
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 2551

Raptor Codes
Amin Shokrollahi, Senior Member, IEEE

Abstract—LT-codes are a new class of codes introduced by Luby
for the purpose of scalable and fault-tolerant distribution of data
over computer networks. In this paper, we introduce Raptor codes,
an extension of LT-codes with linear time encoding and decoding.
We will exhibit a class of universal Raptor codes: for a given in-
teger and any real 0, Raptor codes in this class produce a
potentially infinite stream of symbols such that any subset of sym-
bols of size (1 +) is sufficient to recover the original sym-
bols with high probability. Each output symbol is generated using
(log(1)) operations, and the original symbols are recovered

from the collected ones with (log(1)) operations.
We will also introduce novel techniques for the analysis of the

error probability of the decoder for finite length Raptor codes.
Moreover, we will introduce and analyze systematic versions of
Raptor codes, i.e., versions in which the first output elements of
the coding system coincide with the original elements.

Index Terms—Binary erasure channel (BEC), graphical codes,
LT-codes, networking.

I. INTRODUCTION

THE binary erasure channel (BEC) of communication was
introduced by Elias [1] in 1955, but it was regarded as a

rather theoretical channel model until the large-scale deploy-
ment of the Internet about 40 years later.

On the Internet, data is transmitted in the form of packets.
Each packet is equipped with a header that describes the source
and the destination of the packet, and often also a sequence
number describing the absolute or relative position of the packet
within a given stream. These packets are routed on the network
from the sender to the receiver. Due to various reasons, for ex-
ample buffer overflows at the intermediate routers, some packets
may get lost and never reach their destination. Other packets
may be declared as lost if the internal checksum of the packet
does not match. Therefore, the Internet is a very good real-world
model of the BEC.

Reliable transmission of data over the Internet has been the
subject of much research. For the most part, reliability is guar-
anteed by use of appropriate protocols. For example, the ubiq-
uitous TCP/IP ensures reliability by essentially retransmitting
packets within a transmission window whose reception has not
been acknowledged by the receiver (or packets for which the re-
ceiver has explicitly sent a negative acknowledgment). It is well
known that such protocols exhibit poor behavior in many cases,
such as transmission of data from one server to multiple re-
ceivers, or transmission of data over heavily impaired channels,

Manuscript received March 14, 2005; revised September 12, 2005. Work on
this project was performed while the author was a full time employee of Digital
Fountain, Inc.

The author is with the School of Basic Sciences, and School of Computer Sci-
ence and Communications, Ecole Polytechnique Federale de Lausanne (EPFL),
1015 Lausanne, Switzerland (e-mail: amin.shokrollahi@epfl.ch).

Communicated by R. Koetter, Guest Editor.
Digital Object Identifier 10.1109/TIT.2006.874390

such as poor wireless or satellite links. Moreover, ack-based
protocols such as TCP perform poorly when the distance be-
tween the sender and the receiver is long, since large distances
lead to idle times during which the sender waits for an acknowl-
edgment and cannot send data.

For these reasons, other transmission solutions have been pro-
posed. One class of such solutions is based on coding. The orig-
inal data is encoded using some linear erasure correcting code.
If during the transmission some part of the data is lost, then it
is possible to recover the lost data using erasure correcting al-
gorithms. For applications it is crucial that the codes used are
capable of correcting as many erasures as possible, and it is
also crucial that the encoding and decoding algorithms for these
codes are very fast.

Elias showed that the capacity of the BEC with erasure prob-
ability equals . He further proved that random codes of
rates arbitrarily close to can be decoded on this channel
with an exponentially small error probability using maximum-
likelihood (ML) decoding. In the case of the erasure channel,
ML decoding of linear codes is equivalent to solving systems
of linear equations. This task can be done in polynomial time
using Gaussian elimination. However, Gaussian elimination is
not fast enough, especially when the length of the code is long.

Reed–Solomon codes can be used to partially compensate
for the inefficiency of random codes. Reed–Solomon codes can
be decoded from a block with the maximum possible number
of erasures in time quadratic in the dimension. (There are
faster algorithms based on fast polynomial arithmetic, but these
algorithms are often too complicated in practice.) However,
quadratic running times are still too large for many applications.

In [2], the authors construct codes with linear time encoding
and decoding algorithms that can come arbitrarily close to the
capacity of the BEC. These codes, called Tornado codes, are
very similar to Gallager’s low-density parity-check (LDPC)
codes [3], but they use a highly irregular weight distribution for
the underlying graphs.

The running times of the encoding and decoding algorithms
for Tornado codes are proportional to their block length rather
than to their dimension. Therefore, for small rates, the encoding
and decoding algorithms for these codes are slow. This turns
out to be quite limiting in many applications, such as those de-
scribed in [4], since the codes used there are of extremely low
rate. This suggests that the encoding/decoding times of tradi-
tional coding technologies may not be adequate for the design
of scalable data transmission systems.

There are more disadvantages of traditional block codes when
it comes to their use for data transmission. The model of a single
erasure channel is not adequate for cases where data is to be sent
concurrently from one sender to many receivers. In this case, the
erasure channels from the sender to each of the receivers have

0018-9448/$20.00 © 2006 IEEE

2552 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

potentially different erasure probabilities. Typically in applica-
tions, the sender or the receiver may probe their channels so the
sender has a reasonable guess of the current erasure probability
of the channel and can adjust the coding rate accordingly. But
if the number of receivers is large, or in situations such as satel-
lite or wireless transmission where receivers experience sudden
abrupt changes in their reception characteristics, it becomes un-
realistic to assume and keep track of the loss rates of individual
receivers. The sender is then forced to assume a worst case loss
rate for all the receivers. This not only puts unnecessary burdens
on the network if the actual loss rate is smaller, but also compro-
mises reliable transmission if the actual loss rate is larger than
the one provisioned for.

Therefore, to construct robust and reliable transmission
schemes, a new class of codes is needed. Fountain codes
constitute such a class, and they address all the above men-
tioned issues. They were first mentioned without an explicit
construction in [4]. A Fountain code produces for a given set of

input symbols a potentially limitless stream of
output symbols . The input and output symbols can be
bits, or more generally, they can be binary vectors of arbitrary
length. The output symbols are produced independently and
randomly, according to a given distribution on . Each output
symbol is the addition of some of the input symbols, and we
suppose that the output symbol is equipped with information
describing which input symbols it is the addition of. In practice,
this information can be either a part of the symbol (e.g., using a
header in a packet), or it can be obtained via time-synchroniza-
tion between the sender and the receiver, or it may be obtained
by other application-dependent means. A decoding algorithm
for a Fountain code is an algorithm which can recover the
original input symbols from any set of output symbols with
high probability. For good Fountain codes the value of is very
close to , and the decoding time is close to linear in .

Fountain codes are ideally suited for transmitting information
over computer networks. A server sending data to many recip-
ients can implement a Fountain code for a given piece of data
to generate a potentially infinite stream of packets. As soon as
a receiver requests data, the packets are copied and forwarded
to the recipient. In a broadcast transmission model there is no
need for copying the data since any outgoing packet is received
by all the receivers. In other types of networks, the copying can
be done actively by the sender, or it can be done by the network,
for example if multicast is enabled. The recipient collects the
output symbols, and leaves the transmission as soon as it has
received of them. At that time it uses the decoding algorithm
to recover the original symbols. Note that the number is
the same regardless of the channel characteristics between the
sender and the receiver. More loss of symbols just translates to a
longer waiting time to receive the packets. If can be chosen
to be arbitrarily close to , then the corresponding Fountain code
has a universality property in the sense that it operates close to
capacity for any erasure channel with erasure probability less
than .

Fountain codes have also other very desirable properties. For
example, since each output symbol is generated independently
of any other one, a receiver may collect output symbols gener-
ated from the same set of input symbols, but by different de-

vices operating a Fountain encoder. This allows for the design
of massively scalable and fault-tolerant communication systems
over packet-based networks. In this paper, we will not address
these and other applications, but will instead focus on the theory
of such codes.

In order to make Fountain codes work in practice, one needs
to ensure that they possess a fast encoder and decoder, and that
the decoder is capable of recovering the original symbols from
any set of output symbols whose size is close to optimal with
high probability. We call such Fountain codes universal. The
first class of such universal Fountain codes was invented by
Luby [5]–[7]. The codes in this class are called LT-codes.

The distribution used for generating the output symbols lies
at the heart of LT-codes. Every time an output symbol is gen-
erated in an LT-code, a weight distribution is sampled which
returns an integer between and the number of input sym-
bols. Then random distinct input symbols are chosen, and their
value is added to yield the value of that output symbol. Decoding
of LT-codes is similar to that of LDPC codes over the erasure
channel and is described later in Section III. Whether or not the
decoding algorithm is successful depends solely on the output
degree distribution.

It can be shown (see Proposition 1) that if an LT-code has a
decoding algorithm with a probability of error that is at most in-
versely polynomial in the number of input symbols, and if the
algorithm needs output symbols to operate, then the average
weight of an output symbol needs to be at least for
some constant . Hence, in the desirable case where is close
to , the output symbols of the LT-code need to have an average
weight of . It is absolutely remarkable that it is pos-
sible to construct a weight distribution that matches this lower
bound via a fast decoder. Such distributions were exhibited by
Luby [7].

For many applications it is important to construct universal
Fountain codes for which the average weight of an output
symbol is a constant and which have fast decoding algorithms.
In this paper, we introduce such a class of Fountain codes,
called Raptor codes. The basic idea behind Raptor codes is
a precoding of the input symbols prior to the application of
an appropriate LT-code (see Section IV). In the asymptotic
setting, we will design a class of universal Raptor codes with
linear time encoders and decoders for which the probability of
decoding failure converges to polynomially fast in the number
of input symbols. This will be the topic of Section VI.

In practical applications it is important to bound the error
probability of the decoder. The bounds obtained from the
asymptotic analysis of Section VI are rather poor. Therefore,
we develop in Section VII analytic tools for the design of finite
length Raptor codes which exhibit very low decoding error
probabilities, and we will exemplify our methods by designing
a specific Raptor code with guaranteed bounds on its error
performance.

One of the disadvantages of LT- or Raptor codes is that
they are not systematic. This means that the input symbols
are not necessarily reproduced among the output symbols.
The straightforward idea of transmitting the input symbols
prior to the output symbols produced by the coding system is
easily seen to be flawed, since this does not guarantee a high

SHOKROLLAHI: RAPTOR CODES 2553

probability of decodability from any subset of received output
symbols. In Section VIII, we develop a new set of ideas and
design efficient systematic versions of Raptor codes.

Raptor codes were discovered in the late 2000, and patented
in late 2001 [8]. Independently, Maymounkov [9] later discov-
ered the idea of precoding to obtain linear time codes. His results
are similar to parts of Section VI.

Raptor codes have been highly optimized and are being used
in commercial systems of Digital Fountain, a Silicon Valley
based startup specializing in fast and reliable delivery of data
over heterogeneous networks. The Raptor implementation of
Digital Fountain reaches speeds of several gigabits per second,
on a 2.4-GHz Intel Xeon processor, while ensuring very strin-
gent conditions on the error probability of the decoder, even for
very short lengths. A version of Raptor codes that works for
small lengths and requires very little processing power has re-
cently been selected as Global Standard for Reliable Broadcast
of Multimedia to 3G Mobile Devices. The full text of the stan-
dard, together with details of the design can be found at [10].

Finally, let us summarize the main results of this paper.

• Introduction of Raptor codes in Section IV.
• Design of Raptor codes with good asymptotic perfor-

mance in Section VI: Here, we design Raptor codes that
can come arbitrarily close to the capacity of any unknown
erasure channel, with linear time encoding and decoding
algorithms.

• Design and analysis of finite-length Raptor codes in Sec-
tion VII: In this section, we introduce methods to design
and analyze Raptor codes for moderate lengths. We also
give specific designs with guarantees on the error proba-
bility of the decoding error.

• Systematic Raptor codes in Section VIII: In many prac-
tical situations, it is important to have a systematic Raptor
code. The straightforward solution would be to send the
original data, prior to sending the data produced by the
Raptor code. However, for even moderate loss rates, this
solution does not work. Section VIII introduces a new
method; this method produces from the source symbols
a series of “intermediate symbols,” from which the non-
systematic symbols are produced.

II. DISTRIBUTIONS ON

Let be a positive integer. The dual space of is the space of
linear forms in variables with coefficients in . This space is
noncanonically isomorphic to via the isomorphism mapping
the vector with respect to the standard basis to the
linear form . A probability distribution on
induces a probability distribution on the dual space of with
respect to this isomorphism. For the rest of this paper, we will
use this isomorphism and will freely and implicitly interchange
distributions on and its dual.

Let be a distribution on so that
denotes the probability that the value is chosen. Often we

will denote this distribution by its generator polynomial
. For example, using this notation, the expectation

of this distribution is succinctly given by , where
is the derivative of with respect to . Although we will

almost always assume that , we will keep this notation
for convenience.

The distribution induces a distribution on (and hence
on its dual) in the following way: For any vector , the
probability of is , where is the weight of . A simple
sampling algorithm for this distribution would be to sample first
from the distribution to obtain a weight , and then to
sample a vector of weight in uniformly at random. By
abuse of notation, we will in the following denote the distribu-
tion induced by on by as well.

As an example we mention that the uniform distribution on
is given by the generating polynomial .

III. FOUNTAIN CODES AND LT-CODES

The theoretical idea of Fountain codes was introduced in [4]
and the first practical realizations of Fountain codes were in-
vented by Luby [5]–[7]. They represent a new class of linear
error-correcting codes. Let be a positive integer, and let be
a degree distribution on . A Fountain code with parameters

has as its domain the space of binary strings of length
, and as its target space the set of all sequences over , de-

noted by . Formally, a Fountain code with parameters
is a linear map in which the coordinates are indepen-
dent random variables with distribution over . The block
length of a Fountain code is potentially infinite, but in appli-
cations we will solely consider truncated Fountain codes, i.e.,
Fountain codes with finitely many coordinates, and make fre-
quent and implicit use of the fact that unlike traditional codes
the length of a Fountain code is not fixed a priori.

The symbols produced by a Fountain code are called output
symbols, and the symbols from which these output symbols
are calculated are called input symbols. The input and output
symbols could be elements of , or more generally, the ele-
ments of any finite-dimensional vector space over (or more
generally, over any field).

Encoding of a Fountain code is rather straightforward: for a
given vector of input symbols, each output symbol
is generated independently and randomly by first sampling from
the distribution to obtain a weight between and . Next, a
vector of weight is chosen uniformly at random
from and the value of the output symbol is calculated as

. We will not be concerned with the cost of sampling
from the distribution over , as this will be trivial in our ap-
plications. The encoding cost of a Fountain code is the expected
number of operations sufficient to calculate an output symbol.
This is easily seen to be at most , where is the expected
Hamming weight of the random variable with distribution
over .

In addition to conceptual differences between Fountain codes
and block codes there is also an important operational difference
between these classes of codes. For a traditional block code,
the structure of the code is determined prior to its use for trans-
mission of information. This is also true for randomized block
codes, such as random LDPC codes. On the other hand, in prac-
tice, Fountain codes are generated “online.” Each set of input
symbols may have its own associated Fountain code. There are
various advantages to this mode of operation of Fountain codes

2554 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

such as those described in Luby’s paper [7], in Luby’s patents
on this subject [5], [6], or in [4].

In this paper, we will consider Fountain codes over a memory-
less BEC with erasure probability . Even though all our results
also hold for more general and not necessarily memoryless era-
sure channels, we will only consider the memoryless case for
sake of simplicity.

A reliable decoding algorithm of length for a Fountain code
is an algorithm which can recover the input symbols from any
set of output symbols and errs with a probability that is at
most inversely polynomial in (i.e., the error probability is at
most for some positive constant). Often, we will skip the
term reliable and only talk about an algorithm of length . The
cost of such a decoding algorithm is the (expected) number of its
arithmetic operations divided by . This is equal to the average
cost of recovering each input symbol.

When transmitting information using a traditional code, both
the sender and the receiver are in possession of a description of
the coding method used. For Fountain codes this is not neces-
sarily the case, since the code is being generated concurrently
with the transmission. Therefore, in order to be able to recover
the original information from the output symbols, it is necessary
to transmit a description of the code together with the output
symbols. In a setting where the symbols correspond to packets in
a computer network, one can augment each transmission packet
with a header information that describes the set of input sym-
bols from which this output symbol was generated. We refer the
reader to Luby [7], [5], [6] for a description of different methods
for accomplishing this. In this paper, we will implicitly assume
that the structure of the Fountain code is transmitted together
with the code using one of the many existing methods.

A special class of Fountain codes is furnished by LT-codes.
In this class, the distribution has the form described
in Section II. It is relatively easy to prove an information-theo-
retic lower bound on the encoding/decoding cost of any LT-code
which has a decoding algorithm of length approximately equal
to . We will prove the lower bound in terms of the number of
edges in the decoding graph. The decoding graph of an algo-
rithm of length is a bipartite graph with nodes on the one
side (called the input nodes or the input symbols) and nodes on
the other (called the output nodes or the output symbols). There
is an edge between an input symbol and an output symbol if the
input symbol contributes to the value of the output symbol.

The following proposition shows that the decoding graph of
a reliable decoding algorithm has at least an order of
edges. Therefore, if the number of collected output symbols
is close to , then the encoding cost of the code is at least of the
order of .

Proposition 1: If an LT-code with input symbols possesses
a reliable decoding algorithm, then there is a constant such that
the graph associated to the decoder has at least edges.

Proof: Suppose that the Fountain code has parameters
. In the decoding graph, we call an input node covered

if it is the neighbor of at least one output node. Otherwise, we
call the node uncovered. The error probability of the decoder
is lower-bounded by the probability that there is an uncovered

input node. We will establish a relationship between this prob-
ability and the average degree of an output node.

Let denote the decoding graph of the algorithm. is a
random bipartite graph between input and output nodes such
that each output node is of degree with probability , and
such that the neighbors of an output node are randomly chosen.
Let be an input node in . If an output node is of degree ,
then the probability that is not a neighbor of that output node
is . Since the output node is of degree with probability

, the probability that is not a neighbor of an output node is

where is the average degree of an output node. Since
output nodes are constructed independently, the probability that

is not a neighbor of any of the output nodes is .
We may assume that . Then the Taylor expansion of

shows that and
hence , where is the av-
erage degree of an input node. Since the decoder is assumed to
be reliable, it errs with probability at most for some con-
stant . This shows that , i.e.,

This completes the proof.

In the following, we will give some examples of Fountain
codes, and study different decoding algorithms. A random
LT-code is an LT-code with parameters where

. As discussed earlier, this choice for
amounts to the uniform distribution on , which explains the
name.

Proposition 2: A random LT-code with input symbols has
encoding cost , and ML decoding is a reliable decoding al-
gorithm for this code of overhead .

Proof: Since the expected weight of a vector in under
uniform distribution is , the encoding cost of the random
LT-code is .

In the case of the erasure channel, the ML decoding algorithm
amounts to Gaussian elimination: we collect output symbols
(the value of will be determined shortly). Each received output
symbol represents a linear equation (with coefficients in) in
the unknown input values , and thus the decoding
process can be viewed as solving a (consistent) system of
linear equations in unknowns. The decoding cost of this algo-
rithm is , since Gaussian elimination can be performed
using operations.

It is well known that a necessary and sufficient condition
for the solvability of this system is that the rank of the corre-
sponding matrix is equal to . The entries of this matrix are

SHOKROLLAHI: RAPTOR CODES 2555

independent binary random variables with equal probability of
being one or zero. We will now prove that the probability that
this matrix is not of full rank is at most . This is shown by
using a union bound. For each hyperplane in the probability
that all the rows of the matrix belong to the hyperplane is .
There are hyperplanes. Therefore, the probability that
the matrix is not of full rank is at most .
Choosing , we see that the error probability of
ML decoding becomes , which proves the claim.

Gaussian elimination is computationally expensive for dense
codes like random LT-codes. For properly designed LT-codes,
the belief-propagation (BP) decoder [2], [7] provides a much
more efficient decoder. The BP decoder can be best described
in terms of the graph associated to the decoder. It performs the
following steps until either no output symbols of degree one are
present in the graph, or until all the input symbols have been
recovered. At each step of the algorithm, the decoder identifies
an output symbol of degree one. If none exists, and not all the
input symbols have been recovered, the algorithm reports a de-
coding failure. Otherwise, the value of the output symbol of de-
gree one recovers the value of its unique neighbor among the
input symbols. Once this input symbol value is recovered, its
value is added to the values of all the neighboring output sym-
bols, and the input symbols and all edges emanating from it are
removed from the graph.

For random LT-codes the BP decoder fails miserably even
when the number of collected output symbols is very large.
Thus, the design of the degree distribution must be dra-
matically different from the random distribution to guarantee
the success of the BP decoder.

The analysis of the BP decoding algorithm is more compli-
cated than the analysis of ML decoding. For the sake of com-
pleteness, we include a short expectation analysis for the case
where every output symbol chooses its neighbors among the
input symbols randomly and with replacement. We refer the
reader to [7] for the analysis of the original case where the
choice is done without replacement.

As described above, the BP decoder proceeds in steps, and
recovers one input symbol at each step. Following Luby’s nota-
tion, we call the set of output symbols of reduced degree one the
output ripple at step of the algorithm. We say that an output
symbol is released at step if its degree is larger than at
step , and it is equal to one at step , so that recovery of
the input symbol at step reduces the degree of the output
symbol to one. The probability that an output symbol of initial
degree releases at step can be easily calculated as fol-
lows: This is the probability that the output symbol has exactly
one neighbor among the input symbols that are not
yet recovered, and that not all the remaining neighbors
are among the already recovered input symbols. The proba-
bility that the output symbol has exactly one neighbor among
the unrecovered input symbols, and that all its other neighbors
are within a set of size contained in the set of remaining input
symbols is , since we are assuming that the
output symbol chooses its neighbors with replacement. There-
fore,

output symbol is released at step is

Multiplying the term with the probability that the degree of
the symbol is , and summing over all we obtain

output symbol is released at step

Note that

The approximation is very good if for constant
and large .
Suppose that the decoder collects output symbols. Then the

expected number of output symbols releasing at step is
times the probability that an output symbol releases at step ,
which, by the above, is approximately equal to

In order to construct asymptotically optimal codes, i.e., codes
that can recover the input symbols from any output symbols
for values of arbitrarily close to , we require that every de-
coded input symbol releases exactly one output symbol. Thus,
in the limit, we require , and we require that the output
ripple has expected size one at every step. This means that

for . Solving this differential equation,
and keeping in mind that , we obtain the Soliton dis-
tribution

The distribution is similar to the ideal Soliton distribution of
Luby [7], except that it assigns a probability of zero to degree
one, and has infinitely many terms.

The distribution of the size of the output ripple at each point
in time is more difficult to calculate and we refer the reader to
the upcoming paper [11] for details.

The reader is referred to Luby’s paper for a description of
LT-codes with a distribution with
and for which the BP decoder is a reliable decoder of overhead

. These degree distributions are absolutely re-
markable, since they lead to an extremely simple decoding al-
gorithm that essentially matches the information-theoretic lower
bound in Proposition 1.

IV. RAPTOR CODES

The results of the previous section imply that LT-codes
cannot be encoded with constant cost if the number of collected
output symbols is close to the number of input symbols. In this
section, we will present a different class of Fountain codes. One
of the many advantages of the new construction is that it allows
for encoding and decoding with constant cost, as we will see
below.

The reason behind the lower bound of for the cost of
LT-codes is the information-theoretic lower bound of Proposi-

2556 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

Fig. 1. Raptor codes: the input symbols are appended by redundant symbols (black squares) in the case of a systematic pre-code. An appropriate LT-code is used
to generate output symbols from the pre-coded input symbols.

tion 1. The decoding graph needs to have an order of
edges in order to make sure that all the input nodes are cov-
ered with high probability. The idea of Raptor coding is to relax
this condition and require that only a constant fraction of the
input symbols be recoverable. Then the same information-the-
oretic argument as before shows only a linear lower bound for
the number of edges in the decoding graph.

There are two potential problems with this approach: 1) The
information-theoretic lower bound may not be matchable with
an algorithm, and 2) we need to recover all the input symbols,
not only a constant fraction.

The second issue is addressed easily: we encode the input
symbols using a traditional erasure correcting code, and then
apply an appropriate LT-code to the new set of symbols in a
way that the traditional code is capable of recovering all the
input symbols even in face of a fixed fraction of erasures. To
deal with the first issue, we need to design the traditional code
and the LT-code appropriately.

Let be a linear code of block length and dimension , and
let be a degree distribution. A Raptor code with parameters

is an LT-code with distribution on symbols
which are the coordinates of codewords in . The code is
called the pre-code of the Raptor code. The input symbols of a
Raptor code are the symbols used to construct the codeword in

consisting of intermediate symbols. The output symbols are
the symbols generated by the LT-code from the intermediate
symbols. A graphical presentation of a Raptor code is given in
Fig. 1. Typically, we assume that is equipped with a systematic
encoding, though this is not necessary.

A moment’s thought reveals that Raptor codes form a sub-
class of Fountain codes: The output distribution and a fixed
pre-code induce a distribution on , where is the number
of input symbols of the Raptor code. The output symbols of the
Raptor code are sampled independently from the distribution .

A Raptor code has an obvious encoding algorithm as follows:
given input symbols, an encoding algorithm for is used to
generate a codeword in corresponding to the input symbols.
Then an encoding algorithm for the LT-code with distribution

is used to generate the output symbols.
A reliable decoding algorithm of length for a Raptor code

is an algorithm which can recover the input symbols from any
set of output symbols and errs with probability which is at
most for some positive constant . As with LT-codes, we
sometimes omit mentioning the attribute “reliable.”

The definition of the encoding cost of a Raptor code differs
slightly from that of a Fountain code. This is because the en-
coding cost of the pre-code has to be taken into account. We

define the encoding cost of a Raptor code as ,
where is the number of arithmetic operations sufficient for
generating a codeword in from the input symbols. The en-
coding cost equals the per-symbol cost of generating output
symbols.

The decoding cost of a decoding algorithm for a Raptor code
is the expected number of arithmetic operations sufficient to re-
cover the input symbols, divided by . As with the Fountain
codes, this cost counts the expected number of arithmetic oper-
ations per input symbol.

We will study Raptor codes with respect to the following per-
formance parameters.

1) Space: Since Raptor codes require storage for the inter-
mediate symbols, it is important to study their space con-
sumption. We will count the space as a multiple of the
number of input symbols. The space requirement of the
Raptor code is , where is the rate of the pre-code.

2) Overhead: The overhead is a function of the decoding al-
gorithm used, and is defined as the number of output sym-
bols that the decoder needs to collect in order to recover
the input symbols with high probability, minus the number
of input symbols. We will measure the overhead as a mul-
tiple of the number of input symbols, so an overhead of
, for example, means that output symbols need

to be collected to ensure successful decoding with high
probability.

3) Cost: The cost of the encoding and the decoding process.

In the next section we will give several examples of Raptor
codes and study their performance.

V. FIRST EXAMPLES OF RAPTOR CODES

The first example of a Raptor code is an LT-code. An LT-code
with input symbols and output distribution is a Raptor
code with parameters . (is the trivial code of
dimension and block length .) LT-codes have optimal space
consumption (i.e.,). With an appropriate output distribution

the overhead of an LT-code is , and its
cost is proportional to , as was seen in Section III.

LT-codes have no pre-coding, and compensate for the lack of
it by using a very intricate output distribution . At the other
end of the spectrum are Raptor codes that have the simplest pos-
sible output distribution, with a sophisticated pre-code, which
we call pre-code-only (PCO) Raptor codes. Let be a code of
dimension and block length . A Raptor code with parameters

is called a PCO Raptor code with pre-code . In this
code, the input symbols are encoded via to produce the

SHOKROLLAHI: RAPTOR CODES 2557

intermediate symbols and the output distribution is fixed to the
trivial distribution . The value of every output symbol
equals that of an input symbol chosen uniformly at random.

The decoding algorithm for a PCO Raptor code is the trivial
one: a predetermined number of output symbols are collected.
These will determine the values of, say, intermediate symbols.
Next the decoding algorithm for the pre-code is applied to these
recovered intermediate values to obtain the values of the input
symbols.

The performance of a PCO Raptor code depends on the per-
formance of its pre-code , as the following result suggests.

Proposition 3: Let be a linear code of dimension and
block length with encoding and decoding algorithms that have
the following properties.

1) An arbitrary input vector of length can be encoded with
arithmetic operations for some .

2) There is an such that the decoding algorithm can
decode over a BEC with erasure probability
with high probability using arithmetic operations for
some .

Then the PCO Raptor code with pre-code has space consump-
tion , overhead , encoding cost

, and decoding cost with respect to the decoding algorithm
for , where is the rate of .

Proof: The space consumption and the costs of en-
coding/decoding are clear. As for the overhead, suppose that
the decoder collects

output symbols. We need to show that the probability that an
intermediate symbol is not covered is at most ,
since if this condition is satisfied, then the decoder for the pre-
code can decode the input symbols. To show the latter, note that
the probability that an intermediate symbol is not covered is

which is upper bounded by .

Note that the overhead of the PCO Raptor code in the previous
proposition is at least , since
for . Moreover, the overhead approaches
this upper bound only if approaches zero. Therefore, to obtain
PCO Raptor codes with close to optimal overhead the rate of the
pre-code needs to approach zero, which means that the running
time of the code cannot be a constant. The same is true for the
space consumption of the PCO Raptor code.

Despite these obvious shortcomings, PCO Raptor codes are
quite appealing, since this transforms any block code into a
Fountain code. For example, PCO Raptor codes could be useful
when the intermediate symbols (codeword in) can be calcu-
lated offline via pre-processing, and the space needed to keep
these symbols is of no concern. In such a scenario, a PCO Raptor
codes is the fastest possible Fountain code.

The choice of the code depends on the specific application
in mind, though usually it is best to choose a code with very
good encoding and decoding algorithms and little overhead for
a given rate. One possible choice would be a Tornado code [2],
though other choices are also possible (for example an LT-code

with the appropriate number of output symbols, or an irregular
Repeat–Accumulate code [12], or an irregular Repeat–Accumu-
late code with bounded complexity [13]).

VI. RAPTOR CODES WITH GOOD ASYMPTOTIC PERFORMANCE

In the preceding section, we encountered two types of Raptor
codes. For one of them, the LT-codes, the overhead was close
to , and the space was close to , while the decoding cost
grew with . For PCO Raptor codes, the decoding cost could be
chosen to be a constant, but then the overhead was away from
zero, and the space was away from ; moreover, convergence
to zero overhead amounted to letting the space and the cost to
grow with .

In this section, we will design Raptor codes between these
two extremes. These codes have encoding and decoding algo-
rithms of constant cost, and their space consumption and the
overhead are arbitrarily close to and , respectively. We will
design these codes by choosing an appropriate output distribu-
tion and an appropriate pre-code .

The output degree distribution we will use is very similar to
the Soliton distribution in Section III. However, this distribu-
tion needs to be slightly modified. First, the Soliton distribution
does not have output nodes of degree one. This means that it is
not possible to start the decoding process with this distribution.
Second, the Soliton distribution has infinitely many terms. Our
distribution will modify the Soliton distribution by capping it at
some maximum degree , and giving it an appropriate weight
for output symbols of degree one.

Let be a real number larger than zero, set ,
and define

where . Then we have the following result.

Lemma 4: There exists a positive real number (depending
on) such that with an error probability of at most any set
of output symbols of the LT-code with parame-
ters are sufficient to recover at least input
symbols via BP decoding, where .

Proof: We use the analysis of the decoding process as de-
scribed in [2] or in [14]. Consider a set of output
symbols and set up the graph associated to these output sym-
bols. This graph is a random graph with edge degree distribu-
tions and corresponding to the input and the output
symbols, respectively. According to the analysis in [2], for any
constant , if for , then the prob-
ability that the decoder cannot recover or more of the input
nodes are upper-bounded by , where is a suitable constant
(depending on , and , but not on).

In the case of an LT-code with parameters we have
. To compute , fix an input node. The

probability that this node is the neighbor of a given output node
is , where is the average degree of an output node, i.e.,

. The probability that the input node is the neighbor
of exactly output nodes is therefore ,
where is the number of output symbols

2558 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

in the graph. Hence, the generating function of the degree dis-
tribution of the input nodes equals

The edge degree distribution of the input nodes is the
derivative of this polynomial with respect to , normalized so
that . This shows that

Since for , this implies

So, we only need to show that the right-hand side of this in-
equality is less than on , or, equivalently, that

for

Note that

We will show that for ,
which proves the inequality

To see that , note that the left-hand side
is monotonically increasing, so we only need to prove this in-
equality for . For the choice in the
statement of the lemma we have

So far, we have shown that .
So,

To complete the proof we need to show that

for . Note that . Therefore, the above
inequality is valid on the entire interval iff it is valid
at , i.e., iff

Plugging in the value of , it remains to show that

which is verified easily.

Note that the choices in the previous theorem are far from
optimal, but they suffice to prove the asymptotic result.

To construct asymptotically good Raptor codes, we will use
LT-codes described in the previous lemma, and suitable pre-
codes. In the following we will assume that is a fixed positive
real number, and we assume that for every we have a linear
code of block length with the following properties.

1) The rate of is ,
2) The BP decoder can decode on a BEC with erasure

probability

with arithmetic operations.

Examples of such codes are Tornado codes [2], right-reg-
ular codes [15], and certain types of Repeat–Accumulate
codes. The reader can consult [16] for other types of such
capacity-achieving examples. We remark, however, that it is
not necessary for to be capacity-achieving, since we only
require that the decoder be able to decode up to
fraction of erasures rather than . For example, we mention
without proof that the right-regular LDPC code with message
edge degree distribution can be used as the
pre-code .

Note that the second condition above could be weakened to
require that the decoder for works with arithmetic op-
erations (rather than), since we do not require the
code to achieve capacity.

Theorem 5: Let be a positive real number, be an integer,
, , ,

and let be a code with the properties described above. Then
the Raptor code with parameters has space con-
sumption , overhead , and a cost of with re-
spect to BP decoding of both the pre-code and the LT-code.

Proof: Given output symbols, we use the LT-code
with parameters to recover at least a -frac-
tion of the input symbols, where . Lemma 4
guarantees that this is possible. Next we use the BP decoder for

to recover the input symbols in linear time.
It remains to show the assertion on the cost. The average de-

gree of the distribution is

SHOKROLLAHI: RAPTOR CODES 2559

where is the harmonic sum up to . (One can show that
, where is Euler’s constant.) The number

of operations necessary for generating the redundant symbols
of is proportional to which is proportional to

. The same is true for the decoding cost of . This
proves the assertion on the cost.

A careful look at the decoder described above shows that its
error probability is only polynomially small in , rather than
exponentially small (in other words, its error exponent is zero).
The reason for this is that the error probability of the decoder
for has this property. So, if a different linear time decoder
for exhibits a subexponentially small error probability, then
the same will also be true for the error probability of the Raptor
code which uses as its pre-code.

We also remark that the construction in the previous theorem
is essentially optimal. Using the same techniques as in Proposi-
tion 1 it can be shown that the parameters of a Raptor code with
a reliable decoding algorithm of length and a pre-code of rate

satisfy the inequality

for some constant , where is the output degree distribu-
tion of the corresponding LT-code. In our construction, we have

for some constant , is ,
for some constant , and

. (One can show that .) Therefore,
the upper and the lower bounds on have the same order
of magnitude for small . In this respect, the codes constructed
here are essentially optimal.

In terms of overhead, the Raptor codes introduced in this sec-
tion are worse than the LT-codes introduced in [7]: whereas
those LT-codes have an overhead that vanishes as the number
of input symbols grows, the Raptor codes introduced here have
a constant (but arbitrarily small) overhead. This is the price we
have paid to make the decoding algorithm run in linear time.
From a practical point of view the sacrifice in overhead is not
very large, however.

VII. FINITE-LENGTH ANALYSIS OF RAPTOR CODES

The analysis in the previous section is satisfactory from an
asymptotic but not from a practical point of view. The analysis
of the decoding process of the corresponding LT-codes relies
on martingale arguments to enable upper bounds on the error
probability of the decoder. The same is true for the pre-code.
Such bounds are very far from tight, and are especially bad when
the number of input symbols is small.

In this section, we will introduce a different type of error anal-
ysis for Raptor codes of finite length with BP decoding. This
analysis relies on the exact calculation of the error probability
of the LT-decoder, derived in [11], combined with the calcula-
tion of the error probability for certain LDPC codes [17].

A. Design of the Output Degree Distribution

Following [7], we call an input symbol released at time if at
least one neighbor of that input symbol becomes of reduced de-
gree one after input symbols are recovered. The input ripple at
time is defined as the set of all input symbols that are released

at time . The aim of the design is to keep the input ripple large
during as large a fraction of the decoding process as possible.

We will give a heuristic analysis of the expected size of the
input ripple given that the decoding process has already recov-
ered a fixed fraction of the input symbols. For this, it is advanta-
geous to rephrase the BP decoding. At every round of this algo-
rithm, messages are sent along the edges from output symbols to
input symbols, and then from input symbols to output symbols.
The messages sent are or . An input symbol sends a to an
incident output symbol iff its value is not recovered yet. Simi-
larly, an output symbol sends a message to an incident input
symbol iff the output symbol is not able to recover the value of
the input symbol.

Let be the probability that an edge in the decoding graph
carries a value from an output symbol at step of the decoding
process. Then, a standard tree analysis argument [18] shows the
recursion

where and are the output and the input edge degree distri-
butions, respectively. Note that this recursion is only valid if we
can assume that the messages along the edges are statistically
independent.

We have and , where
is the average degree of an input symbol, and is the

derivative of . (The latter is a standard approximation of
the binomial distribution by a Poisson distribution, see the proof
of Lemma 4.) Moreover, the input node degree distribution also
equals , since this distribution is equal to .

Let denote the probability that an input symbol is recov-
ered at round . An input symbol is recovered iff it is incident to
an edge which carries the message from some output symbol.
The probability that an input symbol is recovered, conditioned
on its degree being , equals . Hence, the probability
that an input symbol is unrecovered at round of the algorithm is

. This shows that .
Phrasing the above recursion for the ’s in terms of the ’s, we
obtain

This recursion shows that if an expected -fraction of input sym-
bols has been already recovered at some step of the algorithm,
then in the next step that fraction increases to .
Therefore, the expected fraction of input symbols in the input
ripple will be .

Suppose that the decoding algorithm runs on output
symbols. Then , and we see that the
expected fraction of symbols in the input ripple is

The preceding derivation is a heuristic. But for two reasons
this does not matter for the design of the Raptor codes.

1) The heuristic is only a means for obtaining good degree
distribution candidates. Once we have found a candi-
date, we will exactly calculate the error probability of
the LT-decoder on that candidate as discussed in Sec-
tion VII-B.

2560 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

Fig. 2. Decimal logarithm of the cumulative probability of error of the LT-decoder (vertical axis) versus the fraction of decoded input symbols (horizontal axis)
for the sequence given in Table I for k = 100000. (a) Full range, and (b) toward the end of the decoding process (less than 3% input symbols left to decode).

2) It can be shown by other means that the above formula is,
in fact, the exact expectation of the size of the input ripple
[11].

Let us assume that the pre-code of the Raptor code to be de-
signed has block length . We need to design the output degree
distribution in such a way as to ensure that a large fraction of the

input symbols are recovered. To solve this design problem, we
use an idea communicated to us by Luby [19]: We try to keep
the expected ripple size larger than or equal to , for
some positive constant . The rationale behind this choice is that
if deletion and insertion of elements into the input ripple were to
happen independently with probability every time an input
symbol is recovered, then the input ripple size would need to be
larger by a factor of than the square root of the number of input
symbols yet to be recovered, which is . Though only
a heuristic, this condition turns out to be very useful for the de-
sign of the degree distributions.

Using this condition, the design problem becomes the fol-
lowing: given and , and given the number of input symbols,
find a degree distribution such that

for . Indeed, if this condition is satisfied, then the
expected size of the input ripple which is
is larger than or equal to .

This design problem can be solved by means of linear pro-
gramming, in a manner described in [2]. Namely, the inequality
can be manipulated to yield

for . Note that for this to be solvable, needs
to be larger than . By discretizing the interval
and requiring the above inequality to hold on the discretization
points, we obtain linear inequalities in the unknown coefficients
of . Moreover, we can choose to minimize the objective
function (which is again linear in the unknown coeffi-
cients of), in order to obtain a degree distribution with the
minimum possible average degree.

TABLE I
DEGREE DISTRIBUTIONS FOR VARIOUS VALUES OF k; " IS THE OVERHEAD,

AND a IS THE AVERAGE DEGREE OF AN OUTPUT SYMBOL

Table I shows several optimized degree distributions we have
found using this method for various values of . All the -values
used are equal to . It is interesting to note that for small
values of , is approximately equal to ,
which is the same as for the Soliton distribution given in Sec-
tion III.

B. Error Analysis of LT-Codes

The upcoming paper [11] describes a dynamic programming
approach to calculate the error probability of the LT-decoder
for a given degree distribution. More precisely, given and the
degree distribution , the procedure computes for every the
probability that the decoding process fails with
exactly input symbols recovered.

Fig. 2 shows a plot of the cumulative probability of decoding
error (vertical axis in log-scale) versus (horizontal axis), for
the sequence in Table I corresponding to the value .
Note that for all the degree distributions given in Table I and all
large enough number of input symbols the error probability of
the LT-decoder jumps to before all input symbols are recov-
ered. This is because the average degree of the output symbols

SHOKROLLAHI: RAPTOR CODES 2561

Fig. 3. An LDPC code. For every left (check) node the sum of all the adjacent
right (variable) nodes has to be zero.

in the LT-decoder is too small to guarantee coverage of all input
symbols.

C. Design and Error Analysis of the Pre-Code

Even though the choice of a Tornado code or a right-regular
code as the pre-code of a Raptor code is sufficient for proving
theoretical results about the linear time encodability and decod-
ability of Raptor codes with suitable distributions, such choices
turn out to be rather poor in practical situations. In such cases,
one is interested in a robust pre-code with provable guarantees
on the decoding capability, even for short lengths.

In this subsection, we discuss a special class of LDPC codes
that are well suited as a pre-code. First, let us recall the defi-
nition of an LDPC code. Let be a bipartite graph with left
and right nodes. In the context of LDPC codes, the left nodes
are often referred to as the message or variable nodes while the
right nodes are referred to as the check nodes. The linear code
associated with the graph is of block length . The coordinate
positions of a codeword are identified with the message nodes.
The codewords are those vectors of length over the base field
such that for every check node the sum of its neighbors among
the message nodes is zero. (See Fig. 3.)

BP decoding of LDPC codes over an erasure channel is very
similar to the BP decoding of LT-codes [2]. It has been shown
in [20] that this decoding algorithm is successful if and only
if the graph induced by the erased message positions does not
contain a stopping set. A stopping set is a set of message nodes
such that their induced graph has the property that all the check
nodes have degree greater than one. For example, in Fig. 3, the
message nodes 1, 2, 4, 5 generate a stopping set of size .

Since the union of two stopping sets is again a stopping set, a
bipartite graph contains a unique maximal stopping set (which
may be the empty set). The analysis of erasure decoding for
LDPC codes boils down to computing for each value of the
probability that the graph generated by the erased positions has
a maximal stopping set of size .

The LDPC codes we will study in this subsection are con-
structed from a node degree distribution . For

each of the message nodes, the neighboring check nodes are
constructed as follows: a degree is chosen independently at
random from the distribution given by . Then random
check nodes are chosen which constitute the neighbors of the
message node. The ensemble of graphs defined this way will be
denoted by in the following.

For a graph in the ensemble we can calculate
an upper bound for the probability that the graph has a maximal
stopping set of size . The following theorem has been proved
in [17].

Theorem 6: Let be a positive integer. For , , ,
and let be recursively defined by

for

for

Let be a random graph in the ensemble . Then
the probability that has a maximal stopping set of size is at
most

A complete proof of this theorem is provided in Appendix I.

A standard dynamic programming algorithm can compute the
upper bound in the above theorem with bit
operations, where is the maximum degree in the distribu-
tion .

D. Combined Error Probability

The decoding error probability of a Raptor code with param-
eters can be estimated using the finite-length anal-
ysis of the corresponding LT-code and of the pre-code . This
can be done for any code with a decoder for which the de-
coding error probability is completely known. For example,
can be chosen from the ensemble .

We will assume throughout that the input symbols of the
Raptor code need to be recovered from output symbols.
Suppose that has block length . For any with , let

denote the probability that the LT-decoder fails after recov-
ering of the intermediate symbols. Further, let denote the
probability that the code cannot decode erasures at random
positions. Since the LT-decoding process is independent of the
choice of , the set of unrecovered intermediate symbols at the
point of failure of the decoder is random. Therefore, if de-
notes the probability that the input symbols cannot be recov-
ered from the output symbols, then we have

Using the results of the previous two subsections, it is possible
to obtain good upper bounds on the overall error probability of
Raptor codes.

2562 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

Fig. 4. One version of Raptor codes: the pre-coding is done in multiple stages. The first stage is Hamming coding, and the second stage is a version of LDPC
coding.

Fig. 5. Upper bound on the probability p(s) that the Raptor code of Section VII cannot recover a subset of size s for small values of s.

E. Finite-Length Design

As an example of the foregoing discussions we will give one
possible design for Raptor codes for which the number of input
symbols is larger than or equal to 64536. In this case, we first
encode the input symbols using an extended Hamming code.
This increases the number of symbols to a number which is
roughly .

The reason to choose the extended Hamming code as a first
stage of the pre-coding is to reduce the effect of stopping sets of
very small size, since an extended Hamming code has minimum
distance and thus takes care of stopping sets of sizes and .
Moreover, stopping sets of larger sizes can also be resolved, with
a good probability, using an extended Hamming code.

Next, we use a random code from the ensemble
to pre-code the symbols and produce

intermediate symbols. Then we use an LT-code with the degree
distribution for length given in Table I. The overall Raptor
code in this case is shown in Fig. 4.

Using the results of the previous sections, we can calculate
an upper bound on the probability of error for this Raptor code.
For any , let be the probability that the Raptor code fails to
recover a subset of size within the symbols on which

the LT-encoding is performed. Fig. 5 shows an upper bound
on as grows. The addition of the Hamming code at the
beginning results in for , and reduces the
upper bound on the overall block error probability significantly
to .

F. Design for Very Small Lengths

While the results of this section can be used to design Raptor
codes for relatively large lengths, the reader may find that she or
he may need additional techniques to design codes of very small
length. By very small we mean codes for which the number of
input symbols is in the low thousands, rather than in the low
tens-of-thousands. The design process for such codes uses a lot
of the aspects introduced in this section. However, robust de-
signs call for additional tools.

One of the tools we have found useful for these purposes has
been to change the decoding algorithm. The US patent [21] de-
scribes one such algorithm, called the “Inactivation Decoder.”
This decoder is in fact an ML decoder; the code can be designed
in such a way that this decoder works with minimal computa-
tional overhead.

A code design that works very well for very small numbers of
input symbols has been recently chosen as the sole mandatory

SHOKROLLAHI: RAPTOR CODES 2563

standard for multimedia broadcast and multicast services over
3G wireless networks, see [10]. The code was designed with a
variety of requirements in mind: it had to work well for numbers
of input symbols between 500 and 8196, it had to be systematic,
and it had to have a simple description. The pre-code uses sim-
ilar ideas as the ones described in this section: the first stage of
the pre-code uses a regular LDPC code, while the second stage
uses a code that is somewhat similar to the Hamming code. The
degree distribution for the code was designed using techniques
very similar to the ones described in this section.

This design incorporates a number of methods, among them
the inactivation decoding described above. A thorough descrip-
tion of preferred decoding methods for this code are described in
the document [10]. A detailed description of the design choices
for this code will appear elsewhere.

VIII. SYSTEMATIC RAPTOR CODES

One of the disadvantages of Raptor codes is that they are not
systematic. This means that the input symbols are not neces-
sarily reproduced by the encoder. As many applications require
systematic codes for better performance, we will design in this
section systematic versions of Raptor codes.

Throughout this section, we will assume that we have a
Raptor code with parameters which has a reliable
decoding algorithm of overhead . We denote by the block
length of the pre-code .

We will design an encoding algorithm which accepts input
symbols and produces a set of dis-
tinct indices between and and an unbounded string

of output symbols such that ,
and such that the output symbols can be computed efficiently.
Moreover, we will also design a reliable decoding algorithm of
overhead for this code.

In the following, we will refer to the indices
as the systematic positions, we will call the output symbols

the systematic output symbols, and we will refer to
the other output symbols as the nonsystematic output symbols.

A. Summary of the Approach

The overall structure of our approach is as follows. We will
first compute the systematic positions . This process
also yields an invertible binary -matrix . These data are
computed by sampling times from the distribution
independently to obtain vectors and applying a
modification of the decoding algorithm to these vectors. The
matrix will be the product of the matrix consisting of the
rows and a generator matrix of the pre-code. These
sampled vectors also determine the first output symbols
of the systematic encoder.

To encode the input symbols we first use the in-
verse of the matrix to transform these into intermediate sym-
bols . We then apply the Raptor code with parame-
ters to the intermediate symbols, whereby the first

symbols are obtained using the previously sampled vec-
tors . All this will be done in such a way that the
output symbols corresponding to the systematic positions coin-
cide with the input symbols.

The decoding process for the systematic Raptor code will
consist of a decoding step for the original Raptor code to ob-
tain the intermediate symbols . The matrix is then
used to transform these intermediate symbols back to the input
symbols .

In the next subsection, we will introduce a matrix interpreta-
tion of the encoding and decoding procedures for Raptor codes
and use this point of view to describe our encoding and decoding
algorithms for systematic Raptor codes.

B. A Matrix Interpretation of Raptor Codes

The encoding procedure for a Raptor code amounts to per-
forming multiplications of matrices with vectors, and to solving
systems of equations. The matrices involved are binary, i.e.,
their coefficients are either zero or one. The vectors, on the other
hand, will be vectors of symbols, where each symbol is a binary
digit, or itself a binary vector. We will always view vectors as
row vectors.

For the rest of this paper, we will fix a generator matrix
of the pre-code. is an binary matrix. Let denote
the vector consisting of the input vectors. The pre-
coding step of the Raptor code corresponds to the multiplication

.
Each output symbol of the Raptor code is obtained by sam-

pling independently from the distribution to obtain a row
vector in . The value of the output symbol is calculated as
the scalar product . We call the vector the vector corre-
sponding to the output symbol.

To any given set of output symbols of the Raptor code there
corresponds a binary -matrix in which the rows are the
vectors corresponding to the output symbols. In other words,
the rows of are sampled independently from the distribution

, and we have

(1)

where is the column vector consisting of
the output symbols. Decoding the Raptor code corresponds to
solving the system of equations given in (1) for the vector .

C. The Systematic Positions and the Matrix

In this subsection, we will discuss the problem of calculating
the systematic positions, and the matrix . Moreover, we will
study the cost of multiplication of with a generic vector of
length , and the cost of solving a system of equations
for , where is a given vector of length . In order to make
assertions on the cost, it is advantageous to introduce a piece of
notation. For a matrix we will denote by the number of
arithmetic operations sufficient to calculate the product
of the matrix with a generic vector , divided by the number
of rows of . This is the number of arithmetic operations per
entry of the product . In this sense, is the cost of
multiplying with a generic column vector, and is the
cost of solving the system of equations for a generic
vector .

The system (1) is solvable if and only if the rank of is
. Gaussian elimination identifies rows with indices

such that the submatrix of consisting of these rows has the

2564 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

property that is an invertible -matrix. This gives
us the following algorithm for calculating and the systematic
indices.

Algorithm 7:
Input: Raptor code with parameters and positive

real number .
Output: If successful, vectors , indices

between and , and invertible matrix
such that is the matrix formed by rows .

1) Sample times independently from the distribution
on to obtain .

2) Calculate the matrix consisting of rows
and the product .

3) Using Gaussian elimination, calculate rows
such that the submatrix of consisting of these
rows is invertible, and calculate . If the rank of
is less than , output an error flag.

Theorem 8:

1) If the decoding algorithm for the raptor code errs with
probability , then the probability that Algorithm 7 fails
is at most .

2) The algorithm computes the matrix and its inverse with
binary arithmetic operations.

3) .
4) With high probability (over the choice of the), is

upper-bounded by , where is the
encoding cost of , and is a function approaching
as approaches infinity.

Proof: Let be the matrix whose rows are the vectors
. The system of (1) is solvable if and only if the

rank of is . The probability of solving the system using
the decoding algorithm for the Raptor code is , hence, the prob-
ability that the rank of is smaller than is at most . This
proves part 1).

The matrix can be calculated with opera-
tions. The matrix and its inverse, and the systematic indices

can be obtained using a standard application of
Gaussian elimination to the matrix . This step uses
operations, and proves part 2).

It is easily seen that for any -matrix, so
part 3) follows.

The multiplication can be performed by first multi-
plying with to obtain an -dimensional vector , and then
multiplying with . The cost of the second
step is the average weight of the . To obtain an upper bound on
this average weight, note that a standard application of the Cher-
noff bound shows that the sum of the weights of
is , with high probability. The av-
erage weight of the vectors is therefore at most

. This shows
part 4).

Algorithm 7 can be simplified considerably for the case of
LT-codes by a slight adaptation and modification of BP de-
coding.

Algorithm 9:
Input: LT-code with parameters , and positive real

number .
Output: If successful, vectors , indices

between and , and invertible matrix
formed by rows .

1) Sample times independently from the distribution
on , where is the block length of , to obtain

, and let denote the matrix formed by
these vectors as its rows.

2) Set counter , and matrix , and loop through
the following steps:

2.1) If , identify a row of weight of ; flag
an error and stop if it does not exist; otherwise,
set to be equal to the index of the row in .

2.2) Identify the unique nonzero position of the row,
and delete the column corresponding to that po-
sition from .

3) Set equal to the rows of .

Theorem 10:

1) Suppose that BP decoding is an algorithm of overhead
for the above LT-code, and suppose that it errs with

probability . Then the probability that Algorithm 9 fails
is at most .

2) The matrix can be calculated with at most
arithmetic operations.

3) With high probability (over the choice of the),
is upper-bounded by , where is
a function approaching as approaches infinity.

4) With high probability (over the choice of the), is
upper-bounded by .

Proof: The assertions follow from the fact that the algo-
rithm provided is essentially the BP decoding algorithm (ex-
cept that it does not perform any operations on symbols, and
it keeps track of the rows of which participate in the decoding
process). The assertion on the cost of calculating , and the cost

follow from the upper bound on the
average weights of the vectors . (See the proof of the
previous theorem.)

To calculate , note that the success of the algorithm
shows that with respect to a suitable column and row permuta-
tion is lower triangular with ’s on the main diagonal. Hence,
the cost is equal to the average weight of and the as-
sertion follows.

In what follows we assume that the matrix , the vectors
, and the systematic positions have al-

ready been calculated, and that this data is shared by the en-
coder and the decoder. The systematic encoding algorithm flags
an error if Algorithm 7 (or it LT-analogue) fails to calculate this
data.

D. Encoding Systematic Raptor Codes

The following algorithm describes how to generate the output
symbols for a systematic Raptor code.

SHOKROLLAHI: RAPTOR CODES 2565

Algorithm 11:
Input: Input symbols .
Output: Output symbols , where for
the symbol corresponds to the vectors , and where
for .

1) Calculate given by .
2) Encode using the generator matrix of the pre-code

to obtain , where .
3) Calculate for .
4) Generate the output symbols by

applying the LT-code with parameters to the
vector .

We will first show that this encoder is indeed a systematic en-
coder with systematic positions . This also shows that
it is not necessary to calculate the output symbols corresponding
to these positions.

Proposition 12: In Algorithm 11, the output symbols co-
incide with the input symbols for .

Proof: Note that , where the rows of are
. We have , i.e., , since

. Hence, for all , , and we are done.

Next, we focus on the cost of the encoding algorithm.

Theorem 13: The cost of Algorithm 11 is at most
, where is the encoding cost of the Raptor code. In particular,

if the Raptor code is an LT-code, then the cost of this algorithm
is at most .

Proof: Computation of has cost . Encoding
has cost , where is the encoding cost of the pre-code. Cal-
culation of each of the has expected average cost of .
Therefore, the total cost is . But
is the encoding cost of the Raptor code, hence the assertion fol-
lows.

If the Raptor code is an LT-code, then is at most
by Theorem 10, and .

E. Decoding Systematic Raptor Codes

The decoder for the systematic Raptor code collects
output symbols and recovers the input symbols with high

probability.

Algorithm 14:
Input: Output symbols , where .
Output: The input symbols of the systematic

Raptor code.

1) Decode the output symbols using the decoding algorithm
for the original Raptor code to obtain the intermediate
symbols . Flag an error if decoding is not suc-
cessful.

2) Calculate , where and

As in the case of the encoding algorithm, we will first focus
on the correctness of the algorithm.

Proposition 15: The output of Algorithm 14 is equal to the
input symbols of the systematic encoder, and the error proba-

bility of this algorithm is equal to the error probability of the
decoding algorithm used in Step 1.

Proof: The output symbols are independently
generated output symbols of a Raptor code with parameters

applied to the vector . Therefore, the decoding al-
gorithm used in Step 1 is successful with high probability, and
it computes the vector if it succeeds. Since , the
correctness of the algorithm follows.

Next we focus on the cost of the algorithm.

Theorem 16: The cost of Algorithm 14 is at most
, where is the encoding cost and is the decoding

cost of the original Raptor code, and is the encoding cost of
the pre-code. If the Raptor code is an LT-code, then the cost of
Algorithm 14 is at most .

Proof: Step 1 of the algorithm has cost , and
by Theorem 8. If the Raptor code is

an LT-code, then , and is upper-bounded by
by Theorem 10.

We would like to remark that Algorithm 14 can be improved.
For example, if all the systematic positions have been received,
then there is no need to run the decoding algorithm at all. More
generally, if systematic positions have been received, then only

input symbols need to be calculated. We leave it to the
reader to show that the cost of calculating the missing input
symbols is actually if .

F. Practical Considerations

Our first remark concerns the systematic positions. One
would like these positions to be . The reason we
could not satisfy this condition is hidden in the proof of Propo-
sition 15, since we needed to make sure that the collected output
symbols are statistically independent. In practice, however, it is
a good idea to permute the vectors so that the
systematic positions become the first positions.

Next we remark that is is possible to reduce the error prob-
ability of the encoder considerably by generating many more
initial vectors than in Algorithm 7 (or its LT-ana-
logue). Depending on how many initial vectors are generated,
this makes the error probability of the algorithm very small (for
example much smaller than the probability of failure of the de-
coding Algorithm 14).

There are various ways of improving the running time of the
systematic decoder. For example, it is not necessary to entirely
re-encode the vector in Step 2 of Algorithm 14. This is be-
cause the decoding process in Step 1 will have recovered a large
fraction of the coordinate positions of the vector obtained by ap-
plying the pre-code to . These coordinate positions do not need
to be recalculated.

We also comment that in practice the cost of multiplying with
in Algorithm 11 is much smaller than . This is be-

cause the matrix can be “almost” upper-triangularized, i.e.,
after suitable permutations of rows and columns will be of
the form

2566 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

where is an upper triangular matrix of large size and is
invertible.

We refer the reader to the patent [22] for a different descrip-
tion systematic encoding and decoding of Raptor codes.

APPENDIX

PROOF OF THEOREM 6

Theorem 6 and the proof in this appendix are joint work with
Rüdiger Urbanke [17].

Let be a random graph in the ensemble . We
will prove later that (as given in the statement of The-
orem 6) is the probability that a random graph in the ensemble

has check nodes of degree and check nodes
of degree one. So, let us assume this for now.

We will first show that the probability that a given subset of
size of the set of left nodes (called message nodes) of this
graph is a maximal stopping set is

(2)

Note that is the probability that a random graph in the
ensemble is a stopping set. Since the ordering of
the message nodes does not matter, is also the proba-
bility that a given subset of size of the message nodes is a
stopping set. For to be a maximal stopping set, needs to be a
stopping set, and any set of message nodes containing should
not be a stopping set. Let be a subset of the message nodes
containing . For not to be a stopping set, one of the message
nodes in which is not in should have a neighbor among the
check nodes of of degree zero. In other words, given that
is a stopping set with check nodes of degree zero, is not a
stopping set iff all the nodes in not in have no neighbors
among the check nodes of of degree zero. As a result, the
probability that is a maximal stopping set of size given that
it has check nodes of degree zero is the expression given in
(2). Since can be any integer between and , and since can
be any subset of size of the set of message nodes, it follows
that the probability that has a maximal stopping set of size
is at most

It remains to show that satisfies the recursion given
in the statement of Theorem 6.

Clearly, and for .
To obtain the recursions, we proceed as follows. Consider a
random graph in , and subdivide the graph
into the graph induced by the first message nodes, and
the graph induced by the last message node. is a random
graph in . Suppose that has check nodes of
degree and check nodes of degree one. For to have
check nodes of degree and check nodes of degree one, ex-
actly neighbors of the last message node of have to have

neighbors among the check nodes of degree of , and
neighbors among the check nodes of degree one of

(see Fig. 6). If the last message node is of degree , then the

Fig. 6. Recursion forA (z; o). Then+1th message node of degree d chooses
` nodes among the z check nodes of degree 0, k nodes among the o check nodes
of degree one, and d� `�k nodes among the n�z�o check nodes of degree
larger than one.

number of ways this message node can have the right number
of neighbors among the check nodes of of degrees and is

Since the last message node of is of degree with probability
, and has check nodes of degree zero and check nodes

of degree one with probability , the recursion of The-
orem 6 follows.

ACKNOWLEDGMENT

A number of people have helped with the design of Raptor
codes at various stages. First and foremost I would like to thank
Michael Luby for sharing with me his insight into LT-codes and
for carefully proofreading previous versions of the paper. I am
also grateful to Igal Sason for carefully reading a previous draft
of the paper and pointing out a number of corrections. Many
thanks go to David MacKay for pointing out several remaining
typos and for suggestions for improvement.

Soren Lassen implemented the Raptor codes reported in this
paper and has since optimized the design and the implementa-
tion to reach the speeds reported in the Introduction. I would
also like to thank Richard Karp, Avi Wigderson, Vivek Goyal,
Michael Mitzenmacher, and John Byers for many helpful dis-
cussions during various development phases of this project.

Last but not least, I would like to express my gratitude to
the anonymous reviewers whose numerous comments helped to
considerably improve the presentation of the paper.

REFERENCES

[1] P. Elias, “Coding for two noisy channels,” in Proc. 3rd London Symp.
Information Theory, , London, U.K., 1955, pp. 61–76.

[2] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Efficient
erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
569–584, Feb. 2001.

[3] R. G. Gallager, Low Density Parity-Check Codes. Cambridge, MA:
MIT Press, 1963.

[4] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain
approach to reliable distribution of bulk data,” in Proc. ACM SIGCOMM
’98, Vancouver, BC, Canada, Jan. 1998, pp. 56–67.

SHOKROLLAHI: RAPTOR CODES 2567

[5] M. Luby, “Information Additive Code Generator and Decoder for Com-
munication Systems,” U.S. Patent 6,307,487, Oct. 23, 2001.

[6] , “Information Additive Code Generator and Decoder for Commu-
nication Systems,” U.S. Patent 6,373,406, Apr. 16, 2002.

[7] , “LT-codes,” in Proc. 43rd Annu. IEEE Symp. Foundations of
Computer Science (FOCS), Vancouver, BC, Canada, Nov. 2002, pp.
271–280.

[8] A. Shokrollahi, S. Lassen, and M. Luby, “Multi-Stage Code Generator
and Decoder for Communication Systems,” U.S. Patent Application
20030058958, Dec. 2001.

[9] P. Maymounkov, “Online Codes,” Preprint, 2002.
[10] “Technical Specification Group Services and System Aspects; Multi-

media Broadcast/Multicast Services (MBMS); Protocols and Codecs
(Release 6),” 3rd Generation Partnership Project (3GPP), Tech. Rep.
3GPP TS 26.346 V6.3.0, 3GPP, 2005.

[11] R. Karp, M. Luby, and A. Shokrollahi, “Finite length analysis of LT
codes,” in Proc. IEEE Int. Symp. Information Theory, Chicago, IL,
Jun./Jul. 2004, p. 39.

[12] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate
codes,” in Proc. 2nd Int. Symp. Turbo Codes, Brest, France, Sep. 2000,
pp. 1–8.

[13] H. Pfister, I. Sason, and R. Urbanke, “Capacity-achieving ensembles for
the binary erasure channel with bounded complexity,” IEEE Trans. Inf.
Theory, vol. 51, no. 7, pp. 2352–2379, Jul. 2005.

[14] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Im-
proved low-density parity-check codes using irregular graphs,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 585–598, Feb. 2001.

[15] A. Shokrollahi, “New sequences of linear time erasure codes ap-
proaching the channel capacity,” in Proc. 13th Int. Symp. Applied
Algebra, Algebraic Algorithms, and Error-Correcting Codes (Lecture
Notes in Computer Science), M. Fossorier, H. Imai, S. Lin, and A. Poli,
Eds. Berlin, Germany: Springer-Verlag, 1999, vol. 1719, , pp. 65–76.

[16] P. Oswald and A. Shokrollahi, “Capacity-achieving sequences for
the erasure channel,” IEEE Trans. Inf. Theory, vol. 48, no. 12, pp.
3017–3028, Dec. 2002.

[17] A. Shokrollahi and R. Urbanke, “Finite Length Analysis of a Certain
Class of LDPC Codes,” Preprint, 2001.

[18] M. Luby, M. Mitzenmacher, and A. Shokrollahi, “Analysis of random
processes via and-or tree evaluation,” in Proc. 9th Annu. ACM-SIAM
Symp. Discrete Algorithms, San Francisco, CA, Jan. 1998, pp. 364–373.

[19] M. Luby, “A note on the design of degree distributions,” unpublished,
2001 Private communication.

[20] C. Di, D. Proietti, İ. E. Telatar, T. Richardson, and R. Urbanke, “Finite-
length analysis of low-density parity-check codes on the binary erasure
channel,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–1579, Jun.
2002.

[21] A. Shokrollahi, S. Lassen, and R. Karp, “Systems and Processes for
Decoding Chain Reaction Codes Through Inactivation,” U.S. Patent
6,856,263, Feb. 15, 2005.

[22] A. Shokrollahi and M. Luby, “Systematic Encoding and Decoding of
Chain Reaction Codes,” U.S. Patent 6,909,383, Jun. 21, 2005.

	toc
	Raptor Codes
	Amin Shokrollahi, Senior Member, IEEE
	I. I NTRODUCTION
	II. D ISTRIBUTIONS ON $\BBF _{2}^{k}$
	III. F OUNTAIN C ODES AND LT-C ODES
	Proposition 1: If an LT-code with k input symbols possesses a
	Proof: Suppose that the Fountain code has parameters $(k, \Omega

	Proposition 2: A random LT-code with k input symbols has encod
	Proof: Since the expected weight of a vector in $ \BBF _{2}^{k}$

	IV. R APTOR C ODES

	Fig. 1. Raptor codes: the input symbols are appended by redundan
	V. F IRST E XAMPLES OF R APTOR C ODES
	Proposition 3: Let $ {\cal C}$ be a linear code of dimension k
	Proof: The space consumption and the costs of encoding/decoding

	VI. R APTOR C ODES W ITH G OOD A SYMPTOTIC P ERFORMANCE
	Lemma 4: There exists a positive real number c (depending on $
	Proof: We use the analysis of the decoding process as described

	Theorem 5: Let $ \varepsilon $ be a positive real number, k be
	Proof: Given $k(1+ \varepsilon)$ output symbols, we use the LT-

	VII. F INITE -L ENGTH A NALYSIS OF R APTOR C ODES
	A. Design of the Output Degree Distribution

	Fig. 2. Decimal logarithm of the cumulative probability of error
	TABLE I D EGREE D ISTRIBUTIONS FOR V ARIOUS V ALUES OF k; $\va
	B. Error Analysis of LT-Codes

	Fig. 3. An LDPC code. For every left (check) node the sum of all
	C. Design and Error Analysis of the Pre-Code
	Theorem 6: Let r be a positive integer. For $n\geq 1$, z, $o

	D. Combined Error Probability

	Fig. 4. One version of Raptor codes: the pre-coding is done in m
	Fig. 5. Upper bound on the probability $p(s)$ that the Raptor co
	E. Finite-Length Design
	F. Design for Very Small Lengths
	VIII. S YSTEMATIC R APTOR C ODES
	A. Summary of the Approach
	B. A Matrix Interpretation of Raptor Codes
	C. The Systematic Positions i_{1},\ldots ,i_{k} and the Matrix
	Algorithm 7:
	Theorem 8:
	Proof: Let S be the matrix whose rows are the vectors $v_{1},\

	Algorithm 9:
	Theorem 10:
	Proof: The assertions follow from the fact that the algorithm pr

	D. Encoding Systematic Raptor Codes
	Algorithm 11:
	Proposition 12: In Algorithm 11, the output symbols $z_{i_{j}}$
	Proof: Note that $R = A\cdot G$, where the rows of A are $v_{i

	Theorem 13: The cost of Algorithm 11 is at most $L(R^{-1})+ \alp
	Proof: Computation of y has cost $L(R^{-1})$. Encoding y ha

	E. Decoding Systematic Raptor Codes
	Algorithm 14:
	Proposition 15: The output of Algorithm 14 is equal to the input
	Proof: The output symbols u_{1},\ldots ,u_{m} are independentl

	Theorem 16: The cost of Algorithm 14 is at most $\alpha (1+ \var
	Proof: Step 1 of the algorithm has cost $\beta $, and $L(R) = \a

	F. Practical Considerations

	P ROOF OF T HEOREM 6

	Fig. 6. Recursion for $A_{n}(z,o)$. The $n+1$ th message node o
	P. Elias, Coding for two noisy channels, in Proc. 3rd London Sym
	M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, Effic
	R. G. Gallager, Low Density Parity-Check Codes . Cambridge, MA:
	J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, A digital fount
	M. Luby, Information Additive Code Generator and Decoder for Com
	A. Shokrollahi, S. Lassen, and M. Luby, Multi-Stage Code Generat
	P. Maymounkov, Online Codes, Preprint, 2002.

	Technical Specification Group Services and System Aspects; Multi
	R. Karp, M. Luby, and A. Shokrollahi, Finite length analysis of
	H. Jin, A. Khandekar, and R. McEliece, Irregular repeat-accumula
	H. Pfister, I. Sason, and R. Urbanke, Capacity-achieving ensembl
	M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, Impro
	A. Shokrollahi, New sequences of linear time erasure codes appro
	P. Oswald and A. Shokrollahi, Capacity-achieving sequences for t
	A. Shokrollahi and R. Urbanke, Finite Length Analysis of a Certa
	M. Luby, M. Mitzenmacher, and A. Shokrollahi, Analysis of random
	M. Luby, A note on the design of degree distributions, unpublish
	C. Di, D. Proietti, . E. Telatar, T. Richardson, and R. Urbanke,
	A. Shokrollahi, S. Lassen, and R. Karp, Systems and Processes fo
	A. Shokrollahi and M. Luby, Systematic Encoding and Decoding of

