Trellis-Based Equalization for Sparse ISI Channels Revisited

Jan Mietzner¹ Sabah Badri-Hoeher¹ Ingmar Land² Peter A. Hoeher¹

 1 Information and Coding Theory Lab, University of Kiel, Germany $\label{eq:generalized_strain} \{jm,sbh,ph\}@tf.uni-kiel.de$

²Digital Communications Division, Aalborg University, Denmark il@kom.aau.dk

> ISIT 2005, Adelaide, Australia September 4-9, 2005

Sparse ISI Channels

Sparse ISI channels are encountered in many high-data-rate communication systems (wireless & wireline)

Sparse ISI Channels

Sparse ISI channels are encountered in many high-data-rate communication systems (wireless & wireline)

Discrete-time channel impulse response (CIR): Large memory length L, only few non-zero channel coefficients ($G \ll L$)

$$\mathbf{h} := \begin{bmatrix} h_0 & \underbrace{\underbrace{0 \dots 0}_{f_0 \text{ zeros}} h_1 & \underbrace{0 \dots 0}_{f_1 \text{ zeros}} h_2 & \dots & h_{G-1} & \underbrace{0 \dots 0}_{f_{G-1} \text{ zeros}} h_G \end{bmatrix}^\mathsf{T}$$

Sparse ISI Channels

Sparse ISI channels are encountered in many high-data-rate communication systems (wireless & wireline)

Discrete-time channel impulse response (CIR): Large memory length L, only few non-zero channel coefficients ($G \ll L$)

$$\mathbf{h} := \begin{bmatrix} h_0 & \underbrace{0 \dots 0}_{f_0 \text{ zeros}} & h_1 & \underbrace{0 \dots 0}_{f_1 \text{ zeros}} & h_2 & \dots & h_{G-1} & \underbrace{0 \dots 0}_{f_{G-1} \text{ zeros}} & h_G \end{bmatrix}^\mathsf{T}$$

Special case: Zero-pad channel

$$f_0 = f_1 = \dots = f_{G-1} =: f \ge 1$$

Equalization for Sparse ISI Channels

Discrete-time channel model

$$y[k] = h_0 x[k] + \sum_{g=1}^G h_g x[k-d_g] + n[k]$$

y[k]: kth received sample x[k]: kth transmitted data symbol n[k]: kth AWGN sample d_g : Position of h_g within h

Equalization for Sparse ISI Channels

Discrete-time channel model

$$y[k] = h_0 x[k] + \sum_{g=1}^G h_g x[k-d_g] + n[k]$$

y[k]: kth received sample x[k]: kth transmitted data symbol n[k]: kth AWGN sample d_g : Position of h_g within h

Due to large channel memory length, **efficient** equalization with reasonable **complexity** is a demanding task

Equalization for Sparse ISI Channels

Discrete-time channel model

$$y[k] = h_0 x[k] + \sum_{g=1}^G h_g x[k-d_g] + n[k]$$

y[k]: kth received sample x[k]: kth transmitted data symbol n[k]: kth AWGN sample d_g : Position of h_g within h

Due to large channel memory length, **efficient** equalization with reasonable **complexity** is a demanding task

Here: Trellis-based equalization (based on VA or BCJRA)

MLSE **prohibitive** \Rightarrow M^L trellis states (*M*-ary data symbols)

Exploiting the sparse channel structure, **reduced-complexity** algorithms can be derived

Exploiting the sparse channel structure, **reduced-complexity** algorithms can be derived

Zero-pad channel:

- ► McGinty/Kennedy/Hoeher'98: Parallel-trellis VA (P-VA)
- ► Lee/McLane'02: Parallel-trellis BCJRA (P-BCJRA)

Exploiting the sparse channel structure, **reduced-complexity** algorithms can be derived

Zero-pad channel:

► McGinty/Kennedy/Hoeher'98: Parallel-trellis VA (P-VA)

► Lee/McLane'02: Parallel-trellis BCJRA (P-BCJRA)

 \Rightarrow Still **optimal** in the sense of MLSE \Rightarrow Based on parallel **regular** trellises

Exploiting the sparse channel structure, **reduced-complexity** algorithms can be derived

Zero-pad channel:

► McGinty/Kennedy/Hoeher'98: Parallel-trellis VA (P-VA)

► Lee/McLane'02: Parallel-trellis BCJRA (P-BCJRA)

 $\Rightarrow Still$ **optimal**in the sense of MLSE $<math display="block">\Rightarrow Based on parallel$ **regular**trellises

General sparse channel:

► Benvenuto/Marchesani'96: Multi-trellis VA (M-VA)

 \Rightarrow Based on parallel **irregular** (i.e., time-varying) trellises

Introduction

► Complexity Reduction Without Loss of Optimality

- Unified Framework Based on Factor Graphs
- Recapitulation of the P-VA and the M-VA
- Drawbacks of the Existing Solutions
- Simple Equalization Scheme for General Sparse ISI Channels
- Conclusions

Decomposition into multiple parallel trellises

Key question:

Which symbol decisions $\hat{x}[k]$, $1 \le k \le K_B$ (K_B block length) are influenced by a certain symbol hypothesis $\tilde{x}[k_0]$?

Decomposition into multiple parallel trellises

Key question:

Which symbol decisions $\hat{x}[k]$, $1 \le k \le K_B$ (K_B block length) are influenced by a certain symbol hypothesis $\tilde{x}[k_0]$?

- ▶ Suppose, a certain decision $\hat{x}[k_1]$ is **not influenced** by $\tilde{x}[k_0]$
- ► Suppose, there are no symbol decisions x̂[k] that are influenced by both x̃[k₀] and x̃[k₁]

Decomposition into multiple parallel trellises

Key question:

Which symbol decisions $\hat{x}[k]$, $1 \le k \le K_B$ (K_B block length) are influenced by a certain symbol hypothesis $\tilde{x}[k_0]$?

- ▶ Suppose, a certain decision $\hat{x}[k_1]$ is **not influenced** by $\tilde{x}[k_0]$
- ► Suppose, there are no symbol decisions x̂[k] that are influenced by both x̃[k₀] and x̃[k₁]
- $\Rightarrow \tilde{x}[k_0]$ and $\tilde{x}[k_1]$ can be accommodated in **separate** trellises **without loss** of optimality

Example 1: $\mathbf{h} := [h_0 \ 0 \ 0 \ 0 \ 0 \ 0 \ h_1 \ 0 \ h_2]^{\mathsf{T}} (L=8, G=2)$

I C

Example 1: $\mathbf{h} := [h_0 \ 0 \ 0 \ 0 \ 0 \ 0 \ h_1 \ 0 \ h_2]^{\mathsf{T}} (L=8, G=2)$

$$y[k_0] = h_0 x[k_0] + h_1 x[k_0 - 6] + h_2 x[k_0 - 8]$$

$$y[k_0 + 6] = h_0 x[k_0 + 6] + h_1 x[k_0] + h_2 x[k_0 - 2]$$

$$y[k_0 + 8] = h_0 x[k_0 + 8] + h_1 x[k_0 + 2] + h_2 x[k_0]$$

Example 1: $\mathbf{h} := [h_0 \ 0 \ 0 \ 0 \ 0 \ 0 \ h_1 \ 0 \ h_2]^{\mathsf{T}} (L=8, G=2)$

$$y[k_0] = h_0 x[k_0] + h_1 x[k_0 - 6] + h_2 x[k_0 - 8]$$

$$y[k_0 + 6] = h_0 x[k_0 + 6] + h_1 x[k_0] + h_2 x[k_0 - 2]$$

$$y[k_0 + 8] = h_0 x[k_0 + 8] + h_1 x[k_0 + 2] + h_2 x[k_0]$$

Example 1:
$$\mathbf{h} := [h_0 \ 0 \ 0 \ 0 \ 0 \ h_1 \ 0 \ h_2]^{\mathsf{T}} (L=8, G=2)$$

Example 1: $\mathbf{h} := [h_0 \ 0 \ 0 \ 0 \ 0 \ 0 \ h_1 \ 0 \ h_2]^{\mathsf{T}} (L=8, G=2)$

 $\Rightarrow \mathsf{Two parallel (regular) trellises are still optimal!}$ $\Rightarrow \mathsf{Parallel-trellis VA/BCJRA}$

 \Rightarrow Decomposition into parallel regular trellises not possible (without loss of optimality)!

Example 2:
$$\mathbf{h} := [h_0 \ 0 \ 0 \ 0 \ 0 \ 0 \ h_1 \ h_2]^{\mathsf{T}} (L=8, G=2)$$

 \Rightarrow Decomposition into parallel regular trellises not possible (without loss of optimality)!

Multi-trellis VA neglects most of the dependencies \Rightarrow suboptimal!

• Alternative solution for general sparse channels:

Suboptimal parallel-trellis VA/BCJRA (McGinty/Kennedy/Hoeher'98, Lee/McLane'02)

• Alternative solution for general sparse channels:

Suboptimal parallel-trellis VA/BCJRA (McGinty/Kennedy/Hoeher'98, Lee/McLane'02)

(a) Find an underlying zero-pad CIR similar to the given CIR

• Alternative solution for general sparse channels:

Suboptimal parallel-trellis VA/BCJRA (McGinty/Kennedy/Hoeher'98, Lee/McLane'02)

(a) Find an underlying zero-pad CIR similar to the given CIR

(b) Define the parallel trellis diagrams

• Alternative solution for general sparse channels:

Suboptimal parallel-trellis VA/BCJRA (McGinty/Kennedy/Hoeher'98, Lee/McLane'02)

(a) Find an underlying zero-pad CIR similar to the given CIR

- (b) Define the parallel trellis diagrams
- (c) Perform decision feedback between the parallel trellises

(a) Fading channel

(a) Fading channel ⇒ Start all over again!
(b) In practice, no exact zero coefficients

(a) Fading channel \Rightarrow Start all over again!

(b) In practice, no exact zero coefficients

Our approach

It does not seem useful to **explicitly** utilize the **sparse** channel structure

 $\Rightarrow~$ How good are standard suboptimal equalization techniques?

(a) Fading channel \Rightarrow Start all over again!

(b) In practice, no exact zero coefficients

Our approach

Use **prefiltering** in conjunction with **standard** reduced-complexity **trellis-based equalizer**

⇒ Tackle general sparse fading CIRs & provide performance close to the matched filter bound (MFB)

Introduction

- Complexity Reduction Without Loss of Optimality
- ► Simple Equalization Scheme for General Sparse ISI Channels
 - Considered Receiver Structure
 - Numerical Results

Conclusions

Considered Receiver Structure

 Linear prefilter that can be computed efficiently (with standard techniques available in the literature)

- Linear prefilter that can be computed efficiently (with standard techniques available in the literature)
- Standard reduced-complexity trellis-based equalizer (not specifically designed for sparse ISI channels, since sparse CIR structure is normally lost after prefiltering)
- $\Rightarrow\,$ Solely the linear prefilter is adjusted to the current CIR

- Linear prefilter that can be computed efficiently (with standard techniques available in the literature)
- Standard reduced-complexity trellis-based equalizer (not specifically designed for sparse ISI channels, since sparse CIR structure is normally lost after prefiltering)
- $\Rightarrow\,$ Solely the linear prefilter is adjusted to the current CIR

Example: Minimum-phase filter (WMF) in conjunction with delayed decision-feedback sequence estimator (DDFSE)

Comparison with sub-P-BCJRA

Static CIR $\mathbf{h} = [h_0 \ 0 \ 0 \ 0 \ h_4 \ 0 \ 0 \ h_7 \ 0...0 \ h_{15}]^\mathsf{T}$ (no zero-pad) $h_0 = 0.87, \ h_4 = h_7 = h_{15} = 0.29$

Binary transmission; WMF with $L_F = 40$ filter taps;

DDFSE with memory length $K \ll L$

Comparison with sub-P-BCJRA

Static CIR $\mathbf{h} = [h_0 \ 0 \ 0 \ 0 \ h_4 \ 0 \ 0 \ h_7 \ 0...0 \ h_{15}]^{\mathsf{T}}$ (no zero-pad) $h_0 = 0.87, \ h_4 = h_7 = h_{15} = 0.29$

Binary transmission; WMF with $L_{\rm F}$ = 40 filter taps; DDFSE with memory length $K \ll L$

Faculty of Engineering University of Kiel

Comparison with sub-P-BCJRA

Static CIR $\mathbf{h} = [h_0 \ 0 \ 0 \ 0 \ h_4 \ 0 \ 0 \ h_7 \ 0...0 \ h_{15}]^{\mathsf{T}}$ (no zero-pad) $h_0 = 0.87, \ h_4 = h_7 = h_{15} = 0.29$

Binary transmission; WMF with $L_{\rm F}$ = 40 filter taps; DDFSE with memory length $K \ll L$

Fading CIR with $h_g \sim C\mathcal{N}(0, \sigma_{h,g}^2)$ and power profile $\mathbf{p} := [\sigma_{h,0}^2 \underbrace{0 \dots 0}_{f \text{ zeros}} \sigma_{h,1}^2 \ 0 \ 0 \ \sigma_{h,2}^2 \sigma_{h,3}^2]^{\mathsf{T}}, \ \sigma_{h,g}^2 = 0.25$

Fading CIR with
$$h_g \sim C\mathcal{N}(0, \sigma_{h,g}^2)$$
 and power profile

$$\mathbf{p} := [\sigma_{h,0}^2 \underbrace{0...0}_{f \text{ zeros}} \sigma_{h,1}^2 \ 0 \ 0 \ \sigma_{h,2}^2 \sigma_{h,3}^2]^\mathsf{T}, \ \sigma_{h,g}^2 = 0.25$$

Fading CIR with
$$h_g \sim C\mathcal{N}(0, \sigma_{h,g}^2)$$
 and power profile

$$\mathbf{p} := [\sigma_{h,0}^2 \underbrace{0 \dots 0}_{f \text{ zeros}} \sigma_{h,1}^2 \ 0 \ 0 \ \sigma_{h,2}^2 \sigma_{h,3}^2]^{\mathsf{T}}, \ \sigma_{h,g}^2 = 0.25$$

Information and Coding Theory Lab

Fading CIR with
$$h_g \sim C\mathcal{N}(0, \sigma_{h,g}^2)$$
 and power profile

$$\mathbf{p} := [\sigma_{h,0}^2 \underbrace{0 \dots 0}_{f \text{ zeros}} \sigma_{h,1}^2 \ 0 \ 0 \ \sigma_{h,2}^2 \sigma_{h,3}^2]^{\mathsf{T}}, \ \sigma_{h,g}^2 = 0.25$$

Information and Coding Theory Lab

Fading CIR with
$$h_g \sim C\mathcal{N}(0, \sigma_{h,g}^2)$$
 and power profile

$$\mathbf{p} := [\sigma_{h,0}^2 \underbrace{0 \dots 0}_{f \text{ zeros}} \sigma_{h,1}^2 \ 0 \ 0 \ \sigma_{h,2}^2 \sigma_{h,3}^2]^{\mathsf{T}}, \ \sigma_{h,g}^2 = 0.25$$

DDFSE with WMF deviates only 1-2 dB from the MFB (at BER 10^{-3}) even for a large memory length L

WMF makes huge difference

U Faculty of Engineering University of Kiel

- Efficient equalization of sparse ISI channels at reasonable complexity is a demanding task
- Optimal trellis-based solutions are only applicable for zero-pad channels (factor graph)
- Existing suboptimal solutions explicitly exploit the sparse channel structure and seem impracticable for fading channels
- Our approach: Use linear prefilter in conjunction with standard reduced-complexity trellis-based equalizer

- Efficient equalization of sparse ISI channels at reasonable complexity is a demanding task
- Optimal trellis-based solutions are only applicable for zero-pad channels (factor graph)
- Existing suboptimal solutions explicitly exploit the sparse channel structure and seem impracticable for fading channels
- Our approach: Use linear prefilter in conjunction with standard reduced-complexity trellis-based equalizer
- \Rightarrow General sparse ISI channels can be tackled
- $\Rightarrow~$ Only the linear prefilter is adjusted to the current CIR
- \Rightarrow Performance **close** to the MFB

