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Spatial Diversity in Wireless Systems

Wireless systems suffer from fading effects due to multipath
signal propagation

System performance is improved significantly when exploiting
some sort of diversity

Example

Multiple antennas in conjunction with space-time coding or
diversity reception techniques ⇒ Spatial diversity
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Systems with Multiple Transmitters

Conventionally: Co-located antennas with sufficient spacing
⇒ Statistically independent links

Rx

Tx1 TxnTx2

Rx

Tx2Tx1 Txn
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Systems with Multiple Transmitters

Compact system: Densely packed antennas (limited space)
⇒ Correlated links, reduced diversity gains
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Systems with Multiple Transmitters

Distributed system:
Virtual multiple-antenna system (cooperating network nodes)

Tx1

Txn

Tx2

Rx

I Relay-assisted networks
(Cellular/ad-hoc)

I Simulcast networks
(Broadcast/paging)

Example: Simulcast network with cooperating base stations,
distributed space-time code (e.g., OSTBC)
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Systems with Multiple Transmitters

Distributed system:
Virtual multiple-antenna system (cooperating network nodes)

BS1

BSn

BS2
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Distributed System

Specific difference compared to co-located systems:
Individual links typically have different lengths

⇒ Unequal average link SNRs: γ̄i =
Ωi

n

Es

N0
(i=1, ..., n)

(
∑

i Ωi := n)

We show
I Unequal SNRs cause reduced diversity gains, just as

correlated links

I Any OSTBC system with distributed transmitters can be
transformed into equivalent correlated OSTBC system

Case of equal SNRs corresponds to uncorrelated system
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Outline

I Introduction

I Error Performance of Distributed OSTBCs

• Numerical Results

• High-SNR Analysis

• Simple Performance Measure

I Duality between Distributed and Correlated Systems

I Conclusions
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Error Performance of Distributed OSTBCs

Assumptions:

I Distributed OSTBC, n cooperating transmitters (BSs)

I Single receiver (MS) with fixed position

I All network nodes have one antenna

I Quasi-static flat Rayleigh fading, binary transmission

I Signal delays are not considered

Performance analysis

(n×1)-OSTBC system ⇒ Equivalent (1×n)-MRC system:

y[k] = h a[k] + n[k]

y[k]: Received samples time index k, h: Channel coefficients

a[k]: kth info symbol (before OSTBC), n[k]: AWGN samples
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BER Curves
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Simple Performance Measure

Goal: Classify distributed OSTBC systems w.r.t. performance
⇒ Performance measure ∆ ∈ [0, 1] (SNR unbalance)

Example:

Different systems
with ∆ ≈ 0.7 and
2, 3, 4 transmitters
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Outline

I Introduction

I Error Performance of Distributed OSTBCs

I Duality between Distributed and Correlated Systems

• Unitary transform

• Numerical Example

I Conclusions
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Duality of Distributed and Correlated Systems

Behavior of distributed system with unequal SNRs resembles that
of compact system with correlated antennas

Theorem

Any distributed (n×1)-OSTBC system can be transformed into
an equivalent correlated (n×1)-OSTBC system

Sketch of Proof

– Via equivalent (1×n)-MRC system y[k] = h a[k] + n[k]

– Unitary transform does not change statistical properties:

y′[k] := Uy[k] = Uh a[k] + Un[k] =: h′ a[k] + n′[k],

U any unitary matrix ⇒ Equivalent MRC system
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Duality of Distributed and Correlated Systems

– Spatial correlation properties of distributed system:

E
{
hhH

}
= diag (Ω1, ...,Ωn) =: Ω

Spatial correlation properties of transformed system:

E
{
h′h′H

}
= E

{
UhhHUH

}
= UΩUH

⇒ Choose U such that UΩUH gives a correlation matrix R
(rii = 1, |rij | ≤ 1)

Suitable choices (example):

(n×n)-Fourier matrix Fn, (n×n)-Hadamard matrix Hn

Special cases

Ω = In 7→ R = In (uncorrelated)

Ω = diag (n, 0, ..., 0) 7→ R with |rij | = 1
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Numerical Example

Tx3

Ω1

Ω3

Tx2

Ω

Tx1

Ω2 Rx Ω4

Tx4

�

Distributed system:2664
2.5 0 0 0
0 1.0 0 0
0 0 0.3 0
0 0 0 0.2

3775
| {z }

Ω

Unitary matrix:2664
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

3775
| {z }

H4

Correlated system:2664
1 0.4 0.75 0.35

0.4 1 0.35 0.75
0.75 0.35 1 0.4
0.35 0.75 0.4 1

3775
| {z }

H4 ΩHH
4 = R
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Numerical Example
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Application Example

Reuse transmit power allocation schemes originally developed for
spatially correlated systems
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Conclusions

I Cooperative networks (e.g., simulcast or relay networks)
⇒ Virtual antenna arrays

I Performance analysis of distributed space-time codes
⇒ Unequal link SNRs can cause significant performance loss

I Simple performance measure to classify distributed OSTBC
systems

I Duality of distributed OSTBC systems and spatially
correlated OSTBC systems (unitary matrix transform)
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