Prefiltering and Trellis-Based Equalization for Sparse ISI Channels

Jan Mietzner Sabah Badri-Hoeher Peter A. Hoeher

Information and Coding Theory Lab (ICT)

University of Kiel, Germany

{jm,sbh,ph}@tf.uni-kiel.de
 www-ict.tf.uni-kiel.de

IST Mobile Summit, Dresden, Germany June 19–23, 2005

Sparse ISI Channels

Sparse ISI Channels are encountered in many high-data-rate communication systems (wireless & wireline)

Sparse ISI Channels

Sparse ISI Channels are encountered in many high-data-rate communication systems (wireless & wireline)

Discrete-time channel impulse response (CIR): Large memory length L, only few non-zero channel coefficients ($G \ll L$)

$$\mathbf{h} := \begin{bmatrix} h_0 & \underbrace{\underbrace{0 \dots 0}_{f_0 \text{ zeros}} h_1 & \underbrace{0 \dots 0}_{f_1 \text{ zeros}} h_2 & \dots & h_{G-1} & \underbrace{0 \dots 0}_{f_{G-1} \text{ zeros}} h_G \end{bmatrix}^\mathsf{T}$$

Sparse ISI Channels

Sparse ISI Channels are encountered in many high-data-rate communication systems (wireless & wireline)

Discrete-time channel impulse response (CIR): Large memory length L, only few non-zero channel coefficients ($G \ll L$)

$$\mathbf{h} := \begin{bmatrix} h_0 & \underbrace{\underbrace{0 \dots 0}_{f_0 \text{ zeros}} h_1 & \underbrace{0 \dots 0}_{f_1 \text{ zeros}} h_2 & \dots & h_{G-1} & \underbrace{0 \dots 0}_{f_{G-1} \text{ zeros}} h_G \end{bmatrix}^\mathsf{T}$$

Special case: Zero-pad channel

$$f_0 = f_1 = \dots = f_{G-1} =: f \ge 1, \qquad L = (f+1)G$$

Due to large channel memory length, **efficient** equalization with reasonable **complexity** is a demanding task

Due to large channel memory length, **efficient** equalization with reasonable **complexity** is a demanding task

Here: Trellis-based equalization (based on VA or BCJRA)

 $\mathsf{MLSE} \Rightarrow M^L \text{ trellis states } (M \text{-ary data symbols})$

Due to large channel memory length, **efficient** equalization with reasonable **complexity** is a demanding task

Here: Trellis-based equalization (based on VA or BCJRA)

 $\mathsf{MLSE} \Rightarrow M^L$ trellis states (*M*-ary data symbols)

⇒ **Reduced-complexity** algorithms can be derived that exploit the sparse channel structure

Zero-pad channel \Rightarrow parallel-trellis VA/BCJRA

Due to large channel memory length, **efficient** equalization with reasonable **complexity** is a demanding task

Here: Trellis-based equalization (based on VA or BCJRA)

 $MLSE \Rightarrow M^L$ trellis states (*M*-ary data symbols)

⇒ **Reduced-complexity** algorithms can be derived that exploit the sparse channel structure

Zero-pad channel \Rightarrow parallel-trellis VA/BCJRA

Instead
$$M^L = M^{(f+1)G}$$
 states \Rightarrow
(f+1) parallel trellises with M^G states each

P-VA, P-BCJRA

Parallel trellis *i*:

Symbol estimates for time indices i + (f+1)N (N integer)

P-VA, P-BCJRA

Parallel trellis *i*:

Symbol estimates for time indices i + (f+1)N (N integer)

\Rightarrow Still **optimal** in the sense of MLSE

Sparse CIR (non zero-pad)

(a) Find an underlying zero-pad CIR similar to the given CIR

(a) Find an underlying zero-pad CIR similar to the given CIR(b) Define the parallel trellis diagrams

(a) Find an underlying zero-pad CIR similar to the given CIR

- (b) Define the parallel trellis diagrams
- (c) Perform decision feedback between the parallel trellises

(a) Find an underlying zero-pad CIR similar to the given CIR

- (b) Define the parallel trellis diagrams
- (c) Perform decision feedback between the parallel trellises

\Rightarrow suboptimal parallel-trellis VA/BCJRA

Fading Channel

 \Rightarrow Start all over again ...

Fading Channel

 \Rightarrow Start all over again ...

Our approach

Use **prefiltering** in conjunction with **standard** reduced-complexity **trellis-based equalizer**

 \Rightarrow Start all over again ...

Our approach

Use **prefiltering** in conjunction with **standard** reduced-complexity **trellis-based equalizer**

⇒ Tackle general sparse fading CIRs & provide performance close to the matched filter bound (MFB)

Introduction

- Proposed Receiver Structure
 - Linear Prefiltering
 - Reduced-State Trellis-Based Equalization
- Numerical Results
- Conclusions

Linear filter that can be computed **efficiently** (with standard techniques available in the literature)

Linear filter that can be computed **efficiently** (with standard techniques available in the literature)

(i) Channel shortening filter (CSF) \Rightarrow Shortened CIR according to predefined memory length

Linear filter that can be computed **efficiently** (with standard techniques available in the literature)

- (i) Channel shortening filter (CSF) \Rightarrow Shortened CIR according to predefined memory length
- (ii) Minimum-phase filter (WMF)
 ⇒ Energy concentration in the first channel coefficients

Proposed Receiver Structure

Standard reduced-complexity **trellis-based equalizer** (not specifically designed for sparse ISI channels)

Sparse CIR structure is normally lost after prefiltering

 $\Rightarrow\,$ Solely the linear filter is adjusted to the current CIR

Proposed Receiver Structure

Standard reduced-complexity **trellis-based equalizer** (not specifically designed for sparse ISI channels)

Sparse CIR structure is normally lost after prefiltering

 $\Rightarrow\,$ Solely the linear filter is adjusted to the current CIR

(i) Shortened Viterbi detector (SVD)

- \Rightarrow Shortened memory length $L_{\rm s} \!\ll\! L$
- \Rightarrow Use SVD in conjunction with CSF

Proposed Receiver Structure

Standard reduced-complexity **trellis-based equalizer** (not specifically designed for sparse ISI channels)

Sparse CIR structure is normally lost after prefiltering

 $\Rightarrow\,$ Solely the linear filter is adjusted to the current CIR

- (i) Shortened Viterbi detector (SVD)
 - \Rightarrow Shortened memory length $L_{\rm s} \!\ll\! L$
 - \Rightarrow Use SVD in conjunction with CSF
- (ii) Delayed decision-feedback sequence estimator (DDFSE)
 - \Rightarrow Parallel decision feedback, memory length $K \ll L$
 - $\Rightarrow~$ Use DDFSE in conjunction with WMF

Introduction

- Proposed Receiver Structure
- Numerical Results
 - Performance comparison with sub-P-BCJRA
 - Power profiles before and after CSF/WMF
 - Performance results for different channel memory lengths
- Conclusions

Comparison with sub-P-BCJRA

Static CIR $\mathbf{h} = [h_0 \ 0 \ 0 \ 0 \ h_4 \ 0 \ 0 \ h_7 \ 0...0 \ h_{15}]^{\mathsf{T}}$ (no zero-pad) $h_0 = 0.87, \ h_4 = h_7 = h_{15} = 0.29$

Binary transmission; $L_F = 40$ (WMF), $L_F = 50$ (CSF)

Comparison with sub-P-BCJRA

Static CIR $\mathbf{h} = [h_0 \ 0 \ 0 \ 0 \ h_4 \ 0 \ 0 \ h_7 \ 0...0 \ h_{15}]^{\mathsf{T}}$ (no zero-pad) $h_0 = 0.87, \ h_4 = h_7 = h_{15} = 0.29$

Binary transmission; $L_F = 40$ (WMF), $L_F = 50$ (CSF)

Faculty of Engineering University of Kiel

Comparison with sub-P-BCJRA

Static CIR $\mathbf{h} = [h_0 \ 0 \ 0 \ 0 \ h_4 \ 0 \ 0 \ h_7 \ 0...0 \ h_{15}]^{\mathsf{T}}$ (no zero-pad) $h_0 = 0.87, \ h_4 = h_7 = h_{15} = 0.29$

Binary transmission; $L_F = 40$ (WMF), $L_F = 50$ (CSF)

DDFSE (K=4) + WMF: Similar **performance** as sub-P-BCJRA

DDFSE (K=3) + WMF: **Reduced** complexity at expense of **small** loss

Fading CIR with
$$h_g \sim C\mathcal{N}(0, \sigma_{h,g}^2)$$
 and power profile

$$\mathbf{p} := [\sigma_{h,0}^2 \underbrace{0...0}_{f \text{ zeros}} \sigma_{h,1}^2 \ 0 \ 0 \ \sigma_{h,2}^2 \sigma_{h,3}^2]^{\mathsf{T}}, \ \sigma_{h,g}^2 = 0.25$$

Fading CIR with $h_g \sim C\mathcal{N}(0, \sigma_{h,g}^2)$ and power profile $\mathbf{p} := [\sigma_{h,0}^2 \underbrace{0 \dots 0}_{f \text{ zeros}} \sigma_{h,1}^2 \ 0 \ 0 \ \sigma_{h,2}^2 \sigma_{h,3}^2]^{\mathsf{T}}, \ \sigma_{h,g}^2 = 0.25$

Faculty of Engineering University of Kiel

Fading CIR with
$$h_g \sim C\mathcal{N}(0, \sigma_{h,g}^2)$$
 and power profile

$$\mathbf{p} := [\sigma_{h,0}^2 \underbrace{0 \dots 0}_{f \text{ zeros}} \sigma_{h,1}^2 \ 0 \ 0 \ \sigma_{h,2}^2 \sigma_{h,3}^2]^\mathsf{T}, \ \sigma_{h,g}^2 = 0.25$$

Fading CIR with
$$h_g \sim C\mathcal{N}(0, \sigma_{h,g}^2)$$
 and power profile

$$\mathbf{p} := [\sigma_{h,0}^2 \underbrace{0 \dots 0}_{f \text{ zeros}} \sigma_{h,1}^2 \ 0 \ 0 \ 0 \ \sigma_{h,2}^2 \sigma_{h,3}^2]^\mathsf{T}, \ \sigma_{h,g}^2 = 0.25$$

Fading CIR, Different Memory Lengths

CI

Fading CIR, Different Memory Lengths

CI

Fading CIR, Different Memory Lengths

DDFSE with WMF deviates only 1-2 dB from the MFB (at a BER of 10^{-3}) even for large L; WMF makes huge difference

- Efficient equalization of sparse ISI channels at reasonable complexity is demanding task
- Current trellis-based solutions require a certain CIR structure and do not seem practicable for fading channels

• Our approach:

Generic receiver structure consisting of **linear filter** and standard **reduced-complexity** trellis-based equalizer

- Efficient equalization of sparse ISI channels at reasonable complexity is demanding task
- Current trellis-based solutions require a certain CIR structure and do not seem practicable for fading channels

• Our approach:

Generic receiver structure consisting of **linear filter** and standard **reduced-complexity** trellis-based equalizer

- \Rightarrow General sparse ISI channels can be tackled
- $\Rightarrow~$ Only the linear filter is adjusted to the current CIR
- ⇒ DDFSE + WMF performs **close** to the MFB and can **compete** with existing trellis-based solutions

- Efficient equalization of sparse ISI channels at reasonable complexity is demanding task
- Current trellis-based solutions require a certain CIR structure and do not seem practicable for fading channels

• Our approach:

Generic receiver structure consisting of **linear filter** and standard **reduced-complexity** trellis-based equalizer

- \Rightarrow General sparse ISI channels can be tackled
- $\Rightarrow~$ Only the linear filter is adjusted to the current CIR
- ⇒ DDFSE + WMF performs **close** to the MFB and can **compete** with existing trellis-based solutions
- \Rightarrow Alternative: Tree-based equalizer (LISS alg.) + WMF

