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... which can be readily combined with IDMA ;-)



Introduction

I Multiple-antenna systems offer huge advantages over
single-antenna systems (capacity, error performance, ...)

I Spatial correlations can cause significant degradations in
capacity and error performance

Example: Cellular Systems

Mobile station: Insufficient antenna spacings
Base station: Lack of scattering from physical environment

Here: Transmit and receive diversity scheme for correlated
MIMO systems based on statistical channel knowledge
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Introduction

Transmit and receive diversity scheme under consideration:

I only knowledge of second-order channel statistics required
(can easily be acquired in practical systems)

I can be employed independently of each other

Statistical Transmit Power Allocation

I Basic structure: Outer power weighting stage followed by
inner decorrelation stage

Goal: Performance improvement

Reduced-Dimension Receiver

I Basic structure: Inner decorrelation stage followed by
outer selection stage

Goal: Flexible trade-off between complexity and
performance for subsequent receiver stages
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Introduction

Focus here:

I Duality between transmit and receive diversity scheme

I Performance analysis with focus on complexity-performance
trade-off offered by the reduced-dimension receiver

I Combination of reduced-dimension receiver with subsequent
space-time decoding/ space-time equalization

I Impact of estimation errors (concerning the transmitter and
receiver correlation matrix)
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Outline

I System Model

• Channel and Spatial Correlation Model

• Structure of Transmit and Receive Diversity Scheme

I Transmit and Receive Diversity Scheme

• Performance Analysis

• Impact of estimation errors

I Conclusions
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MIMO Channel Model

I M Tx antennas, N Rx antennas, quasi-static fading

L∑
l=0

y[k] = Hx[k] + n[k]
L∑

l=0

– y[k]: Received vector, x[k]: Data vector, n[k]: Noise vector

– H: Channel matrix, hij ∼ CN{0, σ2
h} (Rayleigh fading)

Faculty of Engineering

University of Kiel 5
Information and Coding

Theory Lab



MIMO Channel Model

I M Tx antennas, N Rx antennas, quasi-static fading

y[k] =
L∑

l=0

H(l)x[k−l] + n[k]

– y[k]: Received vector, x[k]: Data vector, n[k]: Noise vector

– H(l): Channel matrices (l = 0, ..., L)
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Transmitter and Receiver Correlation Matrix

Transmit& receive diversity scheme based on correlation matrices

I Flat fading:

RTx = E{HHH}/(Nσ2
h), RRx = E{HHH}/(Mσ2

h)

Example: Kronecker correlation model

H := R1/2
Rx GR1/2

Tx gij ∼ CN{0, σ2
h} i.i.d.

I Frequency-selective fading (receive diversity scheme):

E{y[k]yH[k]} := σ2 RRx + σ2
n IN

I Eigenvalue Decompositions:

R• := U•Λ•UH
•

Λ• diagonal with eigenvalues λTx,i or λRx,j , U• unitary
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Transmitter and Receiver Structure

Example: Flat fading

N Rx antennas
M virtual

Tx antennas
M physical
Tx antennas

UTx

x′[k] x[k]
W1/2� ��� � � x′′[k]

Decorrelation

symbols

stage

y[k]Info
H

n[k]
weighting

Power
W=diag([w1, ..., wM ])

N virtualN physical
Rx antennas Rx antennas

Dimension
D≤NM Tx antennas

to subsequent
detector/ equalizer

� ��� � � y[k]

symbols

x[k]
H UH

Rx
Selection

stage

y′[k]

Decorrelation
stage

y′′[k]Info

n[k]
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Reduced-Dimension Receiver

Selection stage:

I Choice D=N is optimal, since decorrelation stage UH
Rx does

not change performance

I Smallest eigenvalues of RRx can be discarded without significant
performance loss ⇒ Reduced complexity for subsequent stages

Selection criterion adopted from Jelitto & Fettweis (2002):

Choose D as small as possible, but such that

Average discarded received power of desired signal
≤ Average discarded noise power

Pdisc := σ2
∑

j λRx,j ≤ (N−D)σ2
n
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Outline

I System Model

• Channel and Spatial Correlation Model

• Structure of Transmit and Receive Diversity Scheme

I Transmit and Receive Diversity Scheme

• Performance Analysis

• Impact of estimation errors

I Conclusions
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Performance Analysis

I Closed-form expressions for BER performance
(flat Rayleigh fading, Kronecker model, BPSK modulation)

No power weighting (W=IM ), full-dimension receiver (D=N)

P̄b =
1

2

M∑
i=1

N∑
j=1

 M∏
i′=1
i′ 6=i

N∏
j′=1
j′ 6=j

λTx,iλRx,j

λTx,iλRx,j − λTx,i′λRx,j′


M

×

(
1−

√
σ2 λTx,iλRx,j

M σ2
n + σ2 λTx,iλRx,j

)
High-SNR approximation:

P̄b ≈
(
Mσ2

n

4σ2

)MN(
2MN − 1

MN

) M∏
i=1

N∏
j=1

1

λTx,iλRx,j
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Performance Analysis
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Performance Analysis

I Closed-form expressions for BER performance
(flat Rayleigh fading, Kronecker model, BPSK modulation)

Power weighting (W 6=IM ), reduced dimension (D<N)

P̄b =
1

2

M∑
i=1

D∑
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 M∏
i′=1
i′ 6=i
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Complexity-Performance Trade-off

Flat Fading

Example:

I (2x4)-System

I BPSK modulation

I Alamouti STBC &
linear decoding

I Transmitter: RTx =I2,
No power weighting

I Receiver: Single-parameter
correlation matrix RN,ρ

(ρ=0.7), perfectly known
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(2x4)−system, ρ=0.7, D=4

D=4: Optimal performance
(Whole SNR range)
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Complexity-Performance Trade-off
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Example:
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Complexity-Performance Trade-off

Frequency-selective Fading

Example:

I (2x4)-System

I BPSK modulation

I Alamouti STBC &
trellis-based equalizer

I Transmitter: RTx =I2,
No power weighting

I Receiver: Single-parameter
correlation matrix RN,ρ

(ρ=0.7), perfectly known
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D=4: Optimal performance
(Whole SNR range)
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Impact of Estimation Errors

I In practical systems, R• has to be estimated

⇒ R̂• := Û•Λ̂•ÛH
•

In general, Û• 6=U• and Λ̂• 6=Λ• (R̂• still Hermitian)

I Reduced-dimension receiver
⇒ Mismatched decorrelation stage and selection stage

Λ̂Rx ⇒ Selection rule P̂disc = σ2
∑

j λ̂Rx,j ≤ (N−D)σ2
n

ÛRx: Average power of desired signal actually discarded is

Pdisc := σ2
∑

j ΞRx,j,j ≤ (N−D)σ2
n,

where ΞRx := ÛH
RxURxΛRxUH

RxÛRx

Effect usually small as long as R̂Rx is not too bad
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RxURxΛRxUH

RxÛRx
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Mismatched Selection Rule

Example: Single-parameter correlation matrix RRx =RN,ρ with
N=4 and ρ=0.7; direct estimate for ρ available

⇒ Table for the optimal choice of the dimension D

SNR in dB
0 1 2 3 4 5 6 7 8 9 10

ρ̂ = ρ 1 1 1 2 2 3 3 3 3 3 3

ρ̂ = ρ− 10% 1 1 2 2 3 3 3 3 4 4 4

ρ̂ = ρ+ 10% 1 1 1 1 2 2 2 2 2 3 3

Red: Unnecessarily high receiver complexity (marginal gains)
Green: Chosen receiver complexity too small (notable losses)

Still: Performance loss/ complexity overhead limited, occurs only
for certain SNR values ⇒ Scheme quite robust
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Conclusions

Transmit diversity and receive diversity scheme for spatially
correlated MIMO systems

I Simple structures, based on second-order channel statistics

I Duality between transmit and receive diversity scheme

I Closed-form expressions for bit-error-rate performance

I Complexity-performance trade-off of receive diversity
scheme (combined with space-time decoding/ equalization)

I Impact of estimation errors w.r.t. correlation matrix
⇒ Transmit and receive diversity scheme quite robust
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Illustration of the Selection Rule

Pdisc := σ2
∑

j λRx,j ≤ (N−D)σ2
n

D

Nσ
2
n

0 N1 2 (N−1)

(N−D)σ
2
n

. . .3

Choose D=2

Pdisc

Nσ
2
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Improved Selection Rule

Introduce a bias ψ:

P̂disc ≤ (N−D)σ2
n + ψ

I Some performance loss acceptable ⇒ Choose ψ > 0
I Some extra complexity acceptable ⇒ Choose ψ < 0

The value of ψ has to be optimized numerically, based on the
quality of the estimate R̂Rx
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