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Sparse ISI Channels

Sparse ISI channels are encountered in many high-data-rate
communication systems (wireless & wireline)

Discrete-time channel impulse response (CIR): Large memory
length L, only few non-zero channel coefficients (G� L)

h := [ h0

L︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
f0 zeros

h1 0 . . . 0︸ ︷︷ ︸
f1 zeros

h2 . . . hG−1 0 . . . 0︸ ︷︷ ︸
fG−1 zeros

hG ]T

Special case: Zero-pad channel

f0 = f1 = ... = fG−1 =: f ≥ 1

Faculty of Engineering
University of Kiel 1

Information and Coding

Theory Lab



Sparse ISI Channels

Sparse ISI channels are encountered in many high-data-rate
communication systems (wireless & wireline)

Discrete-time channel impulse response (CIR): Large memory
length L, only few non-zero channel coefficients (G� L)

h := [ h0

L︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
f0 zeros

h1 0 . . . 0︸ ︷︷ ︸
f1 zeros

h2 . . . hG−1 0 . . . 0︸ ︷︷ ︸
fG−1 zeros

hG ]T

Special case: Zero-pad channel

f0 = f1 = ... = fG−1 =: f ≥ 1

Faculty of Engineering
University of Kiel 1

Information and Coding

Theory Lab



Sparse ISI Channels

Sparse ISI channels are encountered in many high-data-rate
communication systems (wireless & wireline)

Discrete-time channel impulse response (CIR): Large memory
length L, only few non-zero channel coefficients (G� L)

h := [ h0

L︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
f0 zeros

h1 0 . . . 0︸ ︷︷ ︸
f1 zeros

h2 . . . hG−1 0 . . . 0︸ ︷︷ ︸
fG−1 zeros

hG ]T

Special case: Zero-pad channel

f0 = f1 = ... = fG−1 =: f ≥ 1

Faculty of Engineering
University of Kiel 1

Information and Coding

Theory Lab



Equalization for Sparse ISI Channels

Discrete-time channel model

y[k] = h0 x[k] +
G∑

g=1

hg x[k−dg] + n[k]

y[k]: kth received sample x[k]: kth transmitted data symbol

n[k]: kth AWGN sample dg: Position of hg within h

Due to large channel memory length, efficient equalization with
reasonable complexity is a demanding task

Here: Trellis-based equalization (based on VA or BCJRA)

MLSE prohibitive ⇒ ML trellis states (M -ary data symbols)
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Existing Solutions

Exploiting the sparse channel structure, reduced-complexity
algorithms can be derived

Zero-pad channel:
I McGinty/Kennedy/Hoeher’98: Parallel-trellis VA (P-VA)
I Lee/McLane’02: Parallel-trellis BCJRA (P-BCJRA)

⇒ Still optimal in the sense of MLSE
⇒ Based on parallel regular trellises

General sparse channel:
I Benvenuto/Marchesani’96: Multi-trellis VA (M-VA)

⇒ Based on parallel irregular (i.e., time-varying) trellises
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Outline

I Introduction

I Complexity Reduction Without Loss of Optimality

• Unified Framework Based on Factor Graphs

• Recapitulation of the P-VA and the M-VA

• Drawbacks of the Existing Solutions

I Simple Equalization Scheme for General Sparse ISI Channels

I Conclusions
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Framework for Complexity Reduction

Decomposition into multiple parallel trellises

Key question:

Which symbol decisions x̂[k], 1≤k≤KB (KB block length) are
influenced by a certain symbol hypothesis x̃[k0]?

I Suppose, a certain decision x̂[k1] is not influenced by x̃[k0]

I Suppose, there are no symbol decisions x̂[k] that are
influenced by both x̃[k0] and x̃[k1]

⇒ x̃[k0] and x̃[k1] can be accommodated in separate trellises
without loss of optimality
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Framework for Complexity Reduction

Example 1: h := [ h0 0 0 0 0 0 h1 0 h2 ]T (L=8, G=2)

+3 +4 +5 +7 +9+6 +8 +12+10 +11 +13 +14 +15y[k0] y[k0+1] y[k0+2] y[k0+16]

x[k0] x[k0+1] x[k0+2] +3 +4 +5 +7 +9+6 +8 +12+10 +11 +13 +14 +15 x[k0+16]

x̃[k0]
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Framework for Complexity Reduction

Example 1: h := [ h0 0 0 0 0 0 h1 0 h2 ]T (L=8, G=2)
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x[k0] x[k0+2] +8 +10 +12 x[k0+16]

⇒ Two parallel (regular) trellises are still optimal!

⇒ Parallel-trellis VA/BCJRA
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Framework for Complexity Reduction

Example 2: h := [ h0 0 0 0 0 0 0 h1 h2 ]T (L=8, G=2)

+3 +4 +5 +7 +9+6 +8 +12+10 +11 +13 +14 +15y[k0] y[k0+1] y[k0+2] y[k0+16]

x[k0+1] +7 +11 +13 +15

x̃[k0]

+3 +5 +9x[k0] x[k0+2] +4 +6 +8 +10 +12 +14 x[k0+16]

⇒ Decomposition into parallel regular trellises not possible
(without loss of optimality)!

Multi-trellis VA neglects most of the dependencies ⇒ suboptimal!
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sub-P-VA, sub-P-BCJRA

I Alternative solution for general sparse channels:

Suboptimal parallel-trellis VA/BCJRA
(McGinty/Kennedy/Hoeher’98, Lee/McLane’02)

(a) Find an underlying zero-pad CIR similar to the given CIR

(b) Define the parallel trellis diagrams

(c) Perform decision feedback between the parallel trellises
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Drawbacks

???

(a) Fading channel
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Drawbacks

???

(a) Fading channel ⇒ Start all over again!

(b) In practice, no exact zero coefficients

Our approach

It does not seem useful to explicitly utilize the sparse channel
structure

⇒ How good are standard suboptimal equalization techniques?
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Drawbacks

???

(a) Fading channel ⇒ Start all over again!

(b) In practice, no exact zero coefficients

Our approach

Use prefiltering in conjunction with standard reduced-complexity
trellis-based equalizer

⇒ Tackle general sparse fading CIRs & provide performance
close to the matched filter bound (MFB)
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Outline

I Introduction

I Complexity Reduction Without Loss of Optimality

I Simple Equalization Scheme for General Sparse ISI Channels

• Considered Receiver Structure

• Numerical Results

I Conclusions
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Considered Receiver Structure

ISI channel

+AWGN

suboptimal,

x̂[k]
y[k] z[k]

equalizer

Trellis based
x[k]

reduced complexity

Linear

prefilter

I Linear prefilter that can be computed efficiently
(with standard techniques available in the literature)

I Standard reduced-complexity trellis-based equalizer
(not specifically designed for sparse ISI channels, since sparse
CIR structure is normally lost after prefiltering)

⇒ Solely the linear prefilter is adjusted to the current CIR

Example: Minimum-phase filter (WMF) in conjunction with
delayed decision-feedback sequence estimator (DDFSE)
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Comparison with sub-P-BCJRA

Static CIR h = [h0 0 0 0 h4 0 0 h7 0...0 h15]
T (no zero-pad)

h0 = 0.87, h4 = h7 = h15 = 0.29

Binary transmission; WMF with LF =40 filter taps;
DDFSE with memory length K�L

DDFSE (K =4) + WMF:
Similar performance as
sub-P-BCJRA

DDFSE (K =3) + WMF:
Reduced complexity at
expense of small loss
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Fading CIR, Different Memory Lengths

Fading CIR with hg ∼ CN (0, σ2
h,g) and power profile

p := [ σ2
h,0 0 . . . 0︸ ︷︷ ︸

f zeros

σ2
h,1 0 0 0 σ2

h,2 σ2
h,3 ]T, σ2

h,g = 0.25
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Fading CIR, Different Memory Lengths

Fading CIR with hg ∼ CN (0, σ2
h,g) and power profile
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DDFSE with WMF deviates
only 1-2 dB from the MFB
(at BER 10−3) even for a
large memory length L

WMF makes huge difference
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Conclusions

I Efficient equalization of sparse ISI channels at reasonable
complexity is a demanding task

I Optimal trellis-based solutions are only applicable for
zero-pad channels (factor graph)

I Existing suboptimal solutions explicitly exploit the sparse
channel structure and seem impracticable for fading channels

I Our approach: Use linear prefilter in conjunction with
standard reduced-complexity trellis-based equalizer

⇒ General sparse ISI channels can be tackled

⇒ Only the linear prefilter is adjusted to the current CIR

⇒ Performance close to the MFB
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