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Sparse ISI Channels

Sparse ISI Channels are encountered in many high-data-rate
communication systems (wireless & wireline)

Discrete-time channel impulse response (CIR): Large memory
length L, only few non-zero channel coefficients (G� L)

h := [ h0

L︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
f0 zeros

h1 0 . . . 0︸ ︷︷ ︸
f1 zeros

h2 . . . hG−1 0 . . . 0︸ ︷︷ ︸
fG−1 zeros

hG ]T

Special case: Zero-pad channel

f0 = f1 = ... = fG−1 =: f ≥ 1, L = (f+1)G
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Equalization for Sparse ISI Channels

Due to large channel memory length, efficient equalization with
reasonable complexity is a demanding task

Here: Trellis-based equalization (based on VA or BCJRA)

MLSE ⇒ ML trellis states (M -ary data symbols)

⇒ Reduced-complexity algorithms can be derived that exploit
the sparse channel structure

Zero-pad channel ⇒ parallel-trellis VA/BCJRA

Instead ML = M (f+1)G states ⇒
(f+1) parallel trellises with MG states each
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P-VA, P-BCJRA

Sparse CIR (zero−pad)

Parallel trellis

Parallel trellis 

0

f

Parallel trellis i:
Symbol estimates for time indices i + (f+1)N (N integer)

⇒ Still optimal in the sense of MLSE
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sub-P-VA, sub-P-BCJRA

Sparse CIR (non zero−pad)

(a) Find an underlying zero-pad CIR similar to the given CIR

(b) Define the parallel trellis diagrams

(c) Perform decision feedback between the parallel trellises

⇒ suboptimal parallel-trellis VA/BCJRA
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Fading Channel

???

$\Rightarrow\;$Start all over again ...

Our approach

Use prefiltering in conjunction with standard reduced-complexity
trellis-based equalizer

⇒ Tackle general sparse fading CIRs & provide performance
close to the matched filter bound (MFB)
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Outline

I Introduction

I Proposed Receiver Structure

• Linear Prefiltering

• Reduced-State Trellis-Based Equalization

I Numerical Results

I Conclusions
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Proposed Receiver Structure

Linear

filter

ISI channel

+AWGN

(reduced complexity)

x̂[k]
y[k] z[k]

equalizer

Trellis based
x[k]

Linear filter that can be computed efficiently
(with standard techniques available in the literature)

(i) Channel shortening filter (CSF)
⇒ Shortened CIR according to predefined memory length

(ii) Minimum-phase filter (WMF)
⇒ Energy concentration in the first channel coefficients
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Proposed Receiver Structure

Standard reduced-complexity trellis-based equalizer
(not specifically designed for sparse ISI channels)

Sparse CIR structure is normally lost after prefiltering

⇒ Solely the linear filter is adjusted to the current CIR

(i) Shortened Viterbi detector (SVD)
⇒ Shortened memory length Ls�L
⇒ Use SVD in conjunction with CSF

(ii) Delayed decision-feedback sequence estimator (DDFSE)
⇒ Parallel decision feedback, memory length K�L
⇒ Use DDFSE in conjunction with WMF
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Outline

I Introduction

I Proposed Receiver Structure

I Numerical Results

• Performance comparison with sub-P-BCJRA

• Power profiles before and after CSF/WMF

• Performance results for different channel memory lengths

I Conclusions
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Comparison with sub-P-BCJRA

Static CIR h = [h0 0 0 0 h4 0 0 h7 0...0 h15]
T (no zero-pad)

h0 = 0.87, h4 = h7 = h15 = 0.29

Binary transmission; LF =40 (WMF), LF =50 (CSF)

DDFSE (K =4) + WMF:
Similar performance as
sub-P-BCJRA

DDFSE (K =3) + WMF:
Reduced complexity at
expense of small loss
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Power Profiles after CSF/WMF

Fading CIR with hg ∼ CN (0, σ2
h,g) and power profile

p := [ σ2
h,0 0 . . . 0︸ ︷︷ ︸

f zeros

σ2
h,1 0 0 0 σ2

h,2 σ2
h,3 ]T, σ2

h,g = 0.25
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Fading CIR, Different Memory Lengths

Memory length L=6 (K, Ls =5)

6 8 10 12 14 16 18
10−4

10−3

10−2

10−1

100

10 log
10

(E
b
/N

0
)  dB

B
E

R

DDFSE (K = 5) with WMF
SVD (L

s
 = 5) with CSF

DDFSE (K = 5) without WMF
Matched Filter Bound

DDFSE with WMF deviates only 1-2 dB from the MFB
(at a BER of 10−3) even for large L; WMF makes huge difference
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Fading CIR, Different Memory Lengths

Memory length L=12 (K, Ls =5)
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Fading CIR, Different Memory Lengths

Memory length L=20 (K, Ls =5)
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Conclusions

I Efficient equalization of sparse ISI channels at reasonable
complexity is demanding task

I Current trellis-based solutions require a certain CIR structure
and do not seem practicable for fading channels

I Our approach:
Generic receiver structure consisting of linear filter and
standard reduced-complexity trellis-based equalizer

⇒ General sparse ISI channels can be tackled

⇒ Only the linear filter is adjusted to the current CIR

⇒ DDFSE + WMF performs close to the MFB and
can compete with existing trellis-based solutions

⇒ Alternative: Tree-based equalizer (LISS alg.) + WMF
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