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Currently:

In many current cellular systems two

(or more) Tx antennas are used at the BS,

where the Tx signal is simultaneously
transmitted over each antenna.
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Currently:

In many current cellular systems two

(or more) Tx antennas are used at the BS,

where the Tx signal is simultaneously
transmitted over each antenna.

BS

Data

Enhancement:

“Space-time” processing.

Goal: Compatibility, i.e., preferably few
changes w.r.t. current systems.
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Data ST−
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Simple Example: Delay Diversity

I Wittneben, 1993

I Seshadri and Winters, 1994
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Simple Example: Delay Diversity

I Wittneben, 1993

I Seshadri and Winters, 1994

Idea: Apply a delay at the second Tx antenna.

Shown here: Significant performance improvements may be obtained using the same receiver.

(Example: GSM/GPRS System)
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Simple Example: Delay Diversity

I Wittneben, 1993

I Seshadri and Winters, 1994

Idea: Apply a delay at the second Tx antenna.

Shown here: Significant performance improvements may be obtained using the same receiver.

(Example: GSM/GPRS System)

=⇒ Delay diversity may be offered by network operators even in existing systems,
since the standard is not affected at all.
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General Context (I)

I Wireless data services:

– Require reliable transmission of high data rates.

– Normally asymmetric: Major part of overall traffic in downlink (DL) direction

(e.g., download of large amount of data by mobile users).
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General Context (I)

I Wireless data services:

– Require reliable transmission of high data rates.

– Normally asymmetric: Major part of overall traffic in downlink (DL) direction

(e.g., download of large amount of data by mobile users).

I Space-Time Codes (STC):

– Special class of space-time processing schemes requiring solely multiple Tx antennas,
whereas multiple Rx antennas are optional.

−→ Well suited to enhance the crucial DL.

– Examples: Space-Time Trellis Codes (STTC), Space-Time Block Codes (STBC).

Delay diversity may be interpreted as the simplest special case of a STTC.
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General Context (II)

I Efficiency of STC in fading environments due to a diversity gain:

– Individual transmission paths are subject to independent fading,

i.e., probability that all paths are simultaneously corrupted is smaller.

−→ Lower bit error rates accomplished.
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General Context (II)

I Efficiency of STC in fading environments due to a diversity gain:

– Individual transmission paths are subject to independent fading,

i.e., probability that all paths are simultaneously corrupted is smaller.

−→ Lower bit error rates accomplished.

I In 2.5G/3G systems, typically adaptive channel coding/ modulation is applied.

−→ Any means to improve power efficiency (e.g., utilization of diversity)

leads to an improved bandwidth efficiency.

=⇒ Enhancement of DL direction by means of STC for the purpose of higher data rates

is very attractive.
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Outline

I Transmitter structure for the GSM/GPRS DL improved by means of delay diversity

I Simulation results for a typical urban (TU) channel model

I Analytical results and optimization of the delay at the second Tx antenna

I Conclusions
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Compatible Transmitter Structure for the GSM/GPRS DL (I)

I GPRS (‘General Packet Radio Service’):

– GPRS is used for the transfer of packet-switched data.

– GSM/GPRS is often referred to as a ‘2.5G system’.

I Original GSM/GPRS transmitter structure:

– Channel coding & interleaving according to adaptive channel coding schemes ‘CS 1-4’.
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Compatible Transmitter Structure for the GSM/GPRS DL (I)

I GPRS (‘General Packet Radio Service’):

– GPRS is used for the transfer of packet-switched data.

– GSM/GPRS is often referred to as a ‘2.5G system’.

I Original GSM/GPRS transmitter structure:

– Channel coding & interleaving according to adaptive channel coding schemes ‘CS 1-4’.

I Compatible upgrade:

– Transmitter: The same signal is transmitted from both antennas, using a delay δT at the

second antenna (T symbol duration).

– Receiver: The same receiver may be used as in the conventional system.
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Compatible Transmitter Structure for the GSM/GPRS DL (II)

I Transmitter structure (baseband representation):
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Compatible Transmitter Structure for the GSM/GPRS DL (II)

I Transmitter structure (baseband representation):

Align−
ment

Burst
��
�
��
�

��
�
��
������

�����
�����
�����
TS

1

2

x(k)

TS

Shaping
Pulse

from MAC Layer

Data Symbols

1−4CS

δT

– The conventional choice is δ=0.

– For delay diversity, typically δ=1 is chosen (optimal in case of a flat fading channel).

Jan Mietzner
ICT, University of Kiel



7

Compatible Transmitter Structure for the GSM/GPRS DL (II)

I Transmitter structure (baseband representation):
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δT

– The conventional choice is δ=0.

– For delay diversity, typically δ=1 is chosen (optimal in case of a flat fading channel).

– Question: Optimal choice of δ in case of frequency-selective fading channel?

Jan Mietzner
ICT, University of Kiel



8

Simulation Results for the TU Channel Model

I Uncoded transmission

I Delay parameter δ = 1, 2, 3

I 1 or 2 Rx antennas

I Channel perfectly known at the

receiver

I Root-raised-cosine Rx filter

I Max-Log-MAP equalizer/detector
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Simulation Results for the TU Channel Model

I Uncoded transmission

I Delay parameter δ = 1, 2, 3

I 1 or 2 Rx antennas

I Channel perfectly known at the

receiver

I Root-raised-cosine Rx filter
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Simulation Results for the TU Channel Model

I Uncoded transmission

I Delay parameter δ = 1, 2, 3

I 1 or 2 Rx antennas

I Channel perfectly known at the

receiver

I Root-raised-cosine Rx filter

I Max-Log-MAP equalizer/detector
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=⇒
With delay diversity, significant gains w.r.t. conventional system.

Maximum gain for δ=3.
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Analytical Results and Optimization of the Delay Parameter (I)

RAKE receiver bound (RRB): Lower bound on the bit error probability of a slowly time-varying

ISI channel.

I Maximum likelihood (ML) detection assumed (particularly, perfect knowledge of the channel

coefficients in the receiver).

Individual channel coefficients are assumed to fade independently.
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Analytical Results and Optimization of the Delay Parameter (I)

RAKE receiver bound (RRB): Lower bound on the bit error probability of a slowly time-varying

ISI channel.

I Maximum likelihood (ML) detection assumed (particularly, perfect knowledge of the channel

coefficients in the receiver).

Individual channel coefficients are assumed to fade independently.

P
RRB
b =

1

2

L∑
l=0

(
L∏

ν =0
ρν 6=ρl

ρl

ρl − ρν

)
·

 1−
1√

1 + No
Es

1
ρl

 (1)

– L: Channel memory length

Es: Mean energy per data symbol

No: Single-sided noise power density

ρl: Mean power of the lth channel coefficient (0 ≤ l ≤ L)
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Analytical Results and Optimization of the Delay Parameter (II)

I Tightening the RRB:

– Channel coefficients normally comprise both static ISI (due to pulse shaping and receiver filter)

and dynamic ISI (due to physical channel).

– Diversity is solely due to dynamic ISI. Hence, the RRB overestimates the degree of diversity

actually utilized, i.e., the bound is too optimistic.
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Analytical Results and Optimization of the Delay Parameter (II)

I Tightening the RRB:

– Channel coefficients normally comprise both static ISI (due to pulse shaping and receiver filter)

and dynamic ISI (due to physical channel).

– Diversity is solely due to dynamic ISI. Hence, the RRB overestimates the degree of diversity

actually utilized, i.e., the bound is too optimistic.

−→ Method to remove static ISI from the channel coefficients to tighten the bound.

I Delay diversity: Exploit the fact that same signal is transmitted over both Tx antennas.

−→ Derive equivalent single Tx antenna channel model.

−→ Specifically, the mean power of the lth coefficient of the equivalent channel model results as

ρl(δ) =

∫ τmax

0

p(τ)
(
|g(lT−τ)|2 + |g(lT−δ−τ)|2

)
dτ . (2)

– g(t): Overall impulse response of pulse shaping filter and receiver filter

p(τ): Pdf proportional to the delay power density profile (e.g., GSM 05.05 propagation profile)
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Analytical Results and Optimization of the Delay Parameter (III)

I Truncated equalizer/detector: Trellis-based equalizer/detector of length Leq, only takes the

first Leq+1 channel coefficients into account (Leq < L).

−→ Sum and product in the RRB are from 0 to Leq.

−→ Neglected channel coefficients cause residual ISI, resulting in a transformed SNR

denoted as Es/N ′
o .

Jan Mietzner
ICT, University of Kiel



11

Analytical Results and Optimization of the Delay Parameter (III)

I Truncated equalizer/detector: Trellis-based equalizer/detector of length Leq, only takes the

first Leq+1 channel coefficients into account (Leq < L).

−→ Sum and product in the RRB are from 0 to Leq.

−→ Neglected channel coefficients cause residual ISI, resulting in a transformed SNR

denoted as Es/N ′
o .

Finally: Modified RRB as a function of delay parameter δ applied at Tx antenna 2, given different

equalizer/detector lengths Leq (1 Rx antenna assumed).

P
RRB
b (δ) =

1

2

Leq∑
l=0

( Leq∏
ν =0

ρν 6=ρl

ρl(δ)

ρl(δ)− ρν(δ)

)
·

 1−
1√

1 +
N ′

o
Es

1
ρl(δ)

 (3)
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Analytical Results and Optimization of the Delay Parameter (IV)

I Example: GSM propagation profile TU, Es/No =10 dB
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Analytical Results and Optimization of the Delay Parameter (IV)

I Example: GSM propagation profile TU, Es/No =10 dB

RRB as a function of δ
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I Case #1: Leq = L

Obviously, δ should be chosen as δ ≥ 3.

Neither δ=0 nor δ=1 is optimal.
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Analytical Results and Optimization of the Delay Parameter (V)

I Example: GSM propagation profile TU, Es/No =10 dB

RRB as a function of δ
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I Case #2: Leq < L

Example: Leq =4
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Analytical Results and Optimization of the Delay Parameter (VI)

I Discussion:

Small δ: RRB follows the curve for Leq =L.

Medium δ: Significant fractions of ρl(δ) are neglected

by the equalizer.

−→ Increased bit error probability.

Large δ: Further increase of δ does not lead to additional

performance loss.
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Analytical Results and Optimization of the Delay Parameter (VII)

I Example: GSM propagation profile TU, Es/No =10 dB

RRB as a function of δ
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I Case #2: Leq < L

Rule-of-thumb: Choose δ ≈ bLeq/2c.
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Analytical Results and Optimization of the Delay Parameter (VII)

I Example: GSM propagation profile TU, Es/No =10 dB

RRB as a function of δ
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Optimum for
(rule−of−thumb)

δ

I Case #2: Leq < L

Rule-of-thumb: Choose δ ≈ bLeq/2c.

I GSM/GPRS: Typically Leq = 5

=⇒ Near optimum for δ = 2.
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Conclusions

I General context:

Usefulness of STC for 2.5G/3G wireless systems −→ Higher data rates by exploiting spatial diversity.

I GSM/GPRS system:

– Transmitter structure improved by means of delay diversity.

– Performance improvements accomplished for different delays.

I Analytical results:

– Modified RAKE receiver bound as a function of the delay parameter δ applied at Tx antenna 2.

– Optimization of δ, given different equalizer/detector lengths Leq ≤ L.
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