Compatible Improvement of the GSM/GPRS System by Means of Delay Diversity

Jan Mietzner and Peter A. Hoeher

Information and Coding Theory Lab (ICT) University of Kiel, Germany

{jm,ph}@tf.uni-kiel.de
http://www.tf.uni-kiel.de/ict

Magnus Sandell

Toshiba Telecommunication Research Laboratory Bristol, United Kingdom

Magnus.Sandell@toshiba-trel.com

ICC 2003, Anchorage, Alaska, USA May 11-15, 2003

Currently:

In many current cellular systems two (or more) Tx antennas are used **at the BS**, where the Tx signal is **simultaneously** transmitted over each antenna.

Currently:

In many current cellular systems two (or more) Tx antennas are used **at the BS**, where the Tx signal is **simultaneously** transmitted over each antenna.

Enhancement:

"Space-time" processing.

Goal: Compatibility, i.e., preferably **few** changes w.r.t. current systems.

Simple Example: Delay Diversity

- ▶ Wittneben, 1993
- Seshadri and Winters, 1994

Simple Example: Delay Diversity

- ▶ Wittneben, 1993
- Seshadri and Winters, 1994

Idea: Apply a **delay** at the second Tx antenna.

<u>Shown here:</u> **Significant** performance improvements may be obtained using the **same** receiver. (Example: GSM/GPRS System)

Simple Example: Delay Diversity

- ▶ Wittneben, 1993
- Seshadri and Winters, 1994

Idea: Apply a **delay** at the second Tx antenna.

- <u>Shown here:</u> **Significant** performance improvements may be obtained using the **same** receiver. (Example: GSM/GPRS System)
 - ⇒ Delay diversity may be offered by network operators even in existing systems, since the standard is not affected at all.

General Context (I)

► Wireless data services:

- Require reliable transmission of **high** data rates.
- Normally asymmetric: Major part of overall traffic in downlink (DL) direction

(e.g., download of large amount of data by mobile users).

General Context (I)

Wireless data services:

- Require reliable transmission of **high** data rates.
- Normally **asymmetric**: Major part of overall traffic in downlink (DL) direction
 - (e.g., download of large amount of data by mobile users).

Space-Time Codes (STC):

 Special class of space-time processing schemes requiring solely multiple Tx antennas, whereas multiple Rx antennas are optional.

 \rightarrow Well suited to enhance the **crucial** DL.

General Context (I)

Wireless data services:

- Require reliable transmission of high data rates.
- Normally asymmetric: Major part of overall traffic in downlink (DL) direction (e.g., download of large amount of data by mobile users).

Space-Time Codes (STC):

 Special class of space-time processing schemes requiring solely multiple Tx antennas, whereas multiple Rx antennas are optional.

 \rightarrow Well suited to enhance the **crucial** DL.

Examples: Space-Time Trellis Codes (STTC), Space-Time Block Codes (STBC).
 Delay diversity may be interpreted as the simplest special case of a STTC.

General Context (II)

Efficiency of STC in fading environments due to a **diversity gain**:

Individual transmission paths are subject to independent fading,
 i.e., probability that all paths are simultaneously corrupted is smaller.

 \rightarrow **Lower** bit error rates accomplished.

General Context (II)

Efficiency of STC in fading environments due to a **diversity gain**:

Individual transmission paths are subject to independent fading,
 i.e., probability that all paths are simultaneously corrupted is smaller.

 \rightarrow **Lower** bit error rates accomplished.

- ► In 2.5G/3G systems, typically **adaptive** channel coding/ modulation is applied.
 - → Any means to improve power efficiency (e.g., utilization of diversity) leads to an improved bandwidth efficiency.

General Context (II)

Efficiency of STC in fading environments due to a **diversity gain**:

Individual transmission paths are subject to independent fading,
 i.e., probability that all paths are simultaneously corrupted is smaller.

 \rightarrow **Lower** bit error rates accomplished.

- ► In 2.5G/3G systems, typically **adaptive** channel coding/ modulation is applied.
 - → Any means to improve power efficiency (e.g., utilization of diversity) leads to an **improved bandwidth efficiency**.
 - ⇒ Enhancement of DL direction by means of STC for the purpose of higher data rates is very attractive.

Outline

- ► Transmitter structure for the GSM/GPRS DL improved by means of delay diversity
- ► Simulation results for a typical urban (TU) channel model
- ► Analytical results and optimization of the delay at the second Tx antenna
- ► Conclusions

- **GPRS** ('General Packet Radio Service'):
 - GPRS is used for the transfer of packet-switched data.
 - GSM/GPRS is often referred to as a '2.5G system'.
- **Original** GSM/GPRS transmitter structure:
 - Channel coding & interleaving according to adaptive channel coding schemes 'CS 1-4'.

- **GPRS** ('General Packet Radio Service'):
 - GPRS is used for the transfer of packet-switched data.
 - GSM/GPRS is often referred to as a '2.5G system'.
- **Original** GSM/GPRS transmitter structure:
 - Channel coding & interleaving according to adaptive channel coding schemes 'CS 1-4'.
- **Compatible** upgrade:
 - <u>Transmitter</u>: The same signal is transmitted from both antennas, using a delay δT at the second antenna (T symbol duration).
 - <u>Receiver</u>: The **same receiver** may be used as in the conventional system.

– The conventional choice is $\delta = 0$.

- The conventional choice is $\delta = 0$.
- For delay diversity, typically $\delta = 1$ is chosen (optimal in case of a flat fading channel).

- The conventional choice is $\delta = 0$.
- For delay diversity, typically $\delta = 1$ is chosen (optimal in case of a flat fading channel).
- Question: Optimal choice of δ in case of frequency-selective fading channel?

Simulation Results for the TU Channel Model

- Uncoded transmission
- $\blacktriangleright \text{ Delay parameter } \delta = 1, 2, 3$
- \blacktriangleright 1 or 2 Rx antennas
- Channel perfectly known at the receiver
- Root-raised-cosine Rx filter
- Max-Log-MAP equalizer/detector

Simulation Results for the TU Channel Model

Simulation Results for the TU Channel Model

With delay diversity, significant gains w.r.t. conventional system. Maximum gain for $\delta = 3$.

RAKE receiver bound (RRB): Lower bound on the **bit error probability** of a slowly time-varying ISI channel.

Maximum likelihood (ML) detection assumed (particularly, perfect knowledge of the channel coefficients in the receiver).

Individual channel coefficients are assumed to fade independently.

RAKE receiver bound (RRB): Lower bound on the **bit error probability** of a slowly time-varying ISI channel.

Maximum likelihood (ML) detection assumed (particularly, perfect knowledge of the channel coefficients in the receiver).

Individual channel coefficients are assumed to fade independently.

$$P_b^{\text{RRB}} = \frac{1}{2} \sum_{l=0}^{L} \left(\prod_{\substack{\nu=0\\\rho\nu\neq\rho_l}}^{L} \frac{\rho_l}{\rho_l - \rho_\nu} \right) \cdot \left(1 - \frac{1}{\sqrt{1 + \frac{N_0}{E_s} \frac{1}{\rho_l}}} \right)$$
(1)

L: Channel memory length

AU

Christian-Albrechts-Universität zu Kie

- E_s : Mean energy per data symbol
- N_o : Single-sided noise power density
- ρ_l : Mean power of the *l*th channel coefficient ($0 \le l \le L$)

• Tightening the RRB:

- Channel coefficients normally comprise both **static ISI** (due to pulse shaping and receiver filter) and **dynamic ISI** (due to physical channel).
- **Diversity** is solely due to dynamic ISI. Hence, the RRB **overestimates** the degree of diversity actually utilized, i.e., the bound is too **optimistic**.

• Tightening the RRB:

- Channel coefficients normally comprise both **static ISI** (due to pulse shaping and receiver filter) and **dynamic ISI** (due to physical channel).
- **Diversity** is solely due to dynamic ISI. Hence, the RRB **overestimates** the degree of diversity actually utilized, i.e., the bound is too **optimistic**.
 - ----> Method to **remove** static ISI from the channel coefficients to **tighten** the bound.

► Tightening the RRB:

- Channel coefficients normally comprise both **static ISI** (due to pulse shaping and receiver filter) and **dynamic ISI** (due to physical channel).
- **Diversity** is solely due to dynamic ISI. Hence, the RRB **overestimates** the degree of diversity actually utilized, i.e., the bound is too **optimistic**.

---> Method to **remove** static ISI from the channel coefficients to **tighten** the bound.

- **Delay diversity:** Exploit the fact that **same** signal is transmitted over **both** Tx antennas.
- \longrightarrow Derive equivalent **single** Tx antenna channel model.

Tightening the RRB:

- Channel coefficients normally comprise both **static ISI** (due to pulse shaping and receiver filter) and **dynamic ISI** (due to physical channel).
- **Diversity** is solely due to dynamic ISI. Hence, the RRB **overestimates** the degree of diversity actually utilized, i.e., the bound is too **optimistic**.

----> Method to **remove** static ISI from the channel coefficients to **tighten** the bound.

- **Delay diversity:** Exploit the fact that **same** signal is transmitted over **both** Tx antennas.
- \longrightarrow Derive equivalent **single** Tx antenna channel model.
- \longrightarrow Specifically, the **mean power** of the *l*th coefficient of the equivalent channel model results as

$$\rho_l(\delta) = \int_0^{\tau_{max}} p(\tau) \left(|g(lT - \tau)|^2 + |g(lT - \delta - \tau)|^2 \right) d\tau.$$
(2)

g(t): Overall impulse response of pulse shaping filter and receiver filter $p(\tau)$: Pdf proportional to the delay power density profile (e.g., GSM 05.05 propagation profile)

- ▶ Truncated equalizer/detector: Trellis-based equalizer/detector of length L_{eq} , only takes the first $L_{eq}+1$ channel coefficients into account ($L_{eq} < L$).
- \longrightarrow Sum and product in the RRB are from 0 to L_{eq} .
- \longrightarrow Neglected channel coefficients cause **residual ISI**, resulting in a **transformed** SNR denoted as E_s/N'_o .

- ▶ Truncated equalizer/detector: Trellis-based equalizer/detector of length L_{eq} , only takes the first $L_{eq}+1$ channel coefficients into account ($L_{eq} < L$).
- \longrightarrow Sum and product in the RRB are from 0 to L_{eq} .
- \longrightarrow Neglected channel coefficients cause **residual ISI**, resulting in a **transformed** SNR denoted as E_s/N'_o .
- **Finally:** Modified RRB as a function of delay parameter δ applied at Tx antenna 2, given different equalizer/detector lengths L_{eq} (1 Rx antenna assumed).

$$P_b^{\text{RRB}}(\delta) = \frac{1}{2} \sum_{l=0}^{Leq} \left(\prod_{\substack{\nu=0\\\rho_\nu \neq \rho_l}}^{Leq} \frac{\rho_l(\delta)}{\rho_l(\delta) - \rho_\nu(\delta)} \right) \cdot \left(1 - \frac{1}{\sqrt{1 + \frac{N_o'}{E_s} \frac{1}{\rho_l(\delta)}}} \right)$$
(3)

Example: GSM propagation profile TU, $E_s/N_o = 10 \text{ dB}$

Case #1: $L_{eq} = L$

Obviously, δ should be chosen as $\delta \geq 3$. Neither $\delta = 0$ nor $\delta = 1$ is optimal.

RRB as a function of δ

Discussion:

<u>Small δ :</u> RRB follows the curve for $L_{eq} = L$.

- - \longrightarrow Increased bit error probability.

 $\label{eq:large_discrete} \underbrace{ \mbox{Large } \delta : }_{\mbox{performance loss.}} \mbox{ Further increase of } \delta \mbox{ does not lead to additional } \\$

Case #2: $L_{eq} < L$

Rule-of-thumb: Choose $\delta \approx \lfloor L_{eq}/2 \rfloor$.

Example: GSM propagation profile TU, $E_s/N_o = 10 \text{ dB}$

RRB as a function of δ

Conclusions

General context:

Usefulness of STC for 2.5G/3G wireless systems \longrightarrow Higher data rates by exploiting spatial diversity.

GSM/GPRS system:

- Transmitter structure improved by means of delay diversity.
- Performance improvements accomplished for different delays.

Analytical results:

- Modified RAKE receiver bound as a function of the delay parameter δ applied at Tx antenna 2.
- Optimization of δ , given different equalizer/detector lengths $L_{eq} \leq L$.

