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From Co-located to Distributed Transmitters
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Motivation for Distributed Space-Time Codes

I Benefits of multiple antennas for wireless communication systems:

– Performance of wireless systems often limited by fading due to multipath signal propagation

– System performance significantly improved by exploiting diversity

=⇒ Employ Space-time codes (STCs) to exploit spatial diversity

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel
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Motivation for Distributed Space-Time Codes

I Benefits of multiple antennas for wireless communication systems:

– Performance of wireless systems often limited by fading due to multipath signal propagation

– System performance significantly improved by exploiting diversity

=⇒ Employ Space-time codes (STCs) to exploit spatial diversity

I Concept of multiple antennas can be transferred to cooperative wireless networks:

– Multiple (single-antenna) nodes cooperate and perform a joint transmission strategy

=⇒ Nodes share their antennas using a distributed space-time code

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel
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Cooperative Wireless Networks – Examples

I Simulcast networks for broadcasting or paging applications:

Conventionally, all nodes simultaneously transmit the same signal using the

same carrier frequency =⇒ Reduced probability of shadowing
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Cooperative Wireless Networks – Examples

I Simulcast networks for broadcasting or paging applications:

Conventionally, all nodes simultaneously transmit the same signal using the

same carrier frequency =⇒ Reduced probability of shadowing

I Relay-assisted communication, e.g., in cellular systems, ad-hoc networks, sensor networks:

– Relay nodes receive signal from a source node and forwarded it to a destination node

– Fixed stations or other mobile stations (‘user cooperation diversity’)

=⇒ Distributed STCs are suitable for both types of networks

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel
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Cooperative Wireless Networks – General Setting

I n transmitting nodes (Tx1,...,Txn), one receiving node (Rx); single-antenna nodes
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Differences between Co-located and Distributed Transmitters

I Distributed STCs:

– No shadowing: Diversity degree n X

– Additionally: Diversity degree (n−ν) if any subset of ν Tx nodes obstructed (X)

I Higher probability of line-of-sight (LOS) component

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel
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Differences between Co-located and Distributed Transmitters

I Distributed STCs:

– No shadowing: Diversity degree n X

– Additionally: Diversity degree (n−ν) if any subset of ν Tx nodes obstructed (X)

I Higher probability of line-of-sight (LOS) component

I Transmitted signals si(t) subject to different average link gains ai, due to

different distances or shadowing =⇒ Reduced degree of diversity

Here: Focus on average link gains ai and associated diversity loss

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel
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Outline

I Error Performance of Distributed STCs

– Basic Assumptions

– Analytical Results

I Average Error Performance in a General Uplink Scenario

I Average Error Performance in an Uplink Scenario with Additional Constraint

I Conclusions

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel
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Basic Assumptions

I Transmitting nodes Tx1,...,Txn perfectly synchronized in time and frequency

I All nodes employ a single antenna
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Basic Assumptions

I Transmitting nodes Tx1,...,Txn perfectly synchronized in time and frequency

I All nodes employ a single antenna

I Frequency-flat block-fading channel model (Rayleigh):

Channel coefficients hi ∼ CN (0, ai), i = 1, ..., n Normalization:
P

i ai := n

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel



7

Basic Assumptions

I Transmitting nodes Tx1,...,Txn perfectly synchronized in time and frequency

I All nodes employ a single antenna

I Frequency-flat block-fading channel model (Rayleigh):

Channel coefficients hi ∼ CN (0, ai), i = 1, ..., n Normalization:
P

i ai := n

I Same average transmitter power P/n for all transmitting nodes Txi; no shadowing

I Congenerous antennas at Tx nodes, omnidirectional antenna at Rx node
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Basic Assumptions

I Transmitting nodes Tx1,...,Txn perfectly synchronized in time and frequency

I All nodes employ a single antenna

I Frequency-flat block-fading channel model (Rayleigh):

Channel coefficients hi ∼ CN (0, ai), i = 1, ..., n Normalization:
P

i ai := n

I Same average transmitter power P/n for all transmitting nodes Txi; no shadowing

I Congenerous antennas at Tx nodes, omnidirectional antenna at Rx node

=⇒
aj

ai
=

„
di

dj

«ρ
(according to Friis formula)

di: Length of transmission link i, ρ: Path-loss exponent (2 ≤ρ≤ 4)
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Analytical Results for the Error Performance

I Average signal-to-noise ratio (SNR) for transmission link i: aiEs/nN0

(Es/N0: Overall received SNR)

I In the sequel, Alamouti’s Tx diversity scheme (n=2) and binary transmission

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel
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Analytical Results for the Error Performance

I Average signal-to-noise ratio (SNR) for transmission link i: aiEs/nN0

(Es/N0: Overall received SNR)

I In the sequel, Alamouti’s Tx diversity scheme (n=2) and binary transmission

I Using Proakis’ theoretical results for diversity reception, one obtains the bit error rate (BER):

Pb(a1) =
1

2

»
a1 (1− µ(a1))

a1 − a2

+
a2 (1− µ(a2))

a2 − a1

–
,

where a1 ∈ [0, 2], a2 = 2− a1 and µ(ai) =
1q

1 +
2N0
aiEs

(i = 1, 2)

Specifically, Pb(a1)=Pb(2−a1) holds for all a1

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel
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Analytical Results for the Error Performance

Pb(a1) vs. Es/N0 in dB
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Analytical Results for the Error Performance

Pb(a1) vs. Es/N0 in dB
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I Best performance for a1 = a2 = 1

(diversity degree of two)

I Worst performance for a1=2 and

a2=0 (diversity degree of one)

I Even for large a1, significant gains

w.r.t. single transmission node

(diversity degree still close to two)
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Analytical Results for the Error Performance

Pb(a1) vs. Es/N0 in dB
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Multiple-antenna system (colocated antennas)

Single transmitting node
SNR Es/N0

SNR Es/2N0 + Es/2N0 = Es/N0

I Best performance for a1 = a2 = 1

(diversity degree of two)

I Worst performance for a1=2 and

a2=0 (diversity degree of one)

I Even for large a1, significant gains

w.r.t. single transmission node

(diversity degree still close to two)

I Results hold approximately also, e.g.,

for TR-STBCs and delay diversity

I Generalizations are possible:

– n>2 Tx nodes (e.g., OSTBCs)

– Rice fading, shadowing
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Outline

I Error Performance of Distributed STCs

I Average Error Performance in a General Uplink Scenario

– General Uplink Scenario

– Derivation of the Mean Bit Error Rate

I Average Error Performance in an Uplink Scenario with Additional Constraint

I Conclusions
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General Uplink Scenario

I Assumptions:

– n = 2 Tx nodes (MS1, MS2), one Rx node (BS), distributed Alamouti scheme

(MS1 and MS2 may be mobile relays)

– Coverage area A of BS is a disk of radius r
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General Uplink Scenario

I Assumptions:

– n = 2 Tx nodes (MS1, MS2), one Rx node (BS), distributed Alamouti scheme

(MS1 and MS2 may be mobile relays)

– Coverage area A of BS is a disk of radius r

A

MS1

MS2

d2

d1 =c r

r
BS (Rx)

ϕ1

– For MS1 a fixed distance d1 to BS is assumed

where d1 := c r, c ≤ 1 (angle ϕ1 arbitrary)

– MS2 is located anywhere within A, according to a

uniform distribution

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel
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General Uplink Scenario

I Assumptions:

– n = 2 Tx nodes (MS1, MS2), one Rx node (BS), distributed Alamouti scheme

(MS1 and MS2 may be mobile relays)

– Coverage area A of BS is a disk of radius r

A

MS1

MS2

d2

d1 =c r

r
BS (Rx)

ϕ1

– For MS1 a fixed distance d1 to BS is assumed

where d1 := c r, c ≤ 1 (angle ϕ1 arbitrary)

– MS2 is located anywhere within A, according to a

uniform distribution

I The mean BER can be calculated as

P̄b =

Z 2

0

pA1
(a1)Pb(a1) da1

=⇒ pA1
(a1) required

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel
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Derivation of the Mean Bit Error Rate

I Let q := d2/d1 (corresponding random variable Q)

I Since d1 is fixed, the pdf of Q is given by

pQ(q) = d1 · pD2
(d1q) = c r ·

∂

∂d2

P (D2≤d2)
˛̨̨
d2=c r q
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Derivation of the Mean Bit Error Rate

I Let q := d2/d1 (corresponding random variable Q)

I Since d1 is fixed, the pdf of Q is given by

pQ(q) = d1 · pD2
(d1q) = c r ·

∂

∂d2

P (D2≤d2)
˛̨̨
d2=c r q

I With P (D2≤d2) = πd2
2/πr

2 one obtains pQ(q) = 2c2q
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Derivation of the Mean Bit Error Rate

I Let q := d2/d1 (corresponding random variable Q)

I Since d1 is fixed, the pdf of Q is given by

pQ(q) = d1 · pD2
(d1q) = c r ·

∂

∂d2

P (D2≤d2)
˛̨̨
d2=c r q

I With P (D2≤d2) = πd2
2/πr

2 one obtains pQ(q) = 2c2q

I Using a1/a2 = (d2/d1)
ρ = qρ and a2 = 2− a1

=⇒ a1 is a function of q: a1 =
2 qρ

1 + qρ

=⇒ The pdf pA1
(a1) can be determined using pQ(q) = 2c2q

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel
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Derivation of the Mean Bit Error Rate

I One obtains

pA1
(a1) =

(1 + ξ(a1))
2

2ρ ξ(a1)(ρ−1)/ρ
· pQ(ξ(a1)

1/ρ
)

=

8><>:
c2 (1 + ξ(a1))

2

ρ ξ(a1)(ρ−2)/ρ
, for a1 ∈ [0, a1max]

0 else ,

where

ξ(a1) :=
a1

2− a1

and a1max = a1max(c, ρ) :=
2

(1+cρ)

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel
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Average Error Performance

pA1
(a1) vs. a1 (ρ = 2, 3, 4; c = 0.5)
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Average Error Performance

pA1
(a1) vs. a1 (ρ = 2, 3, 4; c = 0.5)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

a1

p A
1(a

1)

ρ = 2
ρ = 3
ρ = 4

P̄b vs. Es/N0 in dB

0 2 4 6 8 10 12 14 16 18 20
10−4

10−3

10−2

10−1

100

E
s
/N

0
 (dB)

B
E

R

Distr. Alamouti, a
1
=2, a

2
=0

Distr. Alamouti, a
1
=1, a

2
=1

Average BER resulting for  ρ=2
Average BER resulting for  ρ=3
Average BER resulting for  ρ=4

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel



14

Average Error Performance
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For large path-loss exponent ρ, probability that a1 ≈ 1 comparably small

=⇒ Significant average loss compared to co-located antennas (a1 = a2 = 1)
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Outline

I Error Performance of Distributed STCs

I Average Error Performance in a General Uplink Scenario

I Average Error Performance in an Uplink Scenario with Additional Constraint

– Uplink Scenario with Additional Constraint

– Mean Bit Error Rate

I Conclusions
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Uplink Scenario With Additional Constraint

I Assumptions:

– Constraint for MS2: Distance d12 between MS2 and MS1 significantly smaller than d1

=⇒MS2 within disk A′ of radius r12�d1 around MS1, according to uniform distribution

=⇒ Constraint reasonable when MS1 and MS2 act as mutual relays:
MS1 and MS2 only cooperate if d12≤r12, so as to avoid error propagation

– Distance d1 between MS1 and BS normalized to one

BS (Rx) MS1

r12

MS2

d12

d1 =1

A′

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel



16

Uplink Scenario With Additional Constraint

I Assumptions:

– Constraint for MS2: Distance d12 between MS2 and MS1 significantly smaller than d1

=⇒MS2 within disk A′ of radius r12�d1 around MS1, according to uniform distribution

=⇒ Constraint reasonable when MS1 and MS2 act as mutual relays:
MS1 and MS2 only cooperate if d12≤r12, so as to avoid error propagation

– Distance d1 between MS1 and BS normalized to one

BS (Rx) MS1

r12

MS2

d12

d1 =1

A′
I Derivation of pA1

(a1) and

P̄b as before, via the pdf pQ(q)

(However, deriving pQ(q) is

more involved)

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel
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Average Error Performance

pA1
(a1) vs. a1 (ρ = 2, 3, 4)
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Average Error Performance
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Conclusions

I Wireless systems with distributed transmitters: Specific differences compared to systems with

co-located antennas

I Here: Focus on different average link gains =⇒ Reduced diversity degree

I Two typical uplink scenarios considered =⇒ Analytical derivation of the mean BER

=⇒ In most scenarios performance loss < 2 dB at a BER of 10−3

=⇒ Most significant performance loss for large path-loss exponents (e.g. ρ = 4)

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel
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Appendix: Expressions for the Uplink Scenario with Additional Constraint

I Probability P (D2≤d2), where 1−r12 ≤ d2 ≤ 1+r12 :

P (D2≤d2) =
1

π

d2
2

r2
12

„
ϕB(d2)−

1

2
sin(2ϕB(d2))

«
+

1

π

„
ϕM(d2)−

1

2
sin(2ϕM(d2))

«
,

where ϕB(d2) = arccos

 
1 + d2

2 − r2
12

2 d2| {z }
=: ψ(d2)

!
and ϕM(d2) = arccos

 
1− d2

2 + r2
12

2 r12| {z }
=: ζ(d2)

!

I Pdf pQ(q), q=d2/d1=d2: (→ from pQ(q) one obtains pA1
(a1))

pQ(q) =
∂

∂d2

P (D2≤d2)
˛̨̨
d2=q

=
1

π

2q

r2
12

„
ϕB(q)−

1

2
sin(2ϕB(q))

«
+ ...

... +
1

π

1− q2 − r2
12

2 r2
12

p
1− ψ2(q)

„
1− cos(2ϕB(q))

«
+

1

π

q

r12

p
1− ζ2(q)

„
1− cos(2ϕM(q))

«
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