Analysis of the Expected Error Performance of Cooperative Wireless Networks Employing Distributed Space-Time Codes

<u>Jan Mietzner¹</u>, Ragnar Thobaben², and Peter A. Hoeher¹

University of Kiel, Germany ¹Information and Coding Theory Lab (ICT) ²Institute for Circuits and System Theory (LNS)

{jm,rat,ph}@tf.uni-kiel.de
http://www-ict.tf.uni-kiel.de

Globecom 2004, Dallas, Texas, USA November 30, 2004

From Co-located to Distributed Transmitters

Motivation for Distributed Space-Time Codes

- **Benefits** of **multiple antennas** for wireless communication systems:
 - Performance of wireless systems often limited by fading due to multipath signal propagation
 - System performance significantly improved by exploiting diversity
- ⇒ Employ Space-time codes (STCs) to exploit spatial diversity

Motivation for Distributed Space-Time Codes

- **Benefits** of **multiple antennas** for wireless communication systems:
 - Performance of wireless systems often limited by fading due to multipath signal propagation
 - System performance significantly improved by exploiting diversity
- ⇒ Employ Space-time codes (STCs) to exploit spatial diversity
- Concept of multiple antennas can be transferred to cooperative wireless networks:
 - Multiple (single-antenna) nodes cooperate and perform a joint transmission strategy
- \implies Nodes share their antennas using a **distributed** space-time code

Cooperative Wireless Networks – Examples

Simulcast networks for broadcasting or paging applications:

Conventionally, all nodes simultaneously transmit the same signal using the same carrier frequency \implies Reduced probability of shadowing

C

Cooperative Wireless Networks – Examples

Simulcast networks for broadcasting or paging applications:

Conventionally, all nodes simultaneously transmit the same signal using the same carrier frequency \implies Reduced probability of shadowing

- ▶ Relay-assisted communication, e.g., in cellular systems, ad-hoc networks, sensor networks:
 - Relay nodes receive signal from a source node and forwarded it to a destination node
 - **Fixed stations** or other **mobile stations** ('user cooperation diversity')
- ⇒ **Distributed STCs** are **suitable** for both types of networks

Cooperative Wireless Networks – General Setting

▶ *n* transmitting nodes $(Tx_1,...,Tx_n)$, one receiving node (Rx); single-antenna nodes

Differences between Co-located and Distributed Transmitters

Distributed STCs:

- No shadowing: Diversity degree n 🗸
- Additionally: Diversity degree $(n-\nu)$ if any subset of ν Tx nodes obstructed (\checkmark)
- Higher probability of line-of-sight (LOS) component

Differences between Co-located and Distributed Transmitters

Distributed STCs:

- No shadowing: Diversity degree n 🗸
- Additionally: Diversity degree $(n-\nu)$ if any subset of ν Tx nodes obstructed (\checkmark)
- Higher probability of line-of-sight (LOS) component
- ► Transmitted signals $s_i(t)$ subject to **different** average **link gains** a_i , due to different distances or shadowing \implies **Reduced** degree of diversity

Here: Focus on average link gains a_i and associated diversity loss

Outline

- **Error Performance of Distributed STCs**
 - Basic Assumptions
 - Analytical Results
- Average Error Performance in a General Uplink Scenario
- ► Average Error Performance in an Uplink Scenario with Additional Constraint
- Conclusions

- > Transmitting nodes $Tx_1,...,Tx_n$ perfectly **synchronized** in time and frequency
- > All nodes employ a **single antenna**

- > Transmitting nodes $Tx_1,...,Tx_n$ perfectly synchronized in time and frequency
- > All nodes employ a **single antenna**
- Frequency-flat block-fading channel model (Rayleigh):

Channel coefficients $h_i \sim C\mathcal{N}(0, a_i), i = 1, ..., n$ Normalization: $\sum_i a_i := n$

- > Transmitting nodes $Tx_1,...,Tx_n$ perfectly synchronized in time and frequency
- All nodes employ a single antenna
- Frequency-flat **block-fading** channel model (Rayleigh):

Channel coefficients $h_i \sim CN(0, a_i), i = 1, ..., n$ **Normalization:** $\sum_i a_i := n$

- Same average transmitter power P/n for all transmitting nodes Tx_i ; no shadowing
- Congenerous antennas at Tx nodes, omnidirectional antenna at Rx node

7

- > Transmitting nodes $Tx_1,...,Tx_n$ perfectly synchronized in time and frequency
- All nodes employ a single antenna
- Frequency-flat block-fading channel model (Rayleigh):

Channel coefficients $h_i \sim C\mathcal{N}(0, a_i), i = 1, ..., n$ Normalization: $\sum_i a_i := n$

- Same average transmitter power P/n for all transmitting nodes Tx_i ; no shadowing
- Congenerous antennas at Tx nodes, omnidirectional antenna at Rx node

$$rac{a_j}{a_i} = \left(rac{d_i}{d_j}
ight)^{\!\!
ho}$$

(according to Friis formula)

 d_i : Length of transmission link i, ρ : Path-loss exponent $(2 \le \rho \le 4)$

- Average **signal-to-noise ratio (SNR)** for transmission link *i*: $(E_s/N_0: \text{ Overall received SNR})$
- ▶ In the sequel, Alamouti's Tx diversity scheme (n=2) and binary transmission

- Average **signal-to-noise ratio (SNR)** for transmission link *i*: $(E_s/N_0: \text{ Overall received SNR})$
- ▶ In the sequel, Alamouti's Tx diversity scheme (n=2) and binary transmission
- Using Proakis' theoretical results for diversity reception, one obtains the bit error rate (BER):

$$P_{\rm b}(a_1) = \frac{1}{2} \left[\frac{a_1 \left(1 - \mu(a_1) \right)}{a_1 - a_2} + \frac{a_2 \left(1 - \mu(a_2) \right)}{a_2 - a_1} \right]$$

where

e
$$a_1 \in [0,2], a_2 = 2 - a_1$$
 and $\mu(a_i) = \frac{1}{\sqrt{1 + \frac{2N_0}{a_i E_s}}}$ $(i = 1,2)$

Specifically, $P_{\rm b}(a_1) = P_{\rm b}(2-a_1)$ holds for all a_1

- Best performance for a₁ = a₂ = 1 (diversity degree of two)
- ► Worst performance for a₁ = 2 and a₂ = 0 (diversity degree of one)
- Even for large a₁, significant gains w.r.t. single transmission node (diversity degree still close to two)

- Best performance for a₁ = a₂ = 1 (diversity degree of two)
- ► Worst performance for a₁ = 2 and a₂ = 0 (diversity degree of one)
- Even for large a₁, significant gains
 w.r.t. single transmission node
 (diversity degree still close to two)
- Results hold approximately also, e.g., for TR-STBCs and delay diversity
- Generalizations are possible:
 - n > 2 Tx nodes (e.g., OSTBCs)
 - Rice fading, shadowing

Outline

Error Performance of Distributed STCs

► Average Error Performance in a General Uplink Scenario

- General Uplink Scenario
- Derivation of the Mean Bit Error Rate

Average Error Performance in an Uplink Scenario with Additional Constraint

Conclusions

General Uplink Scenario

Assumptions:

- n = 2 Tx nodes (MS₁, MS₂), one Rx node (BS), distributed Alamouti scheme (MS₁ and MS₂ may be mobile relays)
- Coverage area $\mathcal A$ of BS is a disk of radius r

General Uplink Scenario

Assumptions:

- n = 2 Tx nodes (MS₁, MS₂), one Rx node (BS), distributed Alamouti scheme (MS₁ and MS₂ may be mobile relays)
- Coverage area ${\mathcal A}$ of BS is a disk of radius r

- For MS_1 a fixed distance d_1 to BS is assumed where $d_1 := c \, r, \ c \leq 1$ (angle φ_1 arbitrary)
 - MS_2 is located anywhere within \mathcal{A} , according to a **uniform distribution**

C

General Uplink Scenario

► Assumptions:

- n = 2 Tx nodes (MS₁, MS₂), one Rx node (BS), distributed Alamouti scheme (MS₁ and MS₂ may be mobile relays)
- Coverage area ${\mathcal A}$ of BS is a disk of radius r

- For MS_1 a fixed distance d_1 to BS is assumed where $d_1 := c \, r, \ c \leq 1$ (angle $arphi_1$ arbitrary)
 - MS_2 is located anywhere within \mathcal{A} , according to a **uniform distribution**
 - The mean BER can be calculated as

$$ar{P}_{
m b} \,=\, \int_{0}^{2} p_{A_{1}}(a_{1}) \,P_{
m b}(a_{1}) \,{
m d}a_{1}$$

 $\implies p_{A_1}(a_1)$ required

- Let $q := d_2/d_1$ (corresponding random variable Q)
- Since d_1 is fixed, the pdf of Q is given by

$$p_Q(q) = d_1 \cdot p_{D_2}(d_1 q) = c r \cdot \frac{\partial}{\partial d_2} P(D_2 \le d_2) \Big|_{d_2 = c r q}$$

12

• Let
$$q := d_2/d_1$$
 (corresponding random variable Q)

Since
$$d_1$$
 is fixed, the pdf of Q is given by

$$p_Q(q) = d_1 \cdot p_{D_2}(d_1 q) = c r \cdot \frac{\partial}{\partial d_2} P(D_2 \le d_2) \Big|_{d_2 = c r q}$$

► With
$$P(D_2 \le d_2) = \pi d_2^2 / \pi r^2$$
 one obtains $p_Q(q) = 2c^2 q$

• Let
$$q := d_2/d_1$$
 (corresponding random variable Q)

Since
$$d_1$$
 is fixed, the pdf of Q is given by

$$p_Q(q) = d_1 \cdot p_{D_2}(d_1 q) = c r \cdot \frac{\partial}{\partial d_2} P(D_2 \le d_2) \Big|_{d_2 = c r q}$$

► With
$$P(D_2 \le d_2) = \pi d_2^2 / \pi r^2$$
 one obtains $p_Q(q) = 2c^2 q$

• Using
$$a_1/a_2 = (d_2/d_1)^{\rho} = q^{\rho}$$
 and $a_2 = 2 - a_1$
 $\implies a_1$ is a function of q : $a_1 = \frac{2 q^{\rho}}{1 + q^{\rho}}$

 \implies The pdf $p_{A_1}(a_1)$ can be determined using $p_Q(q) = 2c^2q$

One obtains

$$p_{A_1}(a_1) = \frac{(1+\xi(a_1))^2}{2\rho \ \xi(a_1)^{(\rho-1)/\rho}} \cdot p_Q(\xi(a_1)^{1/\rho})$$
$$= \begin{cases} \frac{c^2 (1+\xi(a_1))^2}{\rho \ \xi(a_1)^{(\rho-2)/\rho}}, & \text{for} \quad a_1 \in [0, a_{1\max}] \\ 0 & \text{else}, \end{cases}$$

where

$$\xi(a_1) := \frac{a_1}{2 - a_1}$$
 and $a_{1\max} = a_{1\max}(c, \rho) := \frac{2}{(1 + c^{\rho})}$

14

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel

For large path-loss exponent ho, probability that $a_1 \approx 1$ comparably small

 \implies Significant average loss compared to co-located antennas ($a_1 = a_2 = 1$)

Outline

- Error Performance of Distributed STCs
- ► Average Error Performance in a General Uplink Scenario
- ► Average Error Performance in an Uplink Scenario with Additional Constraint
 - Uplink Scenario with Additional Constraint
 - Mean Bit Error Rate
- Conclusions

15

Uplink Scenario With Additional Constraint

Assumptions:

- Constraint for MS_2 : Distance d_{12} between MS_2 and MS_1 significantly smaller than d_1
 - \implies MS₂ within disk \mathcal{A}' of radius $r_{12} \ll d_1$ around MS₁, according to **uniform distribution**
 - \implies Constraint reasonable when MS_1 and MS_2 act as mutual relays: MS_1 and MS_2 only cooperate if $d_{12} \leq r_{12}$, so as to avoid error propagation
- Distance d_1 between MS_1 and BS normalized to one

Uplink Scenario With Additional Constraint

Assumptions:

- Constraint for MS_2 : Distance d_{12} between MS_2 and MS_1 significantly smaller than d_1
 - \implies MS₂ within disk \mathcal{A}' of radius $r_{12} \ll d_1$ around MS₁, according to **uniform distribution**
 - \implies Constraint reasonable when MS_1 and MS_2 act as mutual relays: MS_1 and MS_2 only cooperate if $d_{12} \leq r_{12}$, so as to avoid error propagation
- Distance d_1 between MS_1 and BS normalized to one

• **Derivation** of $p_{A_1}(a_1)$ and \bar{P}_b as before, via the pdf $p_Q(q)$

(However, deriving $p_Q(q)$ is more involved)

Conclusions

- Wireless systems with distributed transmitters: Specific differences compared to systems with co-located antennas
- ► Here: Focus on different average link gains ⇒ Reduced diversity degree
- ► Two typical **uplink scenarios** considered ⇒ Analytical derivation of the **mean BER**
- \implies In most scenarios **performance loss** < 2 dB at a BER of 10^{-3}
- \implies Most **significant** performance loss for **large** path-loss exponents (e.g. $\rho = 4$)

Appendix: Expressions for the Uplink Scenario with Additional Constraint

Probability
$$P(D_2 \le d_2)$$
, where $1 - r_{12} \le d_2 \le 1 + r_{12}$:

$$P(D_2 \le d_2) = \frac{1}{\pi} \frac{d_2^2}{r_{12}^2} \left(\varphi_{\rm B}(d_2) - \frac{1}{2} \sin(2\,\varphi_{\rm B}(d_2)) \right) + \frac{1}{\pi} \left(\varphi_{\rm M}(d_2) - \frac{1}{2} \sin(2\,\varphi_{\rm M}(d_2)) \right),$$

where
$$\varphi_{\rm B}(d_2) = \arccos\left(\frac{1+d_2^2-r_{12}^2}{2d_2}\right)$$
 and $\varphi_{\rm M}(d_2) = \arccos\left(\frac{1-d_2^2+r_{12}^2}{2r_{12}}\right)$
=: $\psi(d_2)$ =: $\zeta(d_2)$

• Pdf
$$p_Q(q)$$
, $q = d_2/d_1 = d_2$: (\rightarrow from $p_Q(q)$ one obtains $p_{A_1}(a_1)$)

$$p_Q(q) = \frac{\partial}{\partial d_2} P(D_2 \le d_2) \Big|_{d_2=q} = \frac{1}{\pi} \frac{2q}{r_{12}^2} \left(\varphi_{\rm B}(q) - \frac{1}{2} \sin(2\varphi_{\rm B}(q)) \right) + \dots$$
$$\dots + \frac{1}{\pi} \frac{1 - q^2 - r_{12}^2}{2r_{12}^2 \sqrt{1 - \psi^2(q)}} \left(1 - \cos(2\varphi_{\rm B}(q)) \right) + \frac{1}{\pi} \frac{q}{r_{12}\sqrt{1 - \zeta^2(q)}} \left(1 - \cos(2\varphi_{\rm M}(q)) \right)$$

Jan Mietzner, Ragnar Thobaben, and Peter A. Hoeher, University of Kiel

ICT