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Sparse ISI Channels

Sparse ISI channels are encountered in many high-data-rate
communication systems (wireless & wireline)
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Sparse ISI Channels

Sparse ISI channels are encountered in many high-data-rate
communication systems (wireless & wireline)

Discrete-time channel impulse response (CIR): Large memory
length L, only few non-zero channel coefficients (G < L)

L
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fo zeros f1 zeros fa—1 zeros
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Sparse ISI Channels

Sparse ISI channels are encountered in many high-data-rate
communication systems (wireless & wireline)

Discrete-time channel impulse response (CIR): Large memory
length L, only few non-zero channel coefficients (G < L)

L
h :=[hg0...0 k1 0...0 h ha_1 0...0 hg]"
[ho | 1 2 G-1 cl
fo zeros f1 zeros fa—1 zeros
Special case: Zero-pad channel
Jo=h=.=fca=f2>1 J
CIAlU Ee:]ci\LlJLtrySigffpiiir;ering . Information and Coding ﬁl?

Theory Lab



Equalization for Sparse ISI Channels
Discrete-time channel model

G
ylk] = howlk] + Y hgalk—dg] + nlk]
g=1

y[k]: kth received sample  x[k]: kth transmitted data symbol
n[k]: kth AWGN sample  d4: Position of hy within h
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y[k]: kth received sample  x[k]: kth transmitted data symbol
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Due to large channel memory length, efficient equalization with
reasonable complexity is a demanding task
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Equalization for Sparse ISI Channels
Discrete-time channel model

G
ylk] = hoalk] + Y hgalk—dg] + nlk]
g=1

y[k]: kth received sample  x[k]: kth transmitted data symbol
n[k]: kth AWGN sample  d4: Position of hy within h

Due to large channel memory length, efficient equalization with
reasonable complexity is a demanding task

Here: Trellis-based equalization (based on VA or BCJRA)

MLSE prohibitive = M7 trellis states (M-ary data symbols) J
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Existing Solutions

Exploiting the sparse channel structure, reduced-complexity
algorithms can be derived
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Existing Solutions

Exploiting the sparse channel structure, reduced-complexity
algorithms can be derived

Zero-pad channel:
» McGinty/Kennedy/Hoeher'98:  Parallel-trellis VA (P-VA)
» Lee/McLane'02: Parallel-trellis BCJRA (P-BCJRA)
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algorithms can be derived

Zero-pad channel:
» McGinty/Kennedy/Hoeher'98:  Parallel-trellis VA (P-VA)
» Lee/McLane'02: Parallel-trellis BCJRA (P-BCJRA)

= Still optimal in the sense of MLSE
= Based on parallel regular trellises
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Existing Solutions

Exploiting the sparse channel structure, reduced-complexity
algorithms can be derived

Zero-pad channel:
» McGinty/Kennedy/Hoeher'98:  Parallel-trellis VA (P-VA)
» Lee/McLane'02: Parallel-trellis BCJRA (P-BCJRA)

= Still optimal in the sense of MLSE
= Based on parallel regular trellises

General sparse channel:
» Benvenuto/Marchesani’96:  Multi-trellis VA (M-VA)

= Based on parallel irregular (i.e., time-varying) trellises J
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» Introduction

» Complexity Reduction Without Loss of Optimality

o Unified Framework Based on Factor Graphs
o Recapitulation of the P-VA and the M-VA

e Drawbacks of the Existing Solutions

» Simple Equalization Scheme for General Sparse ISI Channels

» Conclusions

Faculty of Engineering Information and Coding
ClAlU University of Kiel 4 Theory Lab rjelr



Framework for Complexity Reduction

Decomposition into multiple parallel trellises

Key question:

Which symbol decisions Z[k], 1 <k < Kp (Kp block length) are
influenced by a certain symbol hypothesis Z[ko]?
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Framework for Complexity Reduction

Decomposition into multiple parallel trellises

Key question:

Which symbol decisions Z[k], 1 <k < Kp (Kp block length) are
influenced by a certain symbol hypothesis Z[ko]?

» Suppose, a certain decision Z[k1] is not influenced by 7 [ko]

» Suppose, there are no symbol decisions Z[k] that are
influenced by both Z[ko] and Z[k1]
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Framework for Complexity Reduction

Decomposition into multiple parallel trellises

Key question:

Which symbol decisions Z[k], 1 <k < Kp (Kp block length) are
influenced by a certain symbol hypothesis Z[ko]?

» Suppose, a certain decision Z[k1] is not influenced by 7 [ko]

» Suppose, there are no symbol decisions Z[k] that are
influenced by both Z[ko] and Z[k1]

= Z[ko] and Z[k1] can be accommodated in separate trellises
without loss of optimality
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Framework for Complexity Reduction

Example 1:  h:=[hg 00000 h; 0 hp]" (L=8, G=2)

alko) xlko+1] zko+2] B +H 45 H 7 8 49 H0 H1 H2 H3 H4 H5  z[ko+16]

ylkol ylko+1] ylkot2] +3 4+ 45 46 47 48 49 +0 +1 +12 +13 14 15 ylke+16]
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Framework for Complexity Reduction

Example 1:  h:=[hg 00000 h; 0 hp]" (L=8, G=2)

@ 2lko+6]  [ko+8]

alko) xlko+1] zko+2] B +H 45 H 7 8 49 H0 H1 H2 H3 H4 H5  z[ko+16]

\

ylkol ylko+1] ylkot2] +3 4+ 45 46 47 48 49 +0 +1 +12 +13 14 15 ylke+16]

y[k‘o] = hol‘[ko]—l-hl l‘[ko—6]+h2x[ko—8]

y[ko+6] = ho x[ko+6] + h1 .’L‘[k’o] + ho .’E[ko—2]
ylko+8] = hox[ko+8] + h1 z[ko+2] + ho x[ko]
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Framework for Complexity Reduction

Example 1:  h:=[hg 00000 h; 0 hp]" (L=8, G=2)

@ 2[ko+2] 2lko+6]  £[ko+8]

alko) xlko+1] zko+2] B +H 45 H 7 8 49 H0 H1 H2 H3 H4 H5  z[ko+16]

| ]

ylkol ylko+1] ylkot2] +3 4+ 45 46 47 48 49 +0 +1 +12 +13 14 15 ylke+16]

y[k‘o] = hox[ko]—l-hl l‘[ko—6]+h2x[ko—8]

y[ko+6] = ho x[ko+6] + h1 J:[]Co] + ho .’E[ko—2]
y[ko+8] = ho x[k0+8] + h1 :E[ko+2] + hy :C[ko]
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Framework for Complexity Reduction

Example 1:  h:=[hg 00000 h; 0 hp]" (L=8, G=2)

Z[ko)

alky] xlko+1] wzko+2] B H 45 46 47 8 49 +H0 H1 H2 H3 +14 H5  z[ko+16]

ylkol ylko+1] ylkot2] +3 4+ 45 46 47 48 49 +0 +1 +12 +13 14 15 ylke+16]
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Framework for Complexity Reduction

Example 1:  h:=[hg 00000 h; 0 hp]" (L=8, G=2)

Z[ko]

alky] xlko+1] wzko+2] B H 45 46 47 8 49 +H0 H1 H2 H3 +14 H5  z[ko+16]

ylkol ylko+1] ylkot2] +3 4+ 45 46 47 48 49 +0 +1 +12 +13 14 15 ylke+16]

= Two parallel (regular) trellises are still optimal!

= Parallel-trellis VA/BCJRA
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Framework for Complexity Reduction

Example2: h:=[hg 000000 hy hp]" (L=8, G=2)

[ko] alko+1] a[ko+2] B H +H 46 + 8 49 +H0 H1 +H2 H3 +H4 H5 x[ko+16]

8

ylkol ylko+1] ylkot2] +3 4+ 45 46 47 48 49 +0 +1 +12 +13 14 15 ylke+16]
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Framework for Complexity Reduction

Example2: h:=[hg 000000 hy hp]" (L=8, G=2)

[ko] alko+1] a[ko+2] B H +H 46 + 8 49 +H0 H1 +H2 H3 +H4 H5 x[ko+16]

8

ylkol ylko+1] ylkot2] +3 4+ 45 46 47 48 49 +0 +1 +12 +13 14 15 ylke+16]

= Decomposition into parallel regular trellises not possible
(without loss of optimality)!
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Framework for Complexity Reduction

Example2: h:=[hg 000000 hy hp]" (L=8, G=2)

xlko) wlhko+1] wko+2] B H H H 4+ 8 49 H0 +H1 H2 H3 H4 H5  a[ko+16]

ylkol ylko+1] ylkot2] +3 4+ 45 46 47 48 49 +0 +1 +12 +13 14 15 ylke+16]

= Decomposition into parallel regular trellises not possible
(without loss of optimality)!

Multi-trellis VA neglects most of the dependencies = suboptimal!
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sub-P-VA, sub-P-BCJRA

» Alternative solution for general sparse channels:

Suboptimal parallel-trellis VA/BCJRA
(McGinty/Kennedy/Hoeher'98, Lee/McLane'02)
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sub-P-VA, sub-P-BCJRA

» Alternative solution for general sparse channels:

Suboptimal parallel-trellis VA/BCJRA
(McGinty/Kennedy/Hoeher'98, Lee/McLane'02)

(a) Find an underlying zero-pad CIR similar to the given CIR
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sub-P-VA, sub-P-BCJRA

» Alternative solution for general sparse channels:

Suboptimal parallel-trellis VA/BCJRA
(McGinty/Kennedy/Hoeher'98, Lee/McLane'02)

! ! !

(a) Find an underlying zero-pad CIR similar to the given CIR

(b) Define the parallel trellis diagrams
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sub-P-VA, sub-P-BCJRA

» Alternative solution for general sparse channels:

Suboptimal parallel-trellis VA/BCJRA
(McGinty/Kennedy/Hoeher'98, Lee/McLane'02)

! ! !

(a) Find an underlying zero-pad CIR similar to the given CIR

(b) Define the parallel trellis diagrams

(c) Perform decision feedback between the parallel trellises
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! ! !

(a) Fading channel
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(a) Fading channel = Start all over again!
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(a) Fading channel = Start all over again!

(b) In practice, no exact zero coefficients
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(a) Fading channel = Start all over again!

(b) In practice, no exact zero coefficients

Our approach

It does not seem useful to explicitly utilize the sparse channel
structure

= How good are standard suboptimal equalization techniques?
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(a) Fading channel = Start all over again!

(b) In practice, no exact zero coefficients

Our approach

Use prefiltering in conjunction with standard reduced-complexity
trellis-based equalizer

= Tackle general sparse fading CIRs & provide performance
close to the matched filter bound (MFB)
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» Introduction
» Complexity Reduction Without Loss of Optimality

» Simple Equalization Scheme for General Sparse ISI Channels

e Considered Receiver Structure

o Numerical Results

» Conclusions
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Considered Receiver Structure

ISI channel | Y (K] Linear z[K] Trellis-based R
r[k} —] > > . —— qg[k}
+AWGN prefilter equalizer
suboptimal,

reduced complexity

» Linear prefilter that can be computed efficiently
(with standard techniques available in the literature)
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Considered Receiver Structure

ISI channel | Y (K] Linear z[K] Trellis-based R
r[k} —] > > . —— qg[k}
+AWGN prefilter equalizer
suboptimal,

reduced complexity
» Linear prefilter that can be computed efficiently
(with standard techniques available in the literature)

» Standard reduced-complexity trellis-based equalizer
(not specifically designed for sparse ISI channels, since sparse
CIR structure is normally lost after prefiltering)

= Solely the linear prefilter is adjusted to the current CIR

Faculty of Engineering Information and Coding
ClAlU University of Kiel 11 Theory Lab rjelr



Considered Receiver Structure

ISI channel | Y (K] Linear z[K] Trellis-based R
r[k} —] > > . —— qg[k}
+AWGN prefilter equalizer
suboptimal,

reduced complexity
» Linear prefilter that can be computed efficiently
(with standard techniques available in the literature)

» Standard reduced-complexity trellis-based equalizer
(not specifically designed for sparse ISI channels, since sparse
CIR structure is normally lost after prefiltering)

= Solely the linear prefilter is adjusted to the current CIR

Example: Minimum-phase filter (WMF) in conjunction with
delayed decision-feedback sequence estimator (DDFSE)
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Comparison with sub-P-BCJRA

Static CIR h = [hg 0 00 hg 00 h7 0...0 ~ys]" (no zero-pad)
ho = 0.87, hg = h7 = his = 0.29

Binary transmission; WMF with Lg =40 filter taps;
DDFSE with memory length K < L
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Comparison with sub-P-BCJRA

Static CIR h = [hg 0 00 hg 00 h7 0...0 ~ys]" (no zero-pad)
ho = 0.87, ha = h7 = h15 = 0.29
Binary transmission; WMF with Lg =40 filter taps;
DDFSE with memory length K < L

T T T T
—6— sub-P-BCJRA
DDFSE with WMF (K = 4)
- = = Matched Filter Bound (AWGN channel)

| DDFSE (K =4) + WMF:
S el Similar performance as
— sub-P-BCJRA

5 6 7
10 log, (E/N,) dB
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Comparison with sub-P-BCJRA

Static CIR h = [hg 0 00 hg 00 h7 0...0 ~ys]" (no zero-pad)
ho = 0.87, hg = h7 = his = 0.29

Binary transmission; WMF with Lg =40 filter taps;
DDFSE with memory length K < L

‘ —O—‘Sub—l"—BCJI‘?A :
DDFSE with WMF (K = 4)
= = = Matched Filter Bound (AWGN channel)|
DDFSE with WMF (K = 3) DDESE (K:4) 4 WMF:
107‘ H H H | . .
. i Similar performance as
R sub-P-BCJRA
irIRToR IR R O [ A a—
DDFSE (K =3) + WMF:
el Reduced complexity at
expense of small loss
107‘1 é 3 9 1‘0 1" 12

5 6 7
10 log, (E/N,) dB

Faculty of Engineering Information and Coding
ClAlU University of Kiel 12 Theory Lab rjelr



Fading CIR, Different Memory Lengths

Fading CIR with h, ~ CN(0, oﬁg) and power profile
p—[O’hOO OUhIOOO 0%20h3]T o2 , =025

f zeros
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Fading CIR, Different Memory Lengths

Fading CIR with hg ~ C/\/'(O,oﬁg) and power profile
p—[O’hOO 00h1000 0%20”]1— o2 , =025
fzeros
Memory Iength L=6 (K=5)

DDFSE (K= 5) with WMF
—&— DDFSE (K = 5) without WMF|
—— Matched Filter Bound

;
14

10 12
10log, (E/N) dB
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Fading CIR, Different Memory Lengths

Fading CIR with hg ~ C/\/'(O,oﬁg) and power profile
p—[O’hOO 00h1000 0%20”]1— o2 , =025

f zeros

I\/Iemory IengthL 12 (K=5)

DDFSE (K= 5) with WMF
—&— DDFSE (K = 5) without WMF|
Matched Filter Bound

6 8 10 12 14 16 18
10 log, (E/N) dB
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Fading CIR, Different Memory Lengths

Fading CIR with hg ~ C/\/'(O,oﬁg) and power profile
p—[O’hOO 00h1000 0%20”]1— o2 , =025

f zeros

I\/Iemory Iength L=20 (K=5)

DDFSE (K= 5) with WMF
—&— DDFSE (K = 5) without WMF|
Matched Filter Bound

R
e -
SeBelllg
Y -

LRS-

6 8 10 12 14 16 18
10 log, (E/N) dB
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Fading CIR, Different Memory Lengths

Fading CIR with h, ~ CN(0, oﬁg) and power profile
Q0,000 op,005]", of, =025

p —[Uho 0

f zeros

I\/Iemory Iength L=20 (K=5)

Bo i

mEe——
-ﬂ-____.__

—&— DDFSE (K = 5) without WMF|
Matched Filter Bound

DDFSE (K= 5) with WMF

B
=B-

;
10 12
10 log, (E/N) dB

DDFSE with WMF deviates
only 1-2 dB from the MFB
(at BER 1073) even for a
large memory length L

WMF makes huge difference
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Conclusions

» Efficient equalization of sparse IS| channels at reasonable
complexity is a demanding task

» Optimal trellis-based solutions are only applicable for
zero-pad channels (factor graph)

» Existing suboptimal solutions explicitly exploit the sparse
channel structure and seem impracticable for fading channels

» Our approach: Use linear prefilter in conjunction with
standard reduced-complexity trellis-based equalizer
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Conclusions

» Efficient equalization of sparse IS| channels at reasonable
complexity is a demanding task

» Optimal trellis-based solutions are only applicable for
zero-pad channels (factor graph)

» Existing suboptimal solutions explicitly exploit the sparse
channel structure and seem impracticable for fading channels

» Our approach: Use linear prefilter in conjunction with
standard reduced-complexity trellis-based equalizer

= General sparse ISI| channels can be tackled
= Only the linear prefilter is adjusted to the current CIR

= Performance close to the MFB
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