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Distributed Space-Time Coding Techniques

I Space-time coding (STC) techniques for multiple-antenna wireless communication systems

– Performance of wireless systems often limited by fading due to multipath signal propagation.

– System performance may be significantly improved by exploiting some sort of diversity.
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Distributed Space-Time Coding Techniques

I Space-time coding (STC) techniques for multiple-antenna wireless communication systems

– Performance of wireless systems often limited by fading due to multipath signal propagation.

– System performance may be significantly improved by exploiting some sort of diversity.

=⇒ Employ STC techniques to exploit spatial diversity.

I Concept of multiple antennas may be transferred to cooperative wireless networks.

– Multiple (single-antenna) nodes cooperate in order to perform a joint transmission strategy.

=⇒ Nodes share their antennas by using a distributed STC scheme.
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Examples for Cooperative Wireless Networks

I Simulcast networks for broadcasting or paging applications:

Conventionally, all nodes simultaneously transmit the same signal using the same carrier
frequency.
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Examples for Cooperative Wireless Networks

I Simulcast networks for broadcasting or paging applications:

Conventionally, all nodes simultaneously transmit the same signal using the same carrier
frequency.

I Relay-assisted communication, e.g., in cellular systems, sensor networks, ad-hoc networks:

Signal transmitted by a given source node is received by several relay nodes and forwarded to

a destination node.

Relay nodes may either be fixed stations or other mobile stations (‘user cooperation diversity’).

A relay-assisted network may be viewed as a type of simulcast network (only few errors between

source node and relay nodes).
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Examples for Cooperative Wireless Networks

I Simulcast networks for broadcasting or paging applications:

Conventionally, all nodes simultaneously transmit the same signal using the same carrier
frequency.

I Relay-assisted communication, e.g., in cellular systems, sensor networks, ad-hoc networks:

Signal transmitted by a given source node is received by several relay nodes and forwarded to

a destination node.

Relay nodes may either be fixed stations or other mobile stations (‘user cooperation diversity’).

A relay-assisted network may be viewed as a type of simulcast network (only few errors between

source node and relay nodes).

=⇒ Distributed STC techniques suitable for both simulcast and relay-assisted networks.
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Simulcast Network

I N transmitting nodes (Tx1,...,TxN), one receiving node (Rx)
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Simulcast Network

I N transmitting nodes (Tx1,...,TxN), one receiving node (Rx)

TxN

Rx
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)
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I Distributed STC scheme such that

– Diversity degree N accomplished in case

of no shadowing.

– Diversity degree (N−n) accomplished if

any subset of n Tx nodes is obstructed.
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Simulcast Network

I N transmitting nodes (Tx1,...,TxN), one receiving node (Rx)

TxN

Rx

s 2
(t

)
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Tx1

Tx2

sN(t)

I Distributed STC scheme such that

– Diversity degree N accomplished in case

of no shadowing.

– Diversity degree (N−n) accomplished if

any subset of n Tx nodes is obstructed.

Example:

Space-time block codes (STBCs) from

orthogonal designs (Tarokh et al. ’99)
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Key Problem

I Key problem specific to cooperative wireless networks:

– Transmitters introduce independent frequency offsets ∆ft1,...,∆ftN with respect to the

nominal carrier frequency.
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Key Problem

I Key problem specific to cooperative wireless networks:

– Transmitters introduce independent frequency offsets ∆ft1,...,∆ftN with respect to the

nominal carrier frequency.

=⇒ May cause severe performance degradations, diversity advantage may be lost.

I Scenarios:

(i) Frequency offsets perfectly known at the receiver.

(ii) Non-perfect estimates of the frequency offsets available at the receiver.

(iii) Frequency offsets completely unknown at the receiver.

I Focus on the Alamouti scheme (orthogonal STBC for N =2 transmitters).
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Outline

I Influence of the Frequency Offsets

– Conventional Alamouti Detection

– Zero-Forcing Detection and Maximum-Likelihood Detection

– Bit Error Probability

I Simulation Results

I Frequency-Offset Estimation

I Conclusions
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Influence of the Frequency Offsets

I Overall frequency offset for transmitted signal sν(t): ∆fν = ∆ftν −∆fr.
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Influence of the Frequency Offsets

I Overall frequency offset for transmitted signal sν(t): ∆fν = ∆ftν −∆fr.
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I Normalized frequency offset:

ζν
.
= ∆fν T

|ζν| ≤ 0.04 assumed for all ν =1, ..., N .

Information and
Coding Theory Lab



6

Influence of the Frequency Offsets

I Overall frequency offset for transmitted signal sν(t): ∆fν = ∆ftν −∆fr.

∆ft2

∆ft1

∆ftN

∆fr

TxN
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)
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1 (t)
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Tx2

sN(t)

I Normalized frequency offset:

ζν
.
= ∆fν T

|ζν| ≤ 0.04 assumed for all ν =1, ..., N .

I Quasi-static frequency-flat fading:

Complex channel coefficients h1, ..., hN .

=⇒ Frequency offsets cause time-varying phase:

hν[k]
.
= hν · e j2πζνk
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Ideal Local Oscillators – Alamouti-Detection

I Distributed Alamouti scheme (N =2 Tx nodes); ideal local oscillators (LOs), ζ1 = ζ2 = 0

=⇒ y[k] = Heq x[k] + n[k] (1)
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I Distributed Alamouti scheme (N =2 Tx nodes); ideal local oscillators (LOs), ζ1 = ζ2 = 0

=⇒ y[k] = Heq x[k] + n[k] (1)

y[k]: Received samples, x[k]: Transmitted symbols, n[k]: Noise samples,

Heq =

[
h1 −h2

h∗2 h∗1

]
: Equivalent orthogonal (2x2)-channel matrix.
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Ideal Local Oscillators – Alamouti-Detection

I Distributed Alamouti scheme (N =2 Tx nodes); ideal local oscillators (LOs), ζ1 = ζ2 = 0

=⇒ y[k] = Heq x[k] + n[k] (1)

y[k]: Received samples, x[k]: Transmitted symbols, n[k]: Noise samples,

Heq =

[
h1 −h2

h∗2 h∗1

]
: Equivalent orthogonal (2x2)-channel matrix.

=⇒ Alamouti detection:

z[k]
.
= HH

eq y[k] = HH
eqHeq x[k] + HH

eq n[k]

=
(
|h1|2 + |h2|2

)
x[k] + HH

eq n[k] (2)
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Non-Ideal Local Oscillators – Alamouti-Detection

I Channel matrix Heq becomes Heq[k] =

[
h1[k] −h2[k]

h
∗
2 [k+1] h

∗
1 [k+1]

]
. (3)

I Assumption: Receiver has perfect knowledge of h1 and h2 at the beginning of each block.
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[
h1[k] −h2[k]

h
∗
2 [k+1] h

∗
1 [k+1]

]
. (3)

I Assumption: Receiver has perfect knowledge of h1 and h2 at the beginning of each block.

(i) Frequency offsets perfectly known at the receiver =⇒ Receiver uses H
H

eq[k] for detection.

Product matrix H
H

eq[k] Heq[k] is close to diagonal matrix (for practical values of ζ1, ζ2).
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Non-Ideal Local Oscillators – Alamouti-Detection

I Channel matrix Heq becomes Heq[k] =

[
h1[k] −h2[k]

h
∗
2 [k+1] h

∗
1 [k+1]

]
. (3)

I Assumption: Receiver has perfect knowledge of h1 and h2 at the beginning of each block.

(i) Frequency offsets perfectly known at the receiver =⇒ Receiver uses H
H

eq[k] for detection.

Product matrix H
H

eq[k] Heq[k] is close to diagonal matrix (for practical values of ζ1, ζ2).

(ii) Non-perfect estimates ζ̂ν
.
=ζν+εν of the frequency offsets available at the receiver

=⇒ Receiver uses H
H

eq,ε[k] =

[
h∗1 · e

−j2πζ̂1k h2 · e j2πζ̂2(k+1)

−h∗2 · e
−j2πζ̂2k h1 · e j2πζ̂1(k+1)

]
for detection.

Depending on the quality of the estimates ζ̂ν, more or less severe orthogonality loss.
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Non-Ideal Local Oscillators

(iii) Frequency offsets completely unknown at the receiver =⇒ Receiver uses HH
eq for detection.

Depending on k, the product matrix HH
eq Heq[k] can even be an anti-diagonal matrix =⇒

Severe performance degradations.
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Non-Ideal Local Oscillators

(iii) Frequency offsets completely unknown at the receiver =⇒ Receiver uses HH
eq for detection.

Depending on k, the product matrix HH
eq Heq[k] can even be an anti-diagonal matrix =⇒

Severe performance degradations.

Alternatives to Alamouti detection

(a) Zero-forcing (ZF) detection: Use inverse matrix for detection instead of hermitian conjugate.

(b) Maximum-likelihood (ML) detection.
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Non-Ideal Local Oscillators

(iii) Frequency offsets completely unknown at the receiver =⇒ Receiver uses HH
eq for detection.

Depending on k, the product matrix HH
eq Heq[k] can even be an anti-diagonal matrix =⇒

Severe performance degradations.

Alternatives to Alamouti detection

(a) Zero-forcing (ZF) detection: Use inverse matrix for detection instead of hermitian conjugate.

(b) Maximum-likelihood (ML) detection.

– Performance of ZF detection is virtually the same as that of ML detection in all cases.

– Given ideal LOs Alamouti detection, ZF detection, and ML detection are equivalent.
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Bit Error Probability

I Non-ideal LOs, Alamouti detection or ZF detection

I Quasi-static frequency-flat fading

I QPSK symbols x[k] with Gray mapping [b1kb2k] 7→ x[k]:

[00] 7→ exp[j π/4] [01] 7→ exp[j 3π/4]

[11] 7→ exp[j 5π/4] [10] 7→ exp[j 7π/4].
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Bit Error Probability

I Non-ideal LOs, Alamouti detection or ZF detection

I Quasi-static frequency-flat fading

I QPSK symbols x[k] with Gray mapping [b1kb2k] 7→ x[k]:

[00] 7→ exp[j π/4] [01] 7→ exp[j 3π/4]

[11] 7→ exp[j 5π/4] [10] 7→ exp[j 7π/4].

I z[k] corresponding symbol after Alamouti detection/ ZF detection

I Let dRe[k], dIm[k] denote real and imaginary part of z[k] for high SNRs (Es/N0 →∞);

may be determined analytically.
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Bit Error Probability

=⇒ BEP for bit b1k:

Pb1[k] = Q

(√
2

d2
Im

[k]

(|h1|2+|h2|2)
Es
No

)
if Im{x[k]} and Im{z[k]} have equal signs

Pb1[k] = 1 − Q

(√
2

d2
Im

[k]

(|h1|2+|h2|2)
Es
No

)
else

I Similarly for bit b2k (using dRe[k]) =⇒ Pb2[k]
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Bit Error Probability

=⇒ BEP for bit b1k:

Pb1[k] = Q

(√
2

d2
Im

[k]

(|h1|2+|h2|2)
Es
No

)
if Im{x[k]} and Im{z[k]} have equal signs

Pb1[k] = 1 − Q

(√
2

d2
Im

[k]

(|h1|2+|h2|2)
Es
No

)
else

I Similarly for bit b2k (using dRe[k]) =⇒ Pb2[k]

=⇒ Overall average BEP given blocks of LB QPSK symbols:

P̄b = 1
2LB

LB−1∑
k=0

E {Pb1[k]}+ E {Pb2[k]} (4)

(Expectation is with respect to the channel coefficients h1 and h2.)
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Outline

I Influence of the Frequency Offsets

I Simulation Results

– Alamouti Detection and ZF/ ML detection

– Perfect and Non-Perfect Frequency-Offset Estimates

I Frequency-Offset Estimation

I Conclusions
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Simulation Results

I Uncoded transmission, Tx power

normalized w.r.t. number of Tx nodes

I QPSK symbols, Gray mapping

I Quasi-static frequency-flat fading,

Rice factor K =0 dB

I Channel coefficients perfectly known

at the beginning of each block
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Simulation Results

I Uncoded transmission, Tx power

normalized w.r.t. number of Tx nodes

I QPSK symbols, Gray mapping

I Quasi-static frequency-flat fading,

Rice factor K =0 dB

I Channel coefficients perfectly known

at the beginning of each block

I Alamouti detection

I Frequency offsets

ζ1 = +0.03, ζ2 = −0.012

I Frequency offsets perfectly known/

completely unknown
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Simulation Results

I Alamouti detection (solid lines) vs.

ZF/ ML detection (dashed lines)

I Frequency offsets

ζ1 = +0.03, ζ2 = −0.012

I Frequency-offset estimates:

Absolute errors of 2% ... 5%
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Simulation Results

I Alamouti detection (solid lines) vs.

ZF/ ML detection (dashed lines)

I Frequency offsets
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I Frequency-offset estimates:

Absolute errors of 2% ... 5%
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Simulation Results

I ML detection

I Es/N0=10 dB

I Frequency offsets

|ζ1|, |ζ2| ≤ 0.04

I Frequency-offset estimates:

Absolute errors of 3%
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Simulation Results

I ML detection

I Es/N0=10 dB

I Frequency offsets

|ζ1|, |ζ2| ≤ 0.04

I Frequency-offset estimates:

Absolute errors of 3%
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Outline

I Influence of the Frequency Offsets

I Simulation Results

I Frequency-Offset Estimation

– Training-Based Estimation Method

– Blind Estimation Method

I Conclusions
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Frequency-Offset Estimation

Training-Based Estimation Method

I Estimating channel coefficients given known data symbols is dual to estimating data symbols given

known channel coefficients =⇒ Principle of Alamouti detection can be applied.

I Average over the phase differences of several subsequent channel-coefficient estimates =⇒
Explicit estimates for the frequency-offsets.
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known channel coefficients =⇒ Principle of Alamouti detection can be applied.

I Average over the phase differences of several subsequent channel-coefficient estimates =⇒
Explicit estimates for the frequency-offsets.

Blind Estimation Method

I QPSK symbols: Raise the received samples to the power of four and perform an FFT =⇒
Spectral lines at 4ζ1 and 4ζ2 plus noise.

I Average over several FFTs to eliminate the influence of noise.
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Frequency-Offset Estimation

Training-Based Estimation Method

I Estimating channel coefficients given known data symbols is dual to estimating data symbols given

known channel coefficients =⇒ Principle of Alamouti detection can be applied.

I Average over the phase differences of several subsequent channel-coefficient estimates =⇒
Explicit estimates for the frequency-offsets.

Blind Estimation Method

I QPSK symbols: Raise the received samples to the power of four and perform an FFT =⇒
Spectral lines at 4ζ1 and 4ζ2 plus noise.

I Average over several FFTs to eliminate the influence of noise.

Frequency-offset estimation in cooperating wireless networks is more difficult than in (1x1)-systems.
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Conclusions

Influence of frequency offsets on the performance of a distributed Alamouti scheme

I Different receiver concepts (Alamouti detection, ZF detection, ML detection)

I Bit error probability given non-ideal local oscillators

−→ The performance of a distributed Alamouti scheme is very sensitive to frequency offsets.

Frequency-offset estimates

I Accurate frequency-offset estimates are required at the receiver (e.g. error of less than 3%)

I Two different methods for frequency-offset estimation

−→ Frequency-offset estimation is more difficult than in (1x1)-systems.
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