
ceiver to significantly reduce the negative effects of fading in
the received signal [1]. However, for many UWB applications
the receiver is a portable device with severely limited signal
processing capabilities, rendering Rake combiners with a suffi-
ciently large number of fingers very challenging.

A promising approach to overcome this problem is to move
computational complexity from the receiver to the more power-
ful transmitter (e.g. an access point). For this purpose, the con-
cept of pre–Rake combining (also referred to as time–reversal
transmission) was borrowed from other areas, such as time–
division duplex code–division multiple access (TDD–CDMA)
systems [2] and underwater acoustic communication [3], and
was modified for UWB applications, e.g. [4]–[8]. Pre–Rake
combining exploits the reciprocity of the UWB channel, which
was recently experimentally confirmed in [7]. Ideally, withpre–
Rake combining channel estimation, diversity combining, and
equalization are avoided at the receiver, and a simple symbol–
by–symbol detector can be used [8]. In addition, it has been
recently shown that pre–Rake combining also performs well in
the presence of multiple users [5], and an extension to multiple–
input single–output (MISO) scenarios was proposed in [5], [7].

Despite all of these desirable properties, pre–Rake combin-
ing has a serious drawback. In particular, for the long chan-
nel impulse responses (CIRs), which are typical for UWB ap-
plications, it may entail a relatively high error floor, if sim-
ple symbol–by–symbol detection is applied at the receiver.To
remedy this problem, receiver–side equalization [4] and post–
Rake combining [6] have been proposed. However, these tech-
niques increase the receiver complexity and thus compromise
to some extend the advantages of pre–Rake combining. There-
fore, transmitter–side approaches for performance improve-
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ment seem to be more suitable for pre–Rake UWB systems.
One option in this regard is to decrease the data rate (i.e., in-
crease the chip or/and symbol duration), which effectivelyde-
creases the residual intersymbol interference (ISI) at there-
ceiver [8]. However, if high data rates are desired, some form of
pre–equalization has to be applied at the transmitter. In [9] the
pre–Rake filter is replaced by a pre–filter which minimizes the
residual ISI at the receiver based on the minimum mean squared
error (MMSE) criterion. Since this MMSE pre–filter is imple-
mented at the chip level, depending on the underlying channel
relatively long filters may be necessary, in order to achievea
good performance. This entails a high complexity, since the
computation of the filter coefficients requires the inversion of a
matrix of size equal to the filter length.

In this paper, we propose a novel pre–equalization filter
(PEF) scheme for MISO direct–sequence (DS) UWB systems,
which consists of a bank of pre–Rake filters and a bank of PEFs.
Unlike [9], we retain the pre–Rake filters, as they efficiently
shorten the overall CIRs, and implement the PEFs at the sym-
bol level. Although pre–equalization problems have been ex-
tensively studied in the literature, e.g. [10], existing results can-
not be easily adopted for the problem at hand, due to the pres-
ence of the pre–Rake filter, the imposed simple receiver pro-
cessing, and the spreading applied in DS–UWB. Consequently,
in this paper, we derive the optimum finite impulse response
(FIR) and infinite impulse response (IIR) MMSE PEFs and an-
alyze the performance of the resulting system. Furthermore, we
also study a simplified PEF (S–PEF) scheme, where the bank of
PEFs is replaced by a single PEF that is shared by all antennas.
Our approach is sufficiently general to include also complexity–
reduced versions of pre–Rake combining that employ a limited
number of Rake fingers. We demonstrate that, under certain
conditions, the S–PEF scheme can achieve the same perfor-
mance as the more complex PEF scheme. Our simulation re-
sults confirm that the proposed PEF schemes achieve signif-
icant performance gains over pure pre–Rake structures with-
out equalization, and that the performance of IIR PEFs can be
closely approached by relatively short FIR PEFs.

Paper organization:In Section II, we present the considered
system and channel model. The proposed PEF scheme is op-
timized and analyzed in Section III, and the S–PEF scheme is
investigated in Section IV. In Section V, simulation results are
provided, and Section VI concludes this paper.

Notation: E{·}, [·]T , (·)∗, [·]H , anddiag{·} denote statisti-
cal expectation, transposition, complex conjugation, Hermitian
transposition, and a (block) diagonal matrix, respectively. 0X ,
en, <{·}, and∗ stand for theX–dimensional all–zeros column
vector, the unit vector whose elements are all zero except for
the nth element which is equal to 1, the real part of a com-
plex number, and linear convolution, respectively. Furthermore,
Q(x) , 1√

2π

∫ ∞
x

e−t2/2 dt, δ(·), andX(ejω) , F{x[k]} =
∑∞

k=−∞ x[k]e−jωk denote the GaussianQ–function, the Dirac
delta function, and the discrete–time Fourier transform ofx[k],
respectively.
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II. SYSTEM AND CHANNEL MODEL

We consider a MISO DS–UWB system withM transmit anten-
nas, symbol durationTs, and chip durationTc = Ts/N , where
N is the spreading factor. A block diagram of the discrete–time
model of this system is shown in Fig. 1. We note that our results
could be extended to multiple receive antennas in a straightfor-
ward fashion. However, for the sake of clarity and since a sim-
ple receiver structure is desired, we assume that only a single
receive antenna is available. For convenience, all signalsand
systems are represented by their complex baseband equivalents.

Transmitter structure:At antennam, 1 ≤ m ≤ M , the trans-
mitted independent and identically distributed (i.i.d.) data sym-
bolsa[n] ∈ {±1} are filtered with a PEFfm[n] of lengthLf ,
and the filter output signalvm[n] , fm[n]∗a[n] is up–sampled
by a factor ofN . The up–sampled signal is then filtered with
a (real–valued) spreading sequencec[k], 0 ≤ k < N , and with
a pre–Rake filtergm[k] of length Lg. For convenience, the
spreading sequence is normalized to

∑N−1
k=0 |c[k]|2 = 1. The

resulting transmit symbolsm[k] is given by

sm[k] =
∞∑

i=−∞

vm[i]g̃m[k − iN ], (1)

where g̃m[k] , c[k] ∗ gm[k] includes the combined effects
of the pre–Rake filter and spreading. We note that the con-
sidered transmitter structure is very general, since we do not
impose any restrictions onc[k] and gm[k]. If a spreading
sequence is not applied, e.g. [4], [9], we havec[0] = 1 and
c[k] = 0, 1 ≤ k < N . In general,gm[k], 1 ≤ m ≤ M , will
depend in some way on the CIRhm[k], which has length
Lh. For example, an all–pre–Rake (A–pre–Rake or time–
reversal) filtergm[k] , h∗

m[Lh−k−1], 0 ≤ k < Lg (Lg =Lh)
may be adopted, or a selective pre–Rake (S–pre–Rake) filter,
with gm[k] , h∗

m[Lg−k−1] for the S largest coefficients of
hm[k] andgm[k] , 0 otherwise (Lg ≤ Lh). Due to the reci-
procity of UWB channels [7],hm[k] can be estimated at the
transmitter, thus relieving the receiver from any channel esti-
mation tasks.

Channel model: The equivalent baseband discrete–time
CIRs hm[k] , gT (t) ∗ hm(t) ∗ gR(t)|kTc

, 1 ≤ m ≤ M , con-
tain the combined effects of the transmit filtergT (t), the
continuous–time CIRhm(t), and the receive filtergR(t). For
convenience and practical relevance, we use in this paper the
parameters from the IEEE 802.15.3a standardization efforts. In
particular, a chip duration ofTc = 0.76 ns is adopted, and both
gT (t) andgR(t) are square–root raised–cosine filters with roll–
off factor 0.3 [11]. Furthermore, for the wireless channel we
adopt the recently proposed extension of the IEEE 802.15.3a
channel model [12] to multiple antennas [13]. Consequently,
the passband versionh′

m(t) of the baseband CIRhm(t) con-
sists ofLc clusters ofLr rays and is modeled as

h′
m(t) = Xm

Lc∑

l=1

Lr∑

k=1

αk,l,mδ(t − Tl,m − τk,l,m), (2)

whereTl,m is the delay of thelth cluster,τk,l,m is the delay
of the kth ray of thelth cluster,αk,l,m is the corresponding
random multipath gain coefficient, andXm models lognormal
shadowing. Measurements reported in [13] have confirmed that
while Tl,m, τk,l,m, andαk,l,m are independent across anten-
nas, the lognormal termsXm are mutually correlated. In [12]
four parameter sets for the various channel model parameters in
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Fig. 1. Block diagram of a MISO DS–UWB system withM transmit antennas,
pre–Rake combining, and pre–equalization.

(2) are specified. The resulting four channel models (CMs) are
known as CM1 – CM4 and represent different usage scenarios
(associated with different amounts of ISI).

Receiver structure:The received signaly[k] is filtered with
the time–reversed spreading sequencec[N−1−k], 0 ≤ k < N ,
and is then sampled at timesk = Nn + k0, where0 ≤ k0 < N
denotes the sampling phase. The resulting received signalr[n]
can be expressed as

r[n] =

M∑

m=1

∞∑

l=−∞

qm[Nl + k0]vm[n − l] + zs[n], (3)

where qm[k] , g̃m[k] ∗ h̃m[k], h̃m[k] , hm[k] ∗ c[N−1−k],
denotes the overall CIR, andzs[n] =

∑N−1
i=0 c[i]zc[N(n−1) +

k0 + i + 1] the symbol–level noise, whilezc[k] denotes the
chip–level additive white Gaussian noise (AWGN) with vari-
anceσ2

c , E{|zc[k]|2}. Consequently,zs[n] is also AWGN
with varianceσ2

s , E{|zs[n]|2} = σ2
c . The sampling phasek0

is optimized to maximize the energy
∑∞

l=−∞ |qm[Nl + k0]|
2

of the overall CIR. The optimum value fork0 depends onLg

andLh. Since the goal of the proposed UWB system design
is to minimize the receiver complexity,r[n] is only multiplied
with a constant gainα, before a decision is made according to

â[n − n0] = sign {<{αr[n]}}, (4)

where â[n−n0] is the estimate fora[n−n0], n0 denotes the
decision delay, andsign {x} = 1 if x ≥ 0 andsign {x} = −1
otherwise. As typical for equalization problems, the decision
delayn0 has to be optimized, if causal pre–filters are desired.
As will be seen in Section III,α can be chosen asα>0 without
loss of generality, i.e., the multiplication withα in (4) is not
necessary and does not have to be implemented at the receiver.
However,α simplifies the optimization of the PEFsfm[n] and
may thus be thought of as an auxiliary variable.

III. PEF OPTIMIZATION AND PERFORMANCEANALYSIS

Throughout this paper we focus on a single-user scenario. In
the sequel, we adopt the MMSE criterion for optimization of the
PEFsfm[n] andα. In particular, our design goal is to minimize
the error variance

σ2
e , E{|a[n−n0] − αr[n]|2}, (5)

while limiting the powerP of the transmitted signals over one
symbol interval, i.e.,

P ,

N(n+1)−1
∑

k=Nn

M∑

m=1

E{|sm[k]|2} = 1, ∀n. (6)



3

In the following subsections, we will derive the optimum FIR
and IIR PEFs based on (5), (6) and analyze their performance.

A. FIR Pre–Equalization Filters

For FIR PEF optimization, it is convenient to first rewrite (3) as

r[n]=

M∑

m=1

(Qmfm)Ha[n]+zs[n] = (Qf)Ha[n]+zs[n], (7)

where a[n] , [a[n] . . . a[n−Lt+1]]T , f , [fT
1 . . . fT

M ]T ,
fm , [fm[0] . . . fm[Lf −1]]H , Q , [Q1 . . . QM ], and Qm
denotes anLt×Lf column–circulant matrix with vector
[qm[k0] qm[N+k0] . . . qm[N(Lq−1) + k0] 0

T
Lf−1]

H as first

column. Here,Lt , Lq+Lf −1 is the length of the impulse
response of the overall system (including the PEFs), where
Lq = d(Lg +Lh +2N −3)/Ne is the length of the sampled
overall CIRqm[Nn + k0]. Applying (7) in (5) yields

σ2
e = 1 + |α|2σ2

c − αfHq − α∗qHf + |α|2fHQHQf , (8)

whereq,QHen0
. Furthermore, it can be shown that the aver-

age transmit powerP in (6) can be expressed as

P = fH
Φf , (9)

whereΦ , diag{Φ1, . . . , ΦM} is anMLf ×MLf block di-
agonal matrix consisting of symmetric Toeplitz matricesΦm

with vector [ϕm[0] ϕm[−N ] . . . ϕm[−N(Lf −1)]] in the first
row, whileϕm[k] , g̃m[k]∗g̃∗m[−k]. Combining (8) and (9), we
obtain the Lagrange problemL(f , α),σ2

e +λ(P −1), whereλ
denotes the Lagrange multiplier. DifferentiatingL(f , α) with
respect tof∗ andα∗ and setting the resulting gradients to zero
leads to the optimum solution

fopt =
1

α∗
opt

(

QHQ+σ2
cΦ

)−1

q, (10)

αopt =

√

qH
(

QHQ+σ2
cΦ

)−1

Φ

(

QHQ+σ2
cΦ

)−1

q.

Using (10) in (8) leads to the minimum error variance

σ2
e,min = 1 − qH

(

QHQ + σ2
cΦ

)−1

q. (11)

Noting that the received signal can be expressed as

r[n] = fHqa[n−n0] + fHQHan0
[n] + zs[n], (12)

wherean0
[n] is identical toa[n] except that itsn0th component

is zero, we can find the following expression for the effective
signal-to-noise ratio (SNR) at the receiver:

SNR =
|fHq|2

fHQHQf − |fHq|2 + σ2
c

=
1

σ2
e,min

− 1. (13)

For calculation offopt, anMLf ×MLf matrix has to be in-
verted, which is computationally expensive for largeLf . There-
fore, from a complexity point of view, short FIR filters are desir-
able. On the other hand, the performance of the proposed pre–
equalization scheme improves with increasingLf . Therefore,
we are interested in finding the minimum value ofLf which
achieves close–to–optimum performance. In this context, the
optimum IIR solution is useful, since it allows us to establish
the ultimate performance limit of the proposed PEF scheme.

B. IIR Pre–Equalization Filters

As customary for IIR filter optimization, we drop the
causality constraint and setn0 = 0. Furthermore, we
define F (ejω), [F1(e

jω) . . . FM (ejω)]H as the vector of
IIR PEF frequency responses, whereFm(ejω) , F{fm[n]},
and Q(ejω) , [Q1(e

jω) . . . QM (ejω)]T as the vector of the
Fourier transforms of the sampled overall CIRsqm[Nn+k0],
1 ≤ m ≤ M , i.e., Qm(ejω) , F{qm[Nn + k0]}. Note that
Qm(ejω) is related to the Fourier transform̃Qm(ejω) ,

F{qm[k+k0]} of the (time-shifted) overall CIR itself via [14]

Qm(ejω) =
1

N

N−1∑

k=0

Q̃m(ej(ω−2πk)/N ). (14)

With these definitions, the error variance (8) can be rewritten as

σ2
e = 1 + |α|2σ2

c (15)

−
1

2π

π∫

−π

[

αF H(ejω)Q(ejω) + α∗QH(ejω)F (ejω)

− |α|2F H(ejω)Q(ejω)QH(ejω)F (ejω)
]

dω.

Similarly, using the definitionΦ(ejω) , diag{Φ1(e
jω),

Φ2(e
jω), . . . , ΦM (ejω)}, where Φm(ejω) , F{ϕm[Nn]},

the average transmit power in (9) can be expressed as

P =
1

2π

π∫

−π

F H(ejω)Φ(ejω)F (ejω) dω. (16)

We note that the Fourier transformΦm(ejω) of the sampled se-
quenceϕm[Nn] is related to the Fourier transform̃Φm(ejω) ,

F{ϕm[k]} of the sequenceϕm[k] itself by Φm(ejω) =
1
N

∑N−1
k=0 Φ̃m(ej(ω−2πk)/N ) [14]. Based on (15) and (16) we

can now formulate a similar Lagrange problem as in the FIR
case. Furthermore, employing the matrix inversion lemma [15],
we finally obtain the following optimal solution for themth
component ofF (ejω):

F opt
m (ejω) =

1

α∗
opt

Qm(ejω)

Φm(ejω)(σ2
c + X(ejω))

, (17)

αopt =

√
√
√
√
√

1

2π

π∫

−π

X(ejω)

(σ2
c + X(ejω))2

dω,

X(ejω) = QH(ejω)Φ−1(ejω)Q(ejω) =

M∑

m=1

|Qm(ejω)|2

Φm(ejω)
.

The corresponding minimum error variance can be obtained
from (15) as

σ2
e,min =

1

2π

π∫

−π

σ2
c

σ2
c + X(ejω)

dω. (18)

The effective SNR at the receiver is obtained based on (13), by
using (18) instead of (11) for the error varianceσ2

e,min.

C. Optimality of A-Pre-Rake Combining

It is well known that the performance of pre–Rake (and post–
Rake) schemes does not necessarily improve when the number
of Rake fingers is increased, cf. e.g. [16]. The reason for this
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Fig. 2. Block diagram of a MISO DS–UWB system withM transmit antennas,
pre–Rake combining, and simplified pre–equalization.

behavior is that while more energy can be collected by increas-
ing the number of fingers, the amount of residual ISI may also
increase. A similar effect can be observed, if the pre–Rake fil-
ter is enhanced with short FIR PEFs. However, we will show
in the following that the A–pre–Rake (or time–reversal) filter is
indeed optimum, if the PEFs are sufficiently long.

For this purpose, we focus on the IIR case and use (14) and
the corresponding definition ofΦm(ejω) to rewriteX(ejω) as

X(ejω) =
1

N

M∑

m=1

Bm(ejω)
∑N−1

k=0 |G̃m(ej(ω−2πk)/N )|2
, (19)

with Bm(ejω) , |
∑N−1

k=0 G̃m(ej(ω−2πk)/N )ej(ω−2πk)k0/N×

H̃m(ej(ω−2πk)/N )|2, where we have used that̃Qm(ejω) =

ejωk0G̃m(ejω)H̃m(ejω), and Φ̃m(ejω) = |G̃m(ejω)|2. Us-
ing the Cauchy–Schwarz inequality [15], it can be shown
that X(ejω) is maximized if G̃m(ejω) = e−jωk0H̃∗

m(ejω),
which corresponds to an A–pre–Rake filter for each branch
m, 1 ≤ m ≤ M . Therefore, the A–pre–Rake filter min-
imizes the error varianceσ2

e,min and is optimum, if
IIR PEFs are employed. In particular, for an A–pre–
Rake filter we obtainX(ejω) =

∑M
m=1 ψm(ejω), where

ψm(ejω) , 1
N

∑N−1
k=0 |H̃m(ej(ω−2πk)/N )|2. Increasing the

spreading factorN improves performance by decreasing the
effective spectral fluctuation for a givenm, i.e., ψm(ejω) be-
comes smoother overω, which has a positive effect onσ2

e,min,
cf. (18).

IV. SIMPLIFIED PEF STRUCTURE

In this section, we consider a simplified PEF (S–PEF) struc-
ture, in which only a single PEFf , [f [0] . . . f [Lf −1]]T is
employed jointly for allM transmit antennas, see Fig. 2. This
leads to a significant reduction in transmitter complexity.

A. Filter Optimization

As far as filter optimization is concerned, the S–PEF struc-
ture leads to an equivalent single–input single–output (SISO)
channel model with an effective overall CIRqeff [Nn+k0] ,
∑M

m=1 qm[Nn+k0]. In the FIR case, the transmit power can
thus be expressed asP =fH

Φefff , whereΦeff ,
∑M

m=1 Φm.
Consequently, utilizing the results in Section III-A, we ob-
tain the optimum FIR PEFfopt based on (10) by replac-

ing Q by Qeff , Φ by Φeff , and q by qeff ,QH
effen0

, where
Qeff ,

∑M
m=1 Qm. Along the same lines, the corresponding

minimum error variance is obtained based on (11) by replacing
q, Q, andΦ by qeff , Qeff , andΦeff , respectively.

Similarly, in the IIR case we obtain the frequency re-
sponse of the optimum IIR PEF,Fopt(e

jω), and the
corresponding minimum error variance, by replacing

in (17) and (18) Qm(ejω), Φm(ejω), and X(ejω) by
Qeff(ejω) ,

∑M
m=1 Qm(ejω), Φeff(ejω) ,

∑M
m=1 Φm(ejω),

andXeff(ejω) = |Qeff(ejω)|2/Φeff(ejω), respectively.

B. Comparison

It is of interest to compare the performances of the above S-PEF
transmitter structure and the more complex PEF structure dis-
cussed in Section III (cf. Fig. 1). To this end, we focus on the
IIR case and note that based on the complex version of Hölder’s
inequality [17] we can establish the following inequality:

(
M∑

m=1

|bm|2

)1/2 (
M∑

m=1

∣
∣
∣
∣

am

bm

∣
∣
∣
∣

2
)1/2

≥

∣
∣
∣
∣
∣

M∑

m=1

am

∣
∣
∣
∣
∣

(20)

for any am, bm ∈ IC. Substituting am :=Qm(ejω) and
bm :=

√

Φm(ejω), squaring both sides of (20), and dividing
them subsequently by

∑M
m=1 Φm(ejω) leads to

∣
∣
∣
∑M

m=1 Qm(ejω)
∣
∣
∣

2

∑M
m=1 Φm(ejω)

︸ ︷︷ ︸

=Xeff (ejω)

≤
M∑

m=1

|Qm(ejω)|2

Φm(ejω)
︸ ︷︷ ︸

=X(ejω)

. (21)

Therefore, sinceX(ejω) andXeff(ejω) appear in the denomi-
nators of the respective error variances, the S–PEF scheme can
never outperform the PEF scheme. This is not surprising, since
the S–PEF structure may be viewed as a special case of the PEF
structure in Fig. 1 withf1[n] = · · · = fM [n], 0 ≤ n < Lf . For
the special case of an A–pre–Rake filter,Xeff(ejω) simplifies to

Xeff(ejω)=
1

N

M∑

m=1

N−1∑

k=0

|H̃m(ej(ω−2πk)/N )|2 =X(ejω), (22)

i.e., in this case the S–PEF and the PEF scheme are equivalent.
This equivalence for IIR PEFs and A–pre–Rake filters implies
that the S–PEF scheme should perform close to the optimum, as
long as a sufficiently long FIR PEF and a good approximation
of the A–pre–Rake filter (e.g., an S–pre–Rake filter with a suf-
ficient number of fingers) are employed. Thus, in this case the
more complex structure in Fig. 1 can be avoided. On the other
hand, if a suboptimum pre–Rake filter with very few fingers
and/or short FIR PEFs are used, the PEF structure in Fig. 1 is
preferable and will lead to a better performance than the S–PEF
structure.

V. SIMULATION AND NUMERICAL RESULTS

In this section, we present computer simulation and numerical
results for the proposed PEF schemes for MISO DS–UWB sys-
tems. In particular, we show results for the effective SNR at
the receiver and the resulting bit error rate (BER). In this con-
text, we consider the practically most relevant cases ofM =1
andM =2 transmit antennas and adopt the channel model and
system parameters discussed in Section II. In particular, we
focus on the CM1 and CM4 channel models, since they have
the smallest and the largest average delay spread of the four
channel models, respectively. For the caseM =2, we assume
that the lognormal termsXm, m ∈ {1, 2}, are correlated with
a correlation coefficientρ = 0.86 [13].
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Fig. 3. Average effective SNR vs.Lf for the PEF scheme, the S–PEF scheme,
and the MMSE–Rake scheme [9] (UWB channel models CM1 and CM4, A–
pre–Rake filters,M =2, N =6, andEb/N0 = 15 dB).

A. Effective SNR at the Receiver

Fig. 3 shows the average effective SNR vs. FIR PEF length
Lf for the PEF scheme and the S–PEF scheme, respectively,
for A–pre–Rake combining, UWB channel models CM1 and
CM4, M =2 transmit antennas, spreading factorN =6, and
Eb/N0 = 1/σ2

c = 15 dB, whereEb and N0 denote the aver-
age energy per bit and the single–sided power spectral den-
sity of the underlying passband AWGN process, respectively.
The numerical results for the average effective SNR were ob-
tained by averaging (13) over 100 channel realizations, while
σ2

e,min was calculated based on the analytical expressions (11)
and (18). Fig. 3 shows that asLf increases, the FIR PEF fil-
ters quickly approach the performance of IIR PEF filters (solid
lines). Since the average delay spread for CM1 is considerably
smaller than for CM4, this convergence is much faster for CM1
than for CM4. We also note that while the PEF scheme achieves
a higher SNR than the S–PEF scheme for short FIR PEFs, both
schemes achieve the same performance for long FIR and IIR fil-
ters, cf. Section IV-B. For comparison, we have also included in
Fig. 3 the results for the MMSE–Rake scheme proposed in [9].
As Lf increases, the MMSE–Rake scheme achieves the same
performance as the proposed PEF and S–PEF scheme. How-
ever, since the filters in the MMSE–Rake scheme operate at the
chip level, the convergence to the optimum IIR performance is
much slower than for the PEF/ S–PEF scheme. For example, if
an SNR of 14 dB is desired for CM4, the PEF scheme and the
MMSE–Rake scheme require filter lengths of 18 and 325, re-
spectively. The computation of the long filters required forthe
MMSE–Rake scheme may be very difficult in practice, even if a
recursive (e.g. steepest descent) or an adaptive (e.g. least–mean
square) algorithm is used to avoid direct matrix inversion.

In Fig. 4, the performance of the PEF scheme and the S–PEF
scheme in conjunction with S–pre–Rake combining using dif-
ferent numbersS of Rake fingers is investigated, for UWB
channel model CM4,M =2, N =6, andEb/N0 = 15 dB. As
predicted in Section IV-B, with S–pre–Rake combining the PEF
scheme outperforms the S–PEF scheme even for IIR PEFs, and
the performance gap between both schemes increases as the
number of fingers decreases. For example, the asymptotic SNR
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Fig. 4. Average effective SNR vs.Lf for the PEF scheme and the S–PEF
scheme (UWB channel model CM4, S–pre–Rake filters with different numbers
S of Rake fingers,M =2, N =6, andEb/N0 = 15 dB).

differences between the PEF scheme and the S–PEF scheme for
S =32, 16, and8 are 0.25 dB, 0.62 dB, and 1.2 dB, respectively.

B. Bit-Error-Rate Results

Next, we present simulation and numerical results for the BER
of the PEF scheme and the S–PEF scheme, where the UWB
channel model CM4 is assumed for all results shown in this
section. All simulation results presented in the sequel were ob-
tained by averaging over 100 channel realizations. Fig. 5 shows
simulated BER results for the PEF scheme and the S–PEF
scheme with FIR PEFs of lengthsLf =5, 10, and 20, as well as
numerical results for the same schemes with IIR PEFs (M =2,
N =6, A–pre–Rake combining). The numerical results for the
IIR case were obtained based on a Gaussian approximation of
the BER, by utilizing (13) and (18):

Pe ≈ Q

(√

2
(

1/σ2
e,min − 1

)
)

. (23)

For comparison, we also show simulation results for the
pure A–pre–Rake (or time–reversal) scheme without pre–
equalization, as well as the corresponding matched-filter (MF)
bound

Pe,MF = Q
(√

2SNRMF

)

, (24)

whereSNRMF = 1
σ2

c

∑M
m=1

∑∞
k=−∞ |h̃m[k]|2, which consti-

tutes an ultimate performance limit for any practical equaliza-
tion scheme [18]. As can be observed from Fig. 5, both the
PEF scheme and S–PEF scheme significantly lower the high
BER floor of the pure A–pre–Rake scheme. The performance
gap between the PEF scheme and the S–PEF scheme decreases
asLf increases and disappears forLf →∞, as expected from
the discussion in Section IV-B. We note that even for IIR PEFs
there remains a 1–dB gap to the MF bound. However, to fur-
ther narrow this gap, some form of non–linear processing at the
transmitter would be required, which would (further) increase
complexity.
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In Fig. 6, we compare the performances of the PEF scheme
for M =1 andM =2 transmit antennas, assuming S–pre–Rake
combining (S =16) andN =6. The BER curves for the FIR
PEFs and the S–pre–Rake scheme without equalization were
simulated, whereas the BER curves for the IIR PEFs as well as
the MF bound were again obtained by evaluating (23) and (24),
respectively. Fig. 6 shows that a second transmit antenna yields
substantial performance improvements, even if the antennas are
correlated. This performance gain is about 2.6 dB for IIR PEFs,
and even larger gains are obtained for short FIR PEFs. Remark-
ably, even if we fix the total number of FIR filter tapsMLf , the
SISO scheme withLf =10 andLf =20 performs substantially
worse than the MISO scheme withLf =5 andLf =10, respec-
tively. The relatively large gap between the MF bounds and the
corresponding PEF scheme with IIR filters is due to the subop-
timum S–pre–Rake combining.

VI. CONCLUSIONS

In this paper, we have proposed two different PEF schemes for
MISO DS–UWB systems with pre–Rake combining. The first
PEF scheme employs one PEF per transmit antenna, whereas
the second, simplified scheme requires only one PEF. In con-
trast to previously proposed pre–filtering schemes for DS–
UWB, both proposed PEF schemes efficiently exploit the chan-
nel shortening properties of the pre–Rake filter and operate
at the symbol level. Therefore, relatively short PEFs achieve
close–to–optimum performance, even for long UWB CIRs. For
sufficiently long PEFs and A–pre–Rake combining, both pro-
posed PEF schemes achieve the same performance. However,
the S–PEF scheme suffers from a certain performance degrada-
tion for suboptimum pre–Rake combining and/or short PEFs.
Simulation results have confirmed our analytical findings and
the excellent performance of the proposed PEF schemes.

We note that while in this paper only DS–UWB systems have
been considered, the proposed PEF schemes are also applicable
to other areas of pre–Rake combining, such as TDD–CDMA
systems and underwater acoustic communication.
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